Addendum Nash Booklet

Total Page:16

File Type:pdf, Size:1020Kb

Addendum Nash Booklet Howard Nash: 40 Years of Collaboration Continued Nash, PNAS 1975 John Hays, recombination colleague Oregon State University Reminiscences about Howard I was trained as a physical chemist and then membrane biochemist. Thus, as an Assistant Professor of Chemistry at the University of Maryland Baltimore County in 1973 very much interested in the molecular biology of homologous recombination, I didn’t know how to get started. Fortunately, I happened to make contact with Max Gottesman and Howard Nash, and subsequently joined the rest of the regulars at the infamous weekly “Lambda Lunch”. Howard soon told me that he had also been interested in homologous recombination, but that “he had his hands full with site-specific recombination” and would “help me any way he could”. In fact, he became my mentor in molecular biology, substantially altering the course of my scientific career I recall here two of my favorite “Nashisms”. First, in response to a question about statistical analyses of my data he said “John, if a molecular biology experiment demonstrates less than a 3-fold effect, write it in your notebook and forget about it”. Second, when I asked him whether the 18.125 µl of reagent specified in one of his protocols (apparently scaled down 8- fold from a previous recipe) could be 18 or even 20 µl he told me “Well, I don’t know about that, but I always follow the protocol exactly”. Baseball also appealed to Howard’s quantitative instincts, and we enjoyed often discussing and occasionally watching the Baltimore Orioles together. I hope that his future includes plenty of time for baseball. Nancy Kleckner, DNA recombination friend and colleague Harvard University I started my scientific life studying bacteriophage lambda in all of its complexities, including its several recombination systems. I grew up immersed in genetic analysis of the system, beginning with the Campbell model and continuing through the identification of mutants defective in Int protein and the genetic definition of "attachment sites" and their unusual properties. Howard burst onto this scene virtually unannounced (at least to those of us outside of the NIH) with his seminal 1975 paper describing Int-promoted recombination in vitro. The ensuing studies comprise a remarkable intellectual tour. Howard has three special strengths as a scientist. First, he always chooses deeply important, cutting-edge research areas, e.g. lambda integration and the basis for anaesthesia. Second, he is willing to develop new ways of tackling problems that are not only uniquely powerful for the issues at hand but also require that he develop expertise in entirely new disciplines, e.g. biochemistry and genetics respectively. Third, he is always committed to thinking very hard about the complex issues that arise. In many cases these complexities result from his own contributions. This seriousness of purpose, manifested in every aspect of his scientific life, is one of Howard's most endearing qualities. I got to know Howard quite well through his published work before ever meeting him. His research is always logical and carefully reasoned with respect to the overall sequence of experiments as well as their design and execution. His presentation of results in published form exactly mirrors his underlying logic, making it possible to hear him thinking through the written word. The same clarity of thought and expression illuminates Howard's several commentary articles. In person, Howard turned out to be exactly the same person who had emerged from the printed page. At meetings in the field of site-specific recombination and transposition, his clarity of thought and reasoning provided constant beacons of understanding. He advanced the field via probing questions, both in public and in private. Equally importantly, Howard's leadership was critical in making the field a haven for pure intellectual pursuits. The focus was primarily on the science and inter-personal relationships that, while not always perfect, were nonetheless grounded fundamentally in mutual respect and scientific accomplishment. That atmosphere is apparent even to this day. The biannual "Workshop on Site-specific Recombination and Transposition", started by Howard in 1990, has this year reached its 20-year anniversary, with many of the same participants as on the very first occasion, albeit with some evolution in their areas of research. Indeed, as my own research began to include new areas, I discovered with great shock and disappointment that most scientific fields do not meet this standard and, correspondingly, what a remarkable and unique environment Howard's influence created. Not surprisingly in light of the above considerations, when Howard decided to switch to studying anaesthesia, his old field went into mourning. We understood his decision. We vigorously applaud his new successes. We are happy that a new community now has the benefits we used to enjoy from Howard's