Social Immunity Modulates Competition Between Coinfecting Pathogens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Use of Entomopathogenic Fungi for Fruit Fly Control in Area-Wide SIT Programmes
Use of Entomopathogenic Fungi for Fruit Fly Control in Area-Wide SIT Programmes Food and Agriculture Organization of the United Nations International Atomic Energy Agency Vienna, 2019 DISCLAIMER The material in this document has been supplied by the authors. The views expressed remain the responsibility of the authors and do not necessarily reflect those of the government(s) or the designating Member State(s). In particular, the FAO, IAEA, nor any other organization or body sponsoring the development of this document can be held responsible for any material reproduced in the document. The proper citation for this document is: FAO/IAEA. 2019. Use of Entomopathogenic Fungi for Fruit Fly Control in Area-Wide SIT Programmes, A. Villaseñor, S. Flores, S. E. Campos, J. Toledo, P. Montoya, P. Liedo and W. Enkerlin (eds.), Food and Agriculture Organization of the United Nations/International Atomic Energy Agency. Vienna, Austria. 43 pp. Use of Entomopathogenic Fungi for Fruit Fly Control in Area- wide SIT Programmes Antonio Villaseñor IAEA/IPCS Consultant San Pedro La Laguna, Nayarit, México Salvador Flores Programa Moscafrut SADER-SENASICA, Metapa, Chiapas, México Sergio E. Campos Programa Moscafrut SADER-SENASICA, Metapa, Chiapas, México Jorge Toledo El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, México Pablo Montoya Programa Moscafrut SADER-SENASICA, Metapa, Chiapas, México Pablo Liedo El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, México Walther Enkerlin Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria Food and Agriculture Organization of the United Nations International Atomic Energy Agency Vienna, 2019 FOREWORD Effective fruit fly control requires an integrated pest management approach which may include the use of area-wide sterile insect technique (SIT). -
Integration of Entomopathogenic Fungi Into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops
insects Review Integration of Entomopathogenic Fungi into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops Kim Khuy Khun 1,2,* , Bree A. L. Wilson 2, Mark M. Stevens 3,4, Ruth K. Huwer 5 and Gavin J. Ash 2 1 Faculty of Agronomy, Royal University of Agriculture, P.O. Box 2696, Dangkor District, Phnom Penh, Cambodia 2 Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia; [email protected] (B.A.L.W.); [email protected] (G.J.A.) 3 NSW Department of Primary Industries, Yanco Agricultural Institute, Yanco, New South Wales 2703, Australia; [email protected] 4 Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales 2650, Australia 5 NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, New South Wales 2477, Australia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +61-46-9731208 Received: 7 September 2020; Accepted: 21 September 2020; Published: 25 September 2020 Simple Summary: Horticultural crops are vulnerable to attack by many different weevil species. Fungal entomopathogens provide an attractive alternative to synthetic insecticides for weevil control because they pose a lesser risk to human health and the environment. This review summarises the available data on the performance of these entomopathogens when used against weevils in horticultural crops. We integrate these data with information on weevil biology, grouping species based on how their developmental stages utilise habitats in or on their hostplants, or in the soil. -
Entomopathogenic Fungi and Bacteria in a Veterinary Perspective
biology Review Entomopathogenic Fungi and Bacteria in a Veterinary Perspective Valentina Virginia Ebani 1,2,* and Francesca Mancianti 1,2 1 Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy; [email protected] 2 Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy * Correspondence: [email protected]; Tel.: +39-050-221-6968 Simple Summary: Several fungal species are well suited to control arthropods, being able to cause epizootic infection among them and most of them infect their host by direct penetration through the arthropod’s tegument. Most of organisms are related to the biological control of crop pests, but, more recently, have been applied to combat some livestock ectoparasites. Among the entomopathogenic bacteria, Bacillus thuringiensis, innocuous for humans, animals, and plants and