Price List 2018

Total Page:16

File Type:pdf, Size:1020Kb

Price List 2018 SA VENOM SUPPLIERS – PRICE LIST 2018 SNAKE VENOM N.B Certificate of origin available on request at $50.00 per certificate. Anti-snake bite serum prices available on request. Polyvalent for most African snakes, monovalent for Echis and Boomslang. SPECIES KNOWN AS US$ PRICE PER GRAM Aspidelaps scutatus Shield Nose Snake 2016.00 Atheris Chloreschis Bush Viper 2100.00 Atheris Nitschei Great Lakes Bush Viper 1848.00 Bitis arietans Puff Adder 202.00 Bitis caudalis Horned Adder 1680.00 Bitis gabonica Gaboon Adder 235.00 Bitis nasicornis Rhino Viper 235.00 Bitis rhinoceros West African Gaboon Adder 235.00 Bothrops Atrox Fer-Der-Lance 700.00 Causus rhombeatus Night Adder 258.00 Cerastes Cerastes Horned Viper 812.00 Dendroaspis angusticeps Green Mamba 571.00 Dendroaspis polylepis Black Mamba 554.00 Dendroaspis jamesoni Jameson's Mamba 952.00 Dendroaspis viridis West African Green Mamba 728.00 Dispholidus typus Boomslang 4800.00 Echis Leucogaster White-bellied Carpet Viper 4368.00 Echis Pyramidium North East Carpet Viper 3640.00 Echis Ocellatus West African Carpet Viper 3752.00 Echis Coloratus Painted Carpet Viper 3808.00 Hemachatus Haemachatus Rinkhals 414.00 Naja annulifera Snouted Cobra 392.00 Naja Kaouthia Kaouthia Monocle Cobra 280.00 Naja melanoleuca Forest Cobra 392.00 [email protected] | [email protected] www.venomsa.com