Attitude and Trajectory Estimation for Small Suborbital Payloads

Total Page:16

File Type:pdf, Size:1020Kb

Attitude and Trajectory Estimation for Small Suborbital Payloads Attitude and Trajectory Estimation for Small Suborbital Payloads YUNXIA YUAN Doctoral Thesis Stockholm, Sweden 2017 TRITA-EE 2017:046 KTH School of Electrical Engineering ISSN 1653-5146 SE-100 44 Stockholm ISBN 978-91-7729-427-6 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen i flyg- och rymdteknik 14:00 fredagen den 2 Juni 2017 i Q2, Osquldas väg 10, Stockholm. © Yunxia Yuan, June 2017 Tryck: Universitetsservice US AB iii Abstract Sounding rockets and small suborbital payloads provide a means for research in situ of the atmosphere and ionosphere. The trajectory and the attitude of the payload are critical for the evaluation of the scientific measurements and experiments. The trajectory refers the location of the measurement, while the attitude determines the orientation of the sensors. This thesis covers methods of trajectory and attitude reconstruction imple- mented in several experiments with small suborbital payloads carried out by the Department of Space and Plasma Physics in 2012–2016. The problem of trajectory reconstruction based on raw GPS data was studied for small suborbital payloads. It was formulated as a global least squares op- timization problem. The method was applied to flight data of two suborbital payloads of the RAIN REXUS experiment. Positions and velocities were ob- tained with high accuracy. Additionally, wind up rates were obtained, which match the measurements from onboard angular rate sensors. Based on the trajectory reconstruction technique, atmospheric densities, tem- peratures, and horizontal wind speeds below 80 km were obtained using rigid free falling spheres of the LEEWAVES experiment. An iterative method was applied using the relation between the retrieved accelerations and the veloc- ities and the densities. The dependence of the drag coefficient on the flow characteristics calls for the iterative approach. The uncertainties of the re- sults are lower at low altitudes. Comparison with independent data indicates that the results are reliable for densities below 70 km, temperatures below 50 km, and wind speeds below 45 km. Attitude reconstruction of suborbital payloads from yaw-pitch-roll Euler an- gles was studied, using measurements of magnetic fields and angular veloci- ties. The Euler angles were established by two methods: a global optimization method and an Unscented Kalman Filter (UKF) technique. The comparison of the results shows that the global optimization method provides a more accurate fit to the observations than the UKF. Improving the results of the falling sphere experiments requires understanding of the attitude motion of the sphere. An analytical consideration was devel- oped for a free falling and axisymmetric sphere under aerodynamic torques. Due to the displacement between the center of mass and the geometric cen- ter, the motion can generally be defined as a superposition of precession and nutation. These motion phenomena were modeled numerically and compared to flight data. iv Sammanfattning Sondraketer är en viktig teknik som används inom atmosfärs- och jonosfärs- forskningen. Nyttolastens bana och attityd är av vikt för experimenten och de vetenskapliga mätningarna, då banan beskriver var mätningarna togs vid en viss tidpunkt och attityden beskriver sensorns orientering. Denna avhandling omfattar metoder för rekonstruktion av nyttolasters banor och attityder i flera sondraketexperiment utförda av rymd- och plasmafysi- kavdelningen 2012–2016. Problemet med banrekonstruktion baserad på insamlade GPS-signaler har studerats för små friflygande sondraketnyttolaster. Det har formulerats som ett globalt minstakvadrat-optimeringsproblem. Metoden har applicerats på flygdata från två friflygande enheter i REXUS-experimentet RAIN. Positio- ner och hastigheter har erhållits med hög noggrannhet. Dessutom har en uppskattning gjorts på fasvridningen hos GPS-signalens bärvåg, som stäm- mer överens med vinkelhastighetsmätningar från en ombordsensor. Banrekonstruktionstekniken har använts för att bestämma atmosfärens tät- het, temperatur och vindhastighet från GPS data ombord på fallande sfärer inom LEEWAVES-experimentet. En iterativ metod har använts som grundar sig på relationen mellan tätheten och de rekonstruerade värdena på accelera- tion och hastighet. Det iterativa tillvägagångssättet är nödvändigt på grund av att luftmotståndet beror av flödesparametrarna på ett icke-linjärt sätt. Jämförelser med oberoende