membership in ours. And we know that we are all better scientists, and people, for having shared his sphere of influence. Nonetheless, we all still miss Howard a great deal, more than he would probably guess. It is wonderful that this Symposium offers an opportunity to rectify that deficit, to let Howard know how much his old community appreciates him still. Griffith & Nash, PNAS, 1985 chocolate soccer ball Tall: Steve Goodman, Howard, Drew Granston Short: Anca Segall, Carol Robertson, Sue Nicholson; circa 1990 Nancy Craig, postdoctoral fellow 1980-1984 Johns Hopkins University Howard has a remarkable facility to learn something from virtually every experiment he contributes to. This ability derives from his talents in experimental design and careful data analysis. Thus, there are few experiments that "don't work". Another characteristic of Howard's scientific acumen is that he also has a terrific sense of what his experiments don't show. To a degree not seen with many other scientists, he is also willing to say "I have no information about that". I have greatly benefited from these core "Nash" phenotypes and have tried to transmit them to my trainees. Anca Segall, postdoctoral fellow 1989 – 1994 San Diego State University As I was finishing my graduate work in bacterial genetics of chromosome rearrangements, I decided that I had to learn biochemistry in order to understand chromosome structure more deeply. Howard had recently published a review article in Nature with Marty Gellert on site-specific recombination that had impressed me and I asked to join his lab. Despite my complete lack of biochemistry background, Howard took a chance on me. He later seriously questioned his decision after an unproductive first couple of years, after which he suggested that I consider leaving experimental science and joining the Center for Scientific Review. Nevertheless, we both hung on in there. During those years, a few of the lessons I learned from Howard were: 1) that making models is extremely useful, but you have to be willing to challenge them ruthlessly (refuting his own four-stranded DNA recombination intermediate model is one example), 2) that serious criticism should be welcomed and not be taken personally, and 3) to be adventurous and pursue truly novel lines of inquiry, not to be held back by trivial constraints. As a mentor, his advice was thoughtful, spare and no- nonsense. He was extremely generous, especially so with young scientists. At the Site-Specific Recombination Workshops, a meeting that he had helped start, he made a point to visit almost all the posters being presented and get to know all the junior scientists presenting them - he gave graduate students as much time as he gave his senior colleagues, and remembered them through their careers. The seriousness with which Howard tackles anything - experiments, meetings, singing in choirs, lunch - was daunting but also sometimes amusing. He is the only scientist I have ever met who “studies” before going to meetings. On occasion, in a genuine scholarly spirit, Howard would remind another senior colleague during discussion at a poster of their own results shown in a past paper that contradicted their data now being presented. At the lambda lunch seminar, Howard nearly always brought a sandwich and an apple, in a paper bag. After he finished the sandwich, he used the paper bag as a cutting board for the apple, the thwacks heard around the room, then methodically folded the rustling bag away. Just another example of Howard precision. Howard has an incredible ability to convert any complex problem into its simple mathematical expression. I still strive to achieve Howard’s clarity of thought and focus of purpose, and while failing frequently, the trying pushes me to be a better scientist. Among the most impressive, to me, of Howard’s traits is his deeply felt sense of obligation to challenge himself to perform the kind of cutting-edge, “blue-sky” science that is difficult to pass through grant reviewers on study sections. Howard expressed his belief that NIH’s uniqueness as a relatively protected environment is an exhortation to explore new “weird and wonderful” avenues, and his career continues to reflect this belief. Jeffrey Gardner University of Illinois, Urbana-Champaign Howard and the Prairie Chickens Faculty members who go on sabbatical always hope to have a transformative experience but are usually disappointed. In my case, this hope was actually realized when I went to Howard’s laboratory. I had done fairly well with a genetic approach toward studying site-specific recombination, but Howard introduced me to biochemistry in a way I had not experienced before. My year in Howard’s laboratory was the most important year of my career. The experience changed my way of doing research, which has carried over to my more recent work on Bacteroides conjugative transposons. I was so happy with my experience in Howard’s laboratory that I asked him more than once to come to Illinois to give a seminar on his work.