isolated from different environments, showed the most relevant activity against arthropods. Its entomopathogenic property is related to the production of highly biodegradable proteins. Entomopathogenic fungi and bacteria are usually employed against agricultural pests, and some studies have focused on their use to control animal arthropods. However, risks of infections in animals and humans are possible; thus, further studies about their activity are necessary. Abstract: The present study aimed to review the papers dealing with the biological activity of fungi and bacteria against some mites and ticks of veterinary interest. In particular, the attention was turned to the research regarding acarid species, Dermanyssus gallinae and Psoroptes sp., which are the cause of severe threat in farm animals and, regarding ticks, also pets. -
Pathogenic and Enzyme Activities of the Entomopathogenic Fungus Tolypocladium Cylindrosporum (Ascomycota: Hypocreales) from Tierra Del Fuego, Argentina
Pathogenic and enzyme activities of the entomopathogenic fungus Tolypocladium cylindrosporum (Ascomycota: Hypocreales) from Tierra del Fuego, Argentina Ana C. Scorsetti1*, Lorena A. Elíades1, Sebastián A. Stenglein2, Marta N. Cabello1,3, Sebastián A. Pelizza1,4 & Mario C.N. Saparrat1,5,6 1. Instituto de Botánica Carlos Spegazzini (FCNyM-UNLP) 53 # 477, (1900), La Plata, Argentina; [email protected], [email protected] 2. Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CEBB-CONICET, Cátedra de Microbiología, Facultad de Agronomía de Azul, UNCPBA, República de Italia # 780, Azul (7300), Argentina; [email protected] 3. Comisión de Investigaciones Científicas de la provincia de Buenos Aires; [email protected] 4. Centro de Estudios Parasitológicos y de Vectores (CEPAVE), CCT-La Plata-CONICET-UNLP, Calle 2 # 584, La Plata (1900), Argentina; [email protected] 5. Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata (UNLP)- CCT-La Plata- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Diag. 113 y 61, CC 327, 1900-La Plata, Argentina; [email protected] 6. Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, UNLP, 60 y 119, 1900-La Plata, Argentina. * Corresponding author Received 27-IV-2011. Corrected 20-VIII-2011. Accepted 14-IX-2011. Abstract: Tolypocladium cylindrosporum is an entomopathogenic fungi that has been studied as a biological control agent against insects of several orders. The fungus has been isolated from the soil as well as from insects of the orders Coleoptera, Lepidoptera, Diptera and Hymenoptera. In this study, we analyzed the ability of a strain of T. cylindrosporum, isolated from soil samples taken in Tierra del Fuego, Argentina, to produce hydro- lytic enzymes, and to study the relationship of those activities to the fungus pathogenicity against pest aphids. -
Evaluation of Entomopathogenic Fungi (Ascomycota) for the Control of Cydia Pomonella (Lepidoptera: Tortricidae)
EVALUATION OF ENTOMOPATHOGENIC FUNGI (ASCOMYCOTA) FOR THE CONTROL OF CYDIA POMONELLA (LEPIDOPTERA: TORTRICIDAE) BY ASOMIBA RITA ABAAJEH A THESIS PRESENTED TO CAPE PENINSULA UNIVERSITY OF TECHNOLOGY IN FULFILMENT OF THE REQUIREMENTS FOR THE MASTERS OF TECHNOLOGY DEGREE IN HORTICULTURE. IN THE FACULTY OF APPLIED SCIENCES SUPERVISOR: DR NCHU, F. CO- SUPERVISOR: PROF LAUBSCHER, C. CAPE TOWN CAMPUS JANUARY 2014 i Title page EVALUATION OF ENTOMOPATHOGENIC FUNGI (ASCOMYCOTA) FOR THE CONTROL OF CYDIA POMONELLA (LEPIDOPTERA: TORTRICIDAE) ii DECLARATION I, Asomiba Rita Abaajeh, declare that the contents of this thesis represent my own unaided work, and that the thesis has not previously been submitted for academic examination towards any qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape Peninsula University of Technology. Signed Date iii Dedication To God almighty for keeping me healthy and guiding me throughout this study To Dr. P. Igue To my parents; Mr & Mrs Abaajeh. iv _____________________________________________________________________________ ACKNOWLEDGEMENTS _____________________________________________________________________________ I want to thank: . My supervisor, Dr. Nchu, F. for the guidance and for being so passionate about entomopathogenic fungi. His knowledge of the subject helped me unlock the potentials that this subject holds. Dr. Karabu, S. for providing laboratory space for fungal isolation. Mr. Wohlfarter, M. for providing codling moth eggs and larvae used for this work and -