data indikerar att resultaten är pålitliga för at- mosfärstätheter under 70 km, temperaturer under 50 km och vindhastigheter under 45 km höjd. Attitydrekonstruktionen i form av gir-lutning-roll Eulervinklarna för en fri- flygande enhet har undersökts genom att använda mätningar av magnetfält och vinkelhastigheter. Två metoder användes för att rekonstruera Eulervink- larna: en global optimeringsmetod och unscented Kalmanfilterteknik (UKF). Jämförelsen av resultaten visar att den globala optimeringsmetoden ger en bättre överensstämmelse med observationerna än UKF. Förbättringar av resultaten från experimenten med fallande sfärer kräver för- ståelse av sfärens attitydrörelse. En analytisk modell har utvecklats för en fritt fallande och axisymmetrisk sfär under påverkan av aerodynamiska vridmo- ment. På grund av förskjutningen mellan masscentrum och det geometriska centrum kommer rörelsen generellt att vara en kombination av precession och nutation. Detta rörelsemönster har modellerats numeriskt och jämförts med flygdata. v Acknowledgements I would like to express my sincere and deep gratitude to my supervisor Dr. Nick- olay Ivchenko. Firstly, I thank him for giving me this opportunity to pursue a PhD under his supervision. During the period of study, Nickolay gave me enough freedom to conduct the research. He helped me plan my PhD study and research carefully, making it well-organised. He was always able to give detailed instructions whenever I came across difficulties, he supported me to learn more about what I was interested in and provided me with opportunities to improve myself in various ways, such as by taking part in practical projects, interesting courses, conferences and symposiums, learn how to express myself in writing and developing my com- puter and network skills. He is a very intelligent and knowledgeable scientist, whom I really admire. I am very grateful to my co-supervior Dr. Gunnar Tibert as well. He provided me with a great number of instructions in the beginning of my studies at KTH to help me conduct the PhD studies. His careful and meticulous research attitude influenced me largely. He kept his concern for my study and research, and spent much time to discuss my study and research. During the whole study period, he taught me much knowledge and many skills. Many thanks to my colleagues in the Department of Space and Plasma Physics, School of Electrical Engineering, KTH Royal Institute of Technology: Lars Bylan- der, Hanna Dahlgren, Gabriel Giono, Chunqing Huo, Tobias Kuremyr, Bin Li, Per- Arne Lindqvist, Göran Marklund, Georgi Olentsenko, Lorenz Roth, Nicola Manuel Schlatter, Peter Weijnitz. I thank them for their kind help and encouragement. Thanks to my fellows in Stockholm: Huina, Lin, Yan. I thank them for their warm help and company. My thanks also go to the Chinese Scholarship Council, which financially supported my PhD study. Last but not least, I really would like to express my deep appreciation to my par- ents. I thank them very much for their endless love and support, which has helped me to get through with these studies. Contents Contents vii Acronyms ix Paper list xi List of papers . xi Publications not included in this thesis . xi List of Figures xiii 1 Introduction 1 2 Sounding rocket and small satellite projects 3 2.1 RAIN . 3 2.2 MUSCAT . 5 2.3 SPIDER . 8 3 Principles of Global Navigation Satellite Systems 15 3.1 Signal . 15 3.2 Front end . 17 3.3 Software receiver operation . 17 3.4 Navigational solution . 19 4 Attitude kinematics and dynamics 21 4.1 Kinematics . 22 4.2 Attitude dynamics . 26 4.3 Euler’s equation . 28 5 State estimation 31 5.1 Least squares optimization . 31 5.2 Unscented transformation . 32 5.3 Unscented Kalman filter . 33 6 Results and conclusions 37 vii viii CONTENTS 6.1 Paper 1 . 37 6.2 Paper 2 . 38 6.3 Paper 3 . 39 6.4 Paper 4 . 39 Bibliography 41 Acronyms ADC Analog-to-Digital Converter BDU Boom Deployment Unit BPSK Binary Phase Shift Keying C/A code Coarse Acquisition code CU Common Unit DC Direct Current DCM Direction Cosine Matrix DLL Delay Lock Loop EMU Electric Measurement Unit EKF Expanded Kalman Filter ESA European Space Agency FFU Free Flight Units GPS Global Positioning System GNSS Global Navigation Satellite System IGS International GPS Service for Geodynamics KF Kalman Filter LEEWAVES Local Excitation and Effects of Waves on Atmospheric VErtical Structure LNA Low-Noise Amplifier MUSCAT MUltiple Spheres for Characterization of Atmospheric Temperatures P code Precision code ix x CONTENTS PCB Printed Circuit Board PGA Programmable Gain Amplifier PLL Phase Lock Loop QFN Quad Flat No-leads RAIN Rocket deployed Atmospheric probes conducting Independent measurements in Northern Sweden REXUS Rocket Experiments for University Students RMU Rocket Mounted Unit SPIDER Small Payloads for Investigation of Disturbances in Electrojet by Rockets TEM Transmission Electron Microscopy UHF Ultra High Frequency UKF Unscented Kalman Filter UT Unscented Transformation VCO Voltage Controlled Oscillator Paper list List of papers 1. Y. Yuan, E. Linden,