Recommended publications
  • Insertion Site Preference of Mu, Tn5, and Tn7 Transposons. Brian Green, Christiane Bouchier, Cécile Fairhead, Nancy Craig, Brendan Cormack
    Insertion site preference of Mu, Tn5, and Tn7 transposons. Brian Green, Christiane Bouchier, Cécile Fairhead, Nancy Craig, Brendan Cormack To cite this version: Brian Green, Christiane Bouchier, Cécile Fairhead, Nancy Craig, Brendan Cormack. Insertion site preference of Mu, Tn5, and Tn7 transposons.. Mobile DNA, BioMed Central, 2012, 3 (1), pp.3. 10.1186/1759-8753-3-3. pasteur-00675691 HAL Id: pasteur-00675691 https://hal-pasteur.archives-ouvertes.fr/pasteur-00675691 Submitted on 1 Mar 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Green et al. Mobile DNA 2012, 3:3 http://www.mobilednajournal.com/content/3/1/3 SHORTREPORT Open Access Insertion site preference of Mu, Tn5, and Tn7 transposons Brian Green1, Christiane Bouchier2, Cécile Fairhead3, Nancy L Craig4 and Brendan P Cormack1* Abstract Background: Transposons, segments of DNA that can mobilize to other locations in a genome, are often used for insertion mutagenesis or to generate priming sites for sequencing of large DNA molecules. For both of these uses, a transposon with minimal insertion bias is desired to allow complete coverage with minimal oversampling. Findings: Three transposons, Mu, Tn5, and Tn7, were used to generate insertions in the same set of fosmids containing Candida glabrata genomic DNA.
    [Show full text]
  • Small Genomes
    81h INTERNATIONAL CONFERENCE ON Small Genomes 1J.00.""", 1. " 400.000 Rsr II 900.000 September 24 -28, 2000 UCLA CONFERENCE CENTER LAKE ARROWHEAD CALIFORNIA . SCIENTIFIC PROGRAM ORGANIZERS Dr. Jeffrey H. Miller, Chair University of California, Los Angeles Dr. George Weinstock University of Texas-Houston Health Sciences Center Dr. Jizhong Zhou Oak Ridge National Laboratory Dr. Monica Riley Woods Hole Dr. Elisabeth Raleigh New England Biolabs Dr. Theresa (Terry) Gaasterland Rockefeller University ACKNOWLEDGEMENTS The Organizers of the conference gratefully acknowledge the contributions of the following for their support: Amgen Oak Ridge National Laboratory Diversa Corp. National Science Foundation DNASTAR Inc. Department of Energy Dupont De Nemours National Institute of Allergy and Infectious Diseases, National Institutes of Genencor Health Integrated Genomics, Inc. Merck New England Biolabs Pharmacia & Upjohn Co. Proctor & Gamble SmithKline Beecham CONTACT NUMBER The Arrowhead Conference Center Phone number is: (909) 337-2478 SCIENTIFIC PROGRAM SUNDAY, SEPTEMBER 24 4:00-6:00 pm Arrival and Check-in at Lake Arrowhead Conference Center 6:15-7:45 pm Dinner (Dining Room) Opening of Meeting (Pineview Room) 7:45-8:10 pm Jeffrey H. Miller University of California, Los Angeles Welcome 8:10-9:00 pm Keynote Address Julian Davies TerraGen Discovery, Inc. "Evolution of Microbial Resistance to Antibiotics" 9:00 pm Reception (Iris Room) MONDAY, SEPTEMBER 25 7:45-8:30 am Breakfast (Dining Room) Session I Genomes of Pathogens (Pineview Room) 8:45-9:00
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Dissecting the Hermes