Effect of Beauveria Bassiana Fungal Infection on Survival and Feeding
Article Effect of Beauveria bassiana Fungal Infection on Survival and Feeding Behavior of Pine-Tree Lappet Moth (Dendrolimus pini L.) Marta Kovaˇc 1 , Nikola Lackovi´c 2 and Milan Pernek 1,* 1 Croatian Forest Research Institute, Cvjetno naselje 41, HR-10450 Jastrebarsko, Croatia; [email protected] 2 Arbofield Ltd., Mihanovi´ceva3, HR-10450 Jastrebarsko, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-98-324-512 Received: 30 July 2020; Accepted: 4 September 2020; Published: 9 September 2020 Abstract: Research highlights: The pine-tree lappet moth, Dendrolimus pini, can cause serious needle defoliation on pines with outbreaks occurring over large geographical areas. Under laboratory conditions, the promising potential of the naturally occurring entomopathogenic fungus Beauveria bassiana was tested against D. pini larvae as a biological control method. Background and objectives: The aim of this study was to investigate the most effective concentration and treatment dose of B. bassiana conidial suspension and how it affected the survival and feeding behavior of the pest. Materials and methods: The first experiment applied the fungal suspension directly on the back of selected larvae, and in the second experiment, sporulating cadavers obtained in the first experiment were placed into Petri dishes with healthy individuals. Different doses per larvae [µL] and spore suspension concentration [spores/µL]) were used. The second experiment was designed to investigate the horizontal transmission of fungi by exposing individual caterpillars to a cadaver covered in B. bassiana mycelia. Mortality rates were analyzed by Chi-squared tests using absolute values for total mortality and B. bassiana- attributed mortality. The lethal time and feeding-disruption speed were analyzed with parametric and non-parametric tests with the aim to determine whether statistically significant differences were observed between treatments. -
MOLECULAR METHODS and ISOLATES of the ENTOMOPATHOGENIC FUNGUS Metarhizium Anisopliae for ENVIRONMENTALLY SUSTAINABLE CONTROL of GRASSHOPPERS in CANADA
MOLECULAR METHODS AND ISOLATES OF THE ENTOMOPATHOGENIC FUNGUS Metarhizium anisopliae FOR ENVIRONMENTALLY SUSTAINABLE CONTROL OF GRASSHOPPERS IN CANADA Susan Carol Entz B.Sc, University of Lethbridge, 1985 A Thesis Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfilment of the Requirements for the Degree MASTER OF SCIENCE Department of Geography (Environmental Science) University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Susan C. Entz, 2005 Abstract Metarhizium anisopliae var. acridum, a hyphomycetous fungus registered worldwide for grasshopper and locust control, is currently under consideration as a potential alternative to chemical insecticides for grasshopper control in Canada. Research in this thesis has contributed data required for the registration of biological control agents in Canada. A diagnostic PCR assay was developed for the specific detection of M. anisopliae var. acridum DNA. The assay was highly sensitive and effective for the detection of fungal DNA in infected grasshoppers. A survey of southern Alberta soils conducted in the spring of 2004 revealed the presence of Metarhizium spp. at low natural incidence. Two indigenous isolates demonstrated pathogenicity when bioassayed against laboratory-reared and field- collected grasshoppers. One of the isolates demonstrated virulence comparable to a commercial isolate. An analysis of historical weather data revealed that summer weather in the Prairie provinces should not preclude the efficacy of M. anisopliae var. acridum under local conditions. iii Preface The following thesis is presented partially in manuscript format. The introduction and literature review are combined in a single chapter (Chapter 1) in traditional format. Chapters 2, 3, and 4 are presented as manuscripts. References for Chapters 2 to 4 are combined in a general references section as outlined in the table of contents. -
Development of Innate Immune Strength in the Honey Bee (Apis Mellifera)