Recommended publications
  • Suborbital Platforms and Range Services (SPARS)
    Suborbital Capabilities for Science & Technology Small Missions Workshop @ Johns Hopkins University June 10, 2019 Mike Hitch, Giovanni Rosanova Goddard Space Introduction Flight Center AGENDAWASP OPIS ▪ Purpose ▪ History & Importance of Suborbital Carriers to Science ▪ Suborbital Platforms ▪ Sounding Rockets ▪ Balloons (brief) ▪ Aircraft ▪ SmallSats ▪ WFF Engineering ▪ Q & A P-3 Maintenance 12-Jun-19 Competition Sensitive – Do Not Distribute 2 Goddard Space Purpose of the Meeting Flight Center Define theWASP OPISutility of Suborbital Carriers & “Small” Missions ▪ Sounding rockets, balloons and aircraft (manned and unmanned) provide a unique capability to scientists and engineers to: ▪ Allow PIs to enhance and advance technology readiness levels of instruments and components for very low relative cost ▪ Provide PIs actual science flight opportunities as a “piggy-back” on a planned mission flight at low relative cost ▪ Increase experience for young and mid-career scientists and engineers by allowing them to get their “feet wet” on a suborbital mission prior to tackling the much larger and more complex orbital endeavors ▪ The Suborbital/Smallsat Platforms And Range Services (SPARS) Line Of Business (LOB) can facilitate prospective PIs with taking advantage of potential suborbital flight opportunities P-3 Maintenance 12-Jun-19 Competition Sensitive – Do Not Distribute 3 Goddard Space Value of Suborbital Research – What’s Different? Flight Center WASP OPIS Different Risk/Mission Assurance Strategy • Payloads are recovered and refurbished. • Re-flights are inexpensive (<$1M for a balloon or sounding rocket vs >$10M - 100M for a ELV) • Instrumentation can be simple and have a large science impact! • Frequent flight opportunities (e.g. “piggyback”) • Development of precursor instrument concepts and mature TRLs • While Suborbital missions fully comply with all Agency Safety policies, the program is designed to take Higher Programmatic Risk – Lower cost – Faster migration of new technology – Smaller more focused efforts, enable Tiger Team/incubator experiences.
    [Show full text]
  • Measurements of Auroral Particles by Means of Sounding Rockets of Mother-Daughter Type A
    MEASUREMENTS OF AURORAL PARTICLES BY MEANS OF SOUNDING ROCKETS OF MOTHER-DAUGHTER TYPE A. Falck KGI REPORT 192 NOVEMBER 1985 KIRUNA U-OI'HYSICAL INSTITITK MKINA N\X|1>I\ MEASUREMENTS OF AURORAL PARTICLES BY MEANS OF SOUNDING ROCKETS OF MOTHER-DAUGHTER TYPE by A. Falck Kiruna Geophysical Institute P.O. Box 704, S-981 27 KIRUNA, Sweden KGI Report 192 November 1985 Printed in Sweden Kiruna Geophysical Institute Kiruna 19^5 ISSN 034/-f 405 Contents Page 1. Presentation of the S17 payioads 3 1.1 The scientific objective of the sounding rockets S17 3 1.2 S17 experiments 3 1.3 Physical characteristics of the payioads 3 1.4 Physical characteristics of the Nike-Tomahawk rocket 5 1.5 Nominal characteristics of flight events 7 1.6 Attitude measurements 8 1.7 Separation of the two payload units 20 1.8 Telemetry and data analyzing technique 33 2. Description of the instrumentation for the particle experiments in the S17 payioads 38 2.1 General theory of CEM - detectors 38 2.2 Calibration of th* CEM - detectors 42 2.3 Solid state detectors in SI7 payioads 44 2.4 Mounting of the detectors 48 2.5 The efficiency of channel multipliers 48 3. Review of the geophysical conditions during the SI7 flights and presentation of some supporting observations 51 j.1 The auroral situation during S17 flights 51 :• 2 Magnetic activity 51 .'.3 Other supporting observations 56 .4 The lowlightlevel-TV-system 56 'K Particle fluxes and electric currents coupling the magnetosphere and the ionosphere during a magnetospheric substorm 66 4.1 Review of some substorm terminology and definitions 66 4.2 Reference and comparisons of SI7-2 measure- ments with the results of the IMS-study 75 4.3 Comparison of simultaneous particle observa- tions at low ionospheric altitude (S17-1) and at the magnetic equatorial region (ATS-6) 91 4.4 Summary and conclusions 99 5.