    UNIVERSITY OF CALIFORNIA RIVERSIDE Dissecting the Hermes Transposase: Residues Important for Target DNA Binding and Phosphorylation A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Biochemistry and Molecular Biology by Joshua Allen Knapp December 2011 Dissertation Committee: Dr. Peter W. Atkinson, Chairperson Dr. Julia Bailey-Serres Dr. Howard Judelson Copyright by Joshua Allen Knapp 2011 The Dissertation of Joshua Allen Knapp is approved: ________________________________________________________________________ ________________________________________________________________________ _______________________________________________________________________ Chairperson University of California, Riverside ACKNOWLEDGEMENTS Firstly, I would like to thank my advisor Dr. Peter Atkinson. He has been an outstanding mentor over these years and has helped me grow as a scientist and provided me with amazing research opportunities. I would like to thank my committee members Dr. Howard Judelson and Dr. Julia Bailey-Serres for all of their guidance and valuable input that has enhanced the quality of my dissertation research. I would also like to thank my undergraduate advisor Dr. Martin Case who taught me how to write scientifically. Members of the Atkinson lab have become a family for me – one of them literally. I met my wife and the love of my life, Jennifer Wright, in the Atkinson lab. She has been a rock for me, providing me with love and support in so many ways. I feel blessed to have her my life. I would not be the scientist that I am with out Rob Hice. He has taught me more about science than anyone else in my academic career and I am thankful to have him in my life as both a teacher and a friend.
    [Show full text]
  • JOURNAL of BACTERIOLOGY VOLUME 169 DECEMBER 1987 NUMBER 12 Samuel Kaplan, Editor in Chief (1992) Kenneth N
    JOURNAL OF BACTERIOLOGY VOLUME 169 DECEMBER 1987 NUMBER 12 Samuel Kaplan, Editor in Chief (1992) Kenneth N. Timmis, Editor (1992) University of Illinois, Urbana Richard M. Losick, Editor (1988) Centre Medical Universitaire, James D. Friesen, Editor (1992) Harvard University, Cambridge, Mass. Geneva, Switzerland University of Toronto, L. Nicholas Ornston, Editor (1992) Graham C. Walker, Editor (1990) Toronto, Canada Yale University, New Haven, Conn. Massachusetts Institute of Stanley C. Holt, Editor (1987) Robert H. Rownd, Editor (1990) Technology, Cambridge, Mass. The University of Texas Health Northwestern Medical School, Robert A. Weisberg, Editor (1990) Science Center, San Antonio Chicago, Ill. National Institute of Child June J. Lascelles, Editor (1989) Health and Human University of California, Los Angeles Development, Bethesda, Md. EDITORIAL BOARD David Apirion (1988) James G. Ferry (1989) Eva R. Kashket (1987) Palmer Rogers (1987) Stuart J. Austin (1987) David Figurski (1987) David E. Kennell (1988) Barry P. Rosen (1989) Frederick M. Ausubel (1989) Timothy J. Foster (1989) Wil N. Konings (1987) Lucia B. Rothman-Denes (1989) Barbara Bachmann (1987) Robert T. Fraley (1988) Jordan Konisky (1987) Rudiger Schmitt (1989) Manfred E. Bayer (1988) David I. Friedman (1989) Dennis J. Kopecko (1987) June R. Scott (1987) Margret H. Bayer (1989) Masamitsu Futai (1988) Viji Krishnapillai (1988) Jane K. Setlow (1987) Claire M. Berg (1989) Robert Gennis (1988) Terry Krulwich (1987) Peter Setlow (1987) Helmut Bertrand (1988) Jane Gibson (1988) Lasse Lindahl (1987) James A. Shapiro (1988) Terry J. Beveridge (1988) Robert D. Goldman (1988) Jack London (1987) Louis A. Sherman (1988) Donald A. Bryant (1988) Susan Gottesman (1989) Sharon Long (1989) Howard A.