Journal of Insect Physiology 54 (2008) 1392–1399 Contents lists available at ScienceDirect Journal of Insect Physiology journal homepage: www.elsevier.com/locate/jinsphys The ontogeny of immunity: Development of innate immune strength in the honey bee (Apis mellifera) Noah Wilson-Rich *, Stephanie T. Dres, Philip T. Starks Department of Biology, Dana Laboratories, Tufts University, Medford, MA 02155, USA ARTICLE INFO ABSTRACT Article history: Honey bees (Apis mellifera) are of vital economic and ecological importance. These eusocial animals Received 18 March 2008 display temporal polyethism, which is an age-driven division of labor. Younger adult bees remain in the Received in revised form 28 July 2008 hive and tend to developing brood, while older adult bees forage for pollen and nectar to feed the colony. Accepted 30 July 2008 As honey bees mature, the types of pathogens they experience also change. As such, pathogen pressure may affect bees differently throughout their lifespan. We provide the first direct tests of honey bee innate Keywords: immune strength across developmental stages. We investigated immune strength across four Immunity developmental stages: larvae, pupae, nurses (1-day-old adults), and foragers (22–30 days old adults). Insect Ontogeny The immune strength of honey bees was quantified using standard immunocompetence assays: total Temporal polyethism hemocyte count, encapsulation response, fat body quantification, and phenoloxidase activity. Larvae and Pollinator pupae had the highest total hemocyte counts, while there was no difference in encapsulation response between developmental stages. Nurses had more fat body mass than foragers, while phenoloxidase activity increased directly with honey bee development. Immune strength was most vigorous in older, foraging bees and weakest in young bees. -
The Mechanisms of Social Immunity Against Fungal Infections in Eusocial Insects
toxins Review The Mechanisms of Social Immunity Against Fungal Infections in Eusocial Insects Long Liu 1,2, Xing-Ying Zhao 1, Qing-Bo Tang 2, Chao-Liang Lei 1 and Qiu-Ying Huang 1,* 1 Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China; [email protected] (L.L.); [email protected] (X.-Y.Z.); [email protected] (C.-L.L.) 2 Plant Protection College, Henan Agricultural University, Zhengzhou 450002, China; [email protected] * Correspondence: [email protected] Received: 29 March 2019; Accepted: 27 April 2019; Published: 29 April 2019 Abstract: Entomopathogenic fungus as well as their toxins is a natural threat surrounding social insect colonies. To defend against them, social insects have evolved a series of unique disease defenses at the colony level, which consists of behavioral and physiological adaptations. These colony-level defenses can reduce the infection and poisoning risk and improve the survival of societal members, and is known as social immunity. In this review, we discuss how social immunity enables the insect colony to avoid, resist and tolerate fungal pathogens. To understand the molecular basis of social immunity, we highlight several genetic elements and biochemical factors that drive the colony-level defense, which needs further verification. We discuss the chemosensory genes in regulating social behaviors, the antifungal secretions such as some insect venoms in external defense and the immune priming in internal defense. To conclude, we show the possible driving force of the fungal toxins for the evolution of social immunity. -
Honey Bee Virus Causes Context-Dependent Changes in Host Social Behavior
Honey bee virus causes context-dependent changes in host social behavior Amy C. Geffrea,1,2, Tim Gernatb,c,1, Gyan P. Harwoodd, Beryl M. Jonese, Deisy Morselli Gysic,3, Adam R. Hamiltonb, Bryony C. Bonningf, Amy L. Totha,g, Gene E. Robinsonb,d,h, and Adam G. Dolezald,4 aDepartment of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011; bCarl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; cFaculty of Mathematics and Computer Science, Department of Computer Science, University of Leipzig, 04109 Leipzig, Germany; dDepartment of Entomology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; eProgram in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana–Champaign, IL 61801; fDepartment of Entomology and Nematology, University of Florida, Gainesville, FL 32611; gDepartment of Entomology, Iowa State University, Ames, IA 50011; and hNeuroscience Program, University of Illinois at Urbana–Champaign, Urbana, IL 61801 Edited by Joan E. Strassmann, Washington University in St. Louis, St. Louis, MO, and approved March 16, 2020 (received for review February 6, 2020) Anthropogenic changes create evolutionarily novel environments Varroa-vectored viruses (11) are not well understood. In ad- that present opportunities for emerging diseases, potentially dition, it is not known whether pathogen manipulation of host changing the balance between host and pathogen. Honey bees behavior is involved in disease transmission. Honey bees and provide essential pollination services, but intensification and other highly social insects present exceptional opportunities for globalization of honey bee management has coincided with parasites and pathogens, as tens of thousands of highly related increased pathogen pressure, primarily due to a parasitic mite/ individuals live together in densely populated colonies (12). -