    [Show full text]
  • Colorado Space Grant Consortium
    CO_FY16_Year2_APD Colorado Space Grant Consortium Lead Institution: University of Colorado Boulder Director: Chris Koehler Telephone Number: 303.492.3141 Consortium URL: http://spacegrant.colorado.edu Grant Number: NNX15AK04H Lines of Business (LOBs): NASA Internships, Fellowships, and Scholarships; Stem Engagement; Institutional Engagement; Educator Professional Development A. PROGRAM DESCRIPTION The National Space Grant College and Fellowship Program consists of 52 state-based, university- led Space Grant Consortia in each of the 50 states plus the District of Columbia and the Commonwealth of Puerto Rico. Annually, each consortium receives funds to develop and implement student fellowships and scholarships programs; interdisciplinary space-related research infrastructure, education, and public service programs; and cooperative initiatives with industry, research laboratories, and state, local, and other governments. Space Grant operates at the intersection of NASA’s interest as implemented by alignment with the Mission Directorates and the state’s interests. Although it is primarily a higher education program, Space Grant programs encompass the entire length of the education pipeline, including elementary/secondary and informal education. The Colorado Space Grant Consortium is a Designated Consortium funded at a level of $760,000 for fiscal year 2016. B. PROGRAM GOALS • Population of students engaged in COSGC hands-on programs (awardees and non- awardees) will be at least 40% women and 23.7% from ethnic minority populations underrepresented in STEM fields. • Maintain student hands-on programs at all 8 COSGC Minority Serving Institutions and engaged at least 30 students on MSI campuses. • 30% of COSGC NASA funds will be awarded directly to students. • Award 80 scholarships to support students working on hands-on projects.
    [Show full text]
  • Methods of Oabservation at Sea Meteorological Soundings in The
    WORLD METEOROLOGICAL ORGANIZATION WORLD METEOROLOGICAL ORGANIZATION TECHNICAL NOTE No. 2 TECHNICAL NOTE No. 60 METHODS OF OABSERVATION AT SEA METEOROLOGICAL SOUNDINGS IN THE PARTUPPER I – SEA SURFACEATMOSPHERE TEMPERATURE by W.W. KELLOGG WMO-No.WMO-No. 153. 26. TP. 738 Secretariat of the World Meteorological Organization – Geneva – Switzerland THE WMO The WOTld :Meteol'ological Organization (Wl\IO) is a specialized agency of the United Nations of which 125 States and Territories arc Members. It was created: to facilitate international co~operation in the establishment of networks of stations and centres to provide meteorological services and observationsI to promote the establishment and maintenance of systems for the rapid exchange of meteorological information, to promote standardization of meteorological observations and ensure the uniform publication of observations and statistics. to further the application of rneteol'ology to Rviatioll, shipping, agricultul"C1 and other human activities. to encourage research and training in meteorology. The machinery of the Organization consists of: The World Nleteorological Congress, the supreme body of the o.rganization, brings together the delegates of all Members once every four years to determine general policies for the fulfilment of the purposes of the Organization, to adopt Technical Regulations relating to international meteorological practice and to determine the WMO programme, The Executive Committee is composed of 21 dil'cetors of national meteorological services and meets at least once a yeae to conduct the activities of the Organization and to implement the decisions taken by its Members in Congress, to study and make recommendations Oll matters affecting international meteorology and the opel'ation of meteorological services.