    [Show full text]
  • DNA Damage and Tn7 Target Activation Page 1 1 2 DNA Damage
    Genetics: Published Articles Ahead of Print, published on June 18, 2008 as 10.1534/genetics.108.088161 DNA damage and Tn7 target activation 1 2 3 DNA damage differentially activates regional chromosomal loci for Tn7 4 transposition in E. coli 5 6 7 Qiaojuan Shi, Adam R. Parks, Benjamin D. Potter, Ilan J. Safir, Yun Luo, Brian 8 M. Forster, Joseph E. Peters* 9 10 Department of Microbiology, Cornell University, Ithaca NY USA 11 12 13 14 15 16 17 18 19 20 21 22 23 *To whom correspondences should be addressed Page 1 DNA damage and Tn7 target activation 1 2 3 Running title: DNA damage and Tn7 target activation 4 5 Key Words: replication restart, target site selection, DNA double strand break 6 repair, chromosome structure 7 8 Corresponding authors contact information 9 175A Wing Hall 10 Ithaca, NY 14853 11 Ph.607-255-2271 12 FAX.607-255-3904 13 [email protected] 14 15 16 Page 2 DNA damage and Tn7 target activation 1 ABSTRACT 2 The bacterial transposon Tn7 recognizes replicating DNA as a target with 3 a preference for the region where DNA replication terminates in the Escherichia 4 coli chromosome. It was previously shown that DNA double strand breaks in the 5 chromosome stimulate Tn7 transposition where transposition events occur 6 broadly around the point of the DNA break. We show that individual DNA breaks 7 actually activate a series of small regional hotspots in the chromosome for Tn7 8 insertion. These hotspots are fixed and only become active when a DNA break 9 occurs in the same region of the chromosome.
    [Show full text]
  • Profile of Nancy L. Craig
    PROFILE Profile of Nancy L. Craig ancy Craig studies how DNA again. This triggers the transformation moves from place to place: from a quiet hitchhiker in the bacterial Na deceptively simple quest that genome to an active virus bent on repli- has revealed how transposons, cating itself and destroying the bacterial or so-called “DNA cut-and-paste ele- cell (1). ments,” snip themselves from one loca- tion on the chromosome and resettle in From Virus to Transposon another. Craig, a professor of molecular Craig’s love of cutting and pasting led her biology and genetics at Johns Hopkins to the National Institutes of Health University School of Medicine (Baltimore, (NIH) for a postdoctoral position in the MD), an investigator with the Howard laboratory of Howard Nash, inventor of Hughes Medical Institute, and a recently the first in vitro system for studying site- elected member of the National Academy specific recombination, such as the in- of Sciences, has helped uncover how tegration and excision cycle of phage transposable elements jump from one po- lambda. Under his guidance, Craig hoped sition to another to cause disease and to determine molecules necessary to re- sculpt the seemingly infinite variety of locate the virus within the genome. genomes on Earth. While she was at the NIH, a 1982 Even before scientists revealed in 2001 Nature article (2) piqued her interest. that half of the human genome was packed “It was about the seventh transposable with transposable elements, it was clear element described so far, aptly named from Barbara McClintock’s classic studies Tn7, that inserted into a single specific in the 1940s that these so-called “jumping site.
    [Show full text]
  • Chromatic Bacteria – a Broad Host-Range Plasmid and Chromosomal Insertion Toolbox for Fluorescent Protein Expression in Bacteria
    bioRxiv preprint doi: https://doi.org/10.1101/402172; this version posted September 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Chromatic bacteria – A broad host-range plasmid and chromosomal insertion toolbox for fluorescent protein expression in bacteria Rudolf O. Schlechter1,2, Hyunwoo Jun1#, Michał Bernach1,2#, Simisola Oso1, Erica Boyd1, Dian A. Muñoz-Lintz1, Renwick C. J. Dobson1,2,3, Daniela M. Remus1,2,4, and Mitja N. P. Remus-Emsermann1,2* 1School of Biological Sciences, University of Canterbury, Christchurch, New Zealand. 2Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand. 3Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia. 4Protein Science & Engineering, Callaghan Innovation, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand. # Both authors contributed equally to this work * Correspondence: Mitja N. P. Remus-Emsermann [email protected] Keywords: fluorophore, fluorescent labelling, tagging, Tn5, Tn7, transposon bioRxiv preprint doi: https://doi.org/10.1101/402172; this version posted September 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Differential fluorescent labelling of bacteria has become instrumental for many aspects of microbiological research, such as the study of biofilm formation, bacterial individuality, evolution, and bacterial behaviour in complex environments.