The Development of Immunity in a Social Insect: Evidence for the Group Facilitation of Disease Resistance
The development of immunity in a social insect: Evidence for the group facilitation of disease resistance James F. A. Traniello*, Rebeca B. Rosengaus, and Keely Savoie Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215 Communicated by Bert Ho¨lldobler, University of Wurzburg, Wurzburg, Germany, March 25, 2002 (received for review October 31, 2001) The extraordinary diversity and ecological success of the social absent in naı¨ve termites. The dynamics of the immune response insects has been attributed to their ability to cope with the rich and of Z. angusticollis and its associated hemolymph protein profile often infectious microbial community inhabiting their nests and resemble immunization-related protective changes in the protein feeding sites. Mechanisms of disease control used by eusocial constituents of the phylogenetically related roaches (17). species include antibiotic glandular secretions, mutual grooming, Here we show that the level of immunocompetence attained removal of diseased individuals from the nest, and the innate and by termites depends on association with colony members and adaptive immune responses of colony members. Here we demon- that the disease resistance of individuals that have not experi- strate that after a challenge exposure to the entomopathogenic enced direct contact with a pathogen can be significantly en- fungus Metarhizium anisopliae, dampwood termites Zootermopsis hanced through interactions with immunized nestmates. Our angusticollis have higher survivorship when individuals develop studies of the development of immunity in Z. angustocollis reveal immunity as group members. Furthermore, termites significantly novel social mechanisms of infection control. improve their ability to resist infection when they are placed in contact with previously immunized nestmates. -
Mode of Infection of Metarhizium Spp. Fungus and Their Potential As Biological Control Agents
Journal of Fungi Review Mode of Infection of Metarhizium spp. Fungus and Their Potential as Biological Control Agents Kimberly Moon San Aw and Seow Mun Hue * School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +603-55146116 Academic Editor: David S. Perlin Received: 24 February 2017; Accepted: 1 June 2017; Published: 7 June 2017 Abstract: Chemical insecticides have been commonly used to control agricultural pests, termites, and biological vectors such as mosquitoes and ticks. However, the harmful impacts of toxic chemical insecticides on the environment, the development of resistance in pests and vectors towards chemical insecticides, and public concern have driven extensive research for alternatives, especially biological control agents such as fungus and bacteria. In this review, the mode of infection of Metarhizium fungus on both terrestrial and aquatic insect larvae and how these interactions have been widely employed will be outlined. The potential uses of Metarhizium anisopliae and Metarhizium acridum biological control agents and molecular approaches to increase their virulence will be discussed. Keywords: biopesticide; Metarhizium anisopliae; Metarhizium acridum; biological vectors; agricultural pests; mechanism of infection 1. Introduction Pests such as locusts, grasshoppers, termites, and cattle ticks have caused huge economic and agricultural losses in many parts of the world such as China, Japan, Australia, Malaysia, Africa, Brazil, and Mexico [1–8]. Vectors of malaria, dengue, and Bancroftian filariasis, which are Aedes spp., Anopheles spp., and Culex spp. respectively, have been responsible for hospitalization and death annually [9,10]. To eliminate these pests and vectors, chemical insecticides have been commonly used as the solution.