    [Show full text]
  • Importance Oi Thermistor Mount Configuration to Meteorological
    James F. Morrissey importance oi and Andrew S. Carten, Jr. thermistor mount configuration A. F. Cambridge Research Laboratories to meteorological rocket Bedford, Mass. temperature measurements Abstract tions. Thus, we are receiving more data than ever be- A description is given of the original rocketsonde ther- fore—thanks to more successful firings and improved mistor mount, consisting of a 10-mil bead suspended signal reception—but data quality has stayed at a low between two metal posts. The difficulties encountered to medium level. Recent evidence, described later in this with this mount and the subsequent development of article, confirms our belief that caution is in order. the superior "thin-film" mount are also described. The Today's rocketsonde is, for the most part, a more uncertainties associated with the use of the latter mount rugged version of the standard radiosonde. This is only are outlined along with their effect on data acceptance. natural, considering both the effort which has gone into A different approach to the original problem is de- refining radiosonde and associated ground equipment scribed, which employs longer leads for dissipation of design and the success which has crowned that effort. heat conducted to the bead. The uncertainty associated In choosing a sensor for the rocketsonde, it was recog- with the long lead is shown to be minimal. Preliminary nized that the small bead thermistor has the necessary results of a series of 10 rocket flights are presented. response time to provide useful measurements to about These results tend to confirm the advantages of the 60 km. A 10-mil diameter bead, aluminized to minimize long lead mount.
    [Show full text]
  • NASA Sounding Rockets Annual Report 2020
    National Aeronautics andSpaceAdministration National Aeronautics NASA Sounding Rockets Annual Report 2020 science payload launched on a Terrier-Improved Malemute provided by NASA, experienced a vehicle failure and science data was not recorded. The Cusp Heating Investigation (CHI) for Dr. Larsen, Clemson University, measured neutral upwelling and high-resolution electric fields over an extended region in the cusp, and was a resound- ing success. Additionally, the Cusp-Region Experiment (C-REX) 2 for Dr. Conde, University of Alaska, was staged and ready to go at Andoya Space Center, Norway, however, science conditions did not materialize, and after 17 launch attempts the window of opportunity closed. C-REX 2 is currently on schedule for launch in December 2020. The final geospace science launch for fiscal year 2020 took place from Poker Flat Research Range, Alaska. Polar Night Nitric Oxide Message from the Chief Message Giovanni Rosanova, Jr. (PolarNOx), for Dr. Bailey, Virginia Tech, was successfully launched Chief, Sounding Rockets Program Office in January 2020. Data from PolarNOx will aid in the understanding of the abundance of NO in the polar atmosphere, and its impact on I will start this year’s message with expressing my gratitude to the peo- ozone. ple supporting the sounding rockets program. Through the challeng- ing time of the CoVid-19 pandemic, the outstanding efforts by the Technology development is a core aspects of the program. This year entire team have enabled us to continue meeting several milestones. we launched the eighth dedicated technology development flight, Our mission meetings have been held using virtual tools. Enhanced SubTEC-8.
    [Show full text]
  • Investigation of the In-Flight Failure of the Stratos III Sounding Rocket
    ISASI 2019 - Investigation of the in-flight failure of the Stratos III Sounding Rocket Rolf Wubben, Lead Investigator Eoghan Gilleran, General Investigator Krijn de Kievit, General Investigator Bart Kevers, Structural Analysis Maurits van Heijningen, Data Analysis Martin Christiaan Olde, RCA Methodology Delft Aerospace Rocket Engineering, Stevinweg 1 2628 CN Delft, South Holland, The Netherlands The Stratos III sounding rocket is a rocket developed by students from Delft Aerospace Rocket Engineering (DARE) at Delft University of Technology. It is the third generation of the Stratos rocket and was intended to break the European student altitude record of 33.5 km. However, 22.12 seconds into the flight of Stratos III an anomaly occurred, resulting in the loss of the vehicle. At this time, the rocket was travelling at approximately Mach 3 at an altitude of 10 km. An investigation was performed by the students of DARE with the help of Delft University of Technology personnel. The purpose of this report is to show how the investigation was performed, what the results are, how future anomalies can be prevented and how future investigations can be improved. After performing a root cause analysis (RCA) it was determined that inertial roll coupling was the main cause of the Stratos III anomaly. This could be concluded from data provided by on-board inertial measurement units (IMUs) as well as ground radar and Doppler data. This data shows divergence of the sideslip angles of the rocket during flight, until the limit values are reached at the disintegration event. Inertial roll coupling is a complex phenomenon that can be caused by a plethora of different factors, such as the large length to diameter ratio of the rocket or flexibility and misalignment of the rocket body, resulting in both a large effective thrust misalignment as well as an induced aerodynamic pitching moment.