    [Show full text]
  • Structural Basis for DNA Targeting by the Tn7 Transposon
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445525; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Structural basis for DNA targeting by the Tn7 transposon Yao Shen1,2, Josue Gomez-Blanco1,2, Michael T. Petassi3, Joseph E. Peters3, Joaquin Ortega2,4, Alba Guarné1,2,5,* 1Department of Biochemistry, McGill University, Montreal (QC), Canada. 2Centre de Recherche and Biologie Structurale, McGill University, Montreal (QC), Canada. 3Department of Microbiology, Cornell University, Ithaca (NY), USA. 4Department of Anatomy and Cell Biology, McGill University Montreal (QC), Canada. 5Lead Contact *Correspondence: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445525; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Tn7 transposable elements are unique for their highly specific, and sometimes programmable, target-site selection mechanisms and precise insertions. All the elements in the Tn7-family utilize a AAA+ adaptor (TnsC) to coordinates target-site selection with transposase activation and prevent insertions at sites already containing a Tn7 element. Due to its multiple functions, TnsC is considered the linchpin in the Tn7 element. Here we present the high-resolution cryo- EM structure of TnsC bound to DNA using a gain-of-function variant of the protein and a DNA substrate that together recapitulate the recruitment to a specific DNA target site.
    [Show full text]
  • Jump Around: Transposons in and out of the Laboratory[Version 1; Peer Review: 2 Approved]
    F1000Research 2020, 9(F1000 Faculty Rev):135 Last updated: 11 MAR 2020 REVIEW Jump around: transposons in and out of the laboratory [version 1; peer review: 2 approved] Anuj Kumar 1,2 1Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA 2Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA First published: 24 Feb 2020, 9(F1000 Faculty Rev):135 ( Open Peer Review v1 https://doi.org/10.12688/f1000research.21018.1) Latest published: 24 Feb 2020, 9(F1000 Faculty Rev):135 ( https://doi.org/10.12688/f1000research.21018.1) Reviewer Status Abstract Invited Reviewers Since Barbara McClintock’s groundbreaking discovery of mobile DNA 1 2 sequences some 70 years ago, transposable elements have come to be recognized as important mutagenic agents impacting genome composition, version 1 genome evolution, and human health. Transposable elements are a major 24 Feb 2020 constituent of prokaryotic and eukaryotic genomes, and the transposition mechanisms enabling transposon proliferation over evolutionary time remain engaging topics for study, suggesting complex interactions with the host, both antagonistic and mutualistic. The impact of transposition is F1000 Faculty Reviews are written by members of profound, as over 100 human heritable diseases have been attributed to the prestigious F1000 Faculty. They are transposon insertions. Transposition can be highly mutagenic, perturbing commissioned and are peer reviewed before genome integrity and gene expression in a wide range of organisms. This publication to ensure that the final, published version mutagenic potential has been exploited in the laboratory, where transposons have long been utilized for phenotypic screening and the is comprehensive and accessible.
    [Show full text]
  • Piggybac Transposon KOSUKE YUSA Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
    piggyBac Transposon KOSUKE YUSA Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK ABSTRACT The piggyBac transposon was originally isolated been identified from another moth species, from frogs, from the cabbage looper moth, Trichoplusia ni, in the 1980s. and for the first time, from a mammal. Moreover, be- Despite its early discovery and dissimilarity to the other DNA cause the piggyBac transposon has a broad host spec- transposon families, the piggyBac transposon was not trum from yeast to mammals, this mobile element has recognized as a member of a large transposon superfamily for a long time. Initially, the piggyBac transposon was thought been widely used for a variety of applications in a to be a rare transposon. This view, however, has now been diverse range of organisms. In this chapter, we will completely revised as a number of fully sequenced genomes describe the discovery and diversity of the piggyBac have revealed the presence of piggyBac-like repetitive elements. transposon, its mechanism of transposition, and its ap- The isolation of active copies of the piggyBac-like elements plication as a genetic tool. We will also provide two from several distinct species further supported this revision. examples of genetic screening that the piggyBac trans- fi This includes the rst isolation of an active mammalian DNA poson has enabled. transposon identified in the bat genome. To date, the piggyBac transposon has been deeply characterized and it represents a number of unique characteristics. In general, all members of the DISCOVERY OF THE piggyBac superfamily use TTAA as their integration target sites. In addition, the piggyBac transposon shows precise excision, piggyBac TRANSPOSON i.e., restoring the sequence to its preintegration state, and can It was known in the late 1970s that when insect DNA transpose in a variety of organisms such as yeasts, malaria viruses, namely Galleria mellonella or Autographa cali- parasites, insects, mammals, and even in plants.
    [Show full text]
  • Profile of Nancy L. Craig
    PROFILE Profile of Nancy L. Craig ancy Craig studies how DNA again. This triggers the transformation moves from place to place: from a quiet hitchhiker in the bacterial Na deceptively simple quest that genome to an active virus bent on repli- has revealed how transposons, cating itself and destroying the bacterial or so-called “DNA cut-and-paste ele- cell (1). ments,” snip themselves from one loca- tion on the chromosome and resettle in From Virus to Transposon another. Craig, a professor of molecular Craig’s love of cutting and pasting led her biology and genetics at Johns Hopkins to the National Institutes of Health University School of Medicine (Baltimore, (NIH) for a postdoctoral position in the MD), an investigator with the Howard laboratory of Howard Nash, inventor of Hughes Medical Institute, and a recently the first in vitro system for studying site- elected member of the National Academy specific recombination, such as the in- of Sciences, has helped uncover how tegration and excision cycle of phage transposable elements jump from one po- lambda. Under his guidance, Craig hoped sition to another to cause disease and to determine molecules necessary to re- sculpt the seemingly infinite variety of locate the virus within the genome. genomes on Earth. While she was at the NIH, a 1982 Even before scientists revealed in 2001 Nature article (2) piqued her interest. that half of the human genome was packed “It was about the seventh transposable with transposable elements, it was clear element described so far, aptly named from Barbara McClintock’s classic studies Tn7, that inserted into a single specific in the 1940s that these so-called “jumping site.
    [Show full text]
  • 1 Genomic DNA Transposition Induced by Human PGBD5 Anton G
    1 Genomic DNA transposition induced by human PGBD5 2 3 Anton G. Henssena, Elizabeth Henaffb, Eileen Jianga, Amy R. Eisenberga, Julianne R. Carsona, 4 Camila M. Villasantea, Mondira Raya, Eric Stilla, Melissa Burnsc, Jorge Gandarab, Cedric 5 Feschotted, Christopher E. Masonb, Alex Kentsis a,e,f,1 6 7 8 9 a Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY; 10 b Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY; 11 c Boston Children’s Hospital, Boston, MA; 12 d Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT; 13 e Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY; 14 f Weill Cornell Medical College, Cornell University, New York, NY. 15 16 17 18 19 1 To whom correspondence may be addressed: Email: [email protected] 20 21 Author contributions: A.H. and A.K. designed the research, A.H., E.H., A.E., E.J., M.B., J.R.C, 22 C.V. performed the research, A.H., E.H., C.F., C.E.M., A.K. analyzed data, A.H. and A.K. wrote 23 the manuscript in consultation with all authors. 24 25 The authors declare no conflict of interest. 26 27 Data deposition: The data reported in this manuscript have been deposited to the Sequence Read 28 Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra/, accession number SRP061649), the Dryad 29 Digital Repository (http://datadryad.org, doi:10.5061/dryad.b2hc1), and the Zenodo computer 30 archive (http://dx.doi.org/10.5281/zenodo.22206).
    [Show full text]