    [Show full text]
  • Sounding Rockets : Principle, Functioning and Applications
    Sounding Rockets : Principle, Functioning and Applications Florimond Collette Yann Kempf BASI-P2, Université du Luxembourg Małgorzata Karaś Warsaw School of Economics Abstract Sounding rockets appeared in the mid-20th century and proved to be an extremely useful science tool in all fields of physics and even beyond. These rockets are conceived for sub-orbital flights, to take measurement and/or perform experiments in the high atmosphere, in near space and/or in micro-gravity conditions. They also allow to introduce young scientists to space sciences by undertaking a full-scale pedagogical science project with a relatively moderate cost. This paper presents the origins and principles of sounding rockets, how they work, as well as a few recent science applications. Introduction Sounding rockets are small rockets (vehicles powered by the high-speed ejection of matter through a nozzle) with one or several stages and solid, liquid or hybrid propellant. They perform sub-orbital flights at maximal altitudes ranging from less than 1 km to more than 1200 km. After a thrust phase, they generally have a ballistic flight phase before touching or splashing down. If they have the right equipment, they can be retrieved after the flight. Apart from the engines, sounding rockets comprise a payload made of science experiments performed during the flight, as well as a data processing system, either with real-time radio downlink, or on-board saving. The first case implies real-time tracking by one or more ground telemetry stations. The second case implies recovery of the rocket after the flight to extract the data. Sounding rockets are a privileged tool because they reach zones of the atmospheric and near-space environment that are unaccessible by other means.
    [Show full text]
  • George Carruthers (1939–2020)
    Obituary George Carruthers (1939–2020) Astronomer and engineer of the first observatory on the Moon. hen the Apollo 16 mission Carruthers’s Earth images have paved the landed on the Moon in 1972, way for global space-weather forecasting in the astronauts set up the first same way that global satellite systems are used observatory to survey the to predict surface weather. Elements of current cosmos from a celestial body. NASA missions that focus on the ionosphere WIt was designed and built by the astronomer and upper atmosphere (ICON and GOLD) can George Carruthers. By capturing light in a part be traced to Carruthers’s first global images. of the spectrum inaccessible to terrestrial tele- Carruthers continued to study the upper scopes, Carruthers’s Far Ultraviolet (FUV) lunar atmosphere and probe the structure of the camera produced the first global images of Universe. From the Skylab space station in Earth’s upper atmosphere, a region fundamen- 1973–74, his camera mapped stars, interstel- tal to communications, remote sensing and lar clouds and other objects, producing data the operation of space systems. The telescope that improved navigation, remote sensing and also peered into deep space, shining light on astronomy. From a sounding rocket in 1974, he star formation and clusters and the interstellar produced the first images of the atomic hydro- medium. Carruthers has died, aged 81. gen corona surrounding comet Kohoutek, and, As an African American, his contributions to later, similar images of comet Halley. high-profile human space-flight missions made He was instrumental in setting up the NRL’s NASA/ZUMA WIRE Carruthers a sought-after role model for Black high-school apprenticeship programme, short scientists and engineers, as well as for those way to capture FUV spectra, amplifying diffuse courses at community centres and continuing from other communities under-represented and faintly lit objects.
    [Show full text]
  • High Altitude Ballooning As an Atmospheric Sounding System
    transactions on aerospace research 1(258) 2020, pp.66-77 DOI: 10.2478/tar-2020-0005 eISSN 2545-2835 high altitude Ballooning as an atmospheric sounding system in the pre-flight procedures of ilr-33 amBer marcin spiralski , Karol Bęben , Wojciech Konior , dawid cieśliński Łukasiewicz Research Network – Institute of Aviation Al. Krakowska 110/114, 02-256 Warsaw, Poland [email protected] ● ORCID: 0000-0003-2147-2026 [email protected] ● ORCID: 0000-0003-2860-8299 [email protected] ● ORCID: 0000-0003-4671-6664 [email protected] ● ORCID: 0000-0002-9840-6433 abstract The paper presents research on the near real-time atmospheric sounding system. The main objective of the research was the development and testing of the weather sounding system based on a weather balloon. The system contains a redundant system of radiosondes, a lifting platform containing weather balloon and a holding system as well as ground station. Several tests of the system were performed in August and September 2019. Altitude, reliability, resistance to weather conditions and data convergence were tested. During tests, new procedures for such missions were developed. The final test was performed for the ILR-33 Amber Rocket as a part of pre-launch procedures. The test was successful and allowed to use acquired atmospheric data for further processing. Several post-tests conclusions were drawn. The altitude of sounding by a weather balloon depends mostly on weather conditions, the amount of gas pumped and the weight of a payload. The launching place and experience of the crew play an important role in the final success of the mission, as well.
    [Show full text]
  • Calendar No. 87
    Calendar No. 87 111TH CONGRESS REPORT " ! 1st Session SENATE 111–34 DEPARTMENTS OF COMMERCE AND JUSTICE, AND SCIENCE, AND RELATED AGENCIES APPROPRIATIONS BILL, 2010 JUNE 25, 2009.—Ordered to be printed Ms. MIKULSKI, from the Committee on Appropriations, submitted the following REPORT [To accompany H.R. 2847] The Committee on Appropriations to which was referred the bill (H.R. 2847) making appropriations for the Departments of Com- merce and Justice, and Science, and Related Agencies for the fiscal year ending September 30, 2010, and for other purposes, reports the same to the Senate with an amendment, and recommends that the bill, as amended, do pass. Total obligational authority, fiscal year 2010 Total of bill as reported to the Senate .................... $67,492,432,000 Amount of 2009 appropriations ............................... 1 76,101,698,000 Amount of 2010 budget estimate ............................ 67,183,677,000 Amount of House allowance .................................... 67,196,907,000 Bill as recommended to Senate compared to— 2009 appropriations .......................................... ¥8,609,266,000 2010 budget estimate ........................................ ∂308,755,000 House allowance ................................................ ∂295,525,000 1 Includes $16,209,675,000 in emergency appropriations provided in the American Recovery and Reinvestment Act of 2009 and other supplemental appropriation fund- ing acts. 50–583 PDF CONTENTS Page Purpose of the Bill ..................................................................................................
    [Show full text]
  • Rocket-Borne In-Situ Measurements in the Middle Atmosphere
    Rocket-borne in-situ measurements in the middle atmosphere Jonas Hedin AKADEMISK AVHANDLING för filosofie doktorsexamen vid Stockholms Universitet att framläggas för offentlig granskning den 20:e februari 2009 Rocket-borne in-situ measurements in the middle atmosphere Doctoral thesis Jonas Hedin Cover photo: Launch of the HotPay-I sounding rocket at Andøya Rocket Range, Norway on July 1, 2006 (photo by Jonas Hedin). ISBN 978-91-7155-813-8, pp. 1 - 59 © Jonas Hedin, Stockholm 2009 Stockholm University Department of Meteorology 10691 Stockholm Sweden Printed by Universitetsservice US-AB Stockholm 2009 2 Contents Abstract 5 List of papers 7 1 Introduction 9 1.1 The Earth’s atmosphere 9 1.2 Important mesospheric phenomena and their study 12 1.2.1 Ice particles 13 1.2.2 Meteoric smoke 17 1.2.3 Nightglow 23 2 Atmospheric science with sounding rockets 26 2.1 The need for sounding rockets 26 2.2 Challenges 27 3 The PHOCUS project 30 3.1 Science questions 31 3.2 Instrumentation 35 4 Results of this thesis 39 5 Outlook 43 Acknowledgements 45 Bibliography 47 3 4 Abstract The Earth's mesosphere and lower thermosphere in the altitude range 50- 130 km is a fascinating part of our atmosphere. Complex interactions between radiative, dynamical, microphysical and chemical processes give rise to several prominent phenomena, many of those centred around the mesopause region (80-100 km). These phenomena include noctilucent clouds, polar mesosphere summer echoes, the ablation and transformation of meteoric material, and the Earth’s airglow. Strong stratification and small scale interactions are common features of both these phenomena and the mesopause region in general.
    [Show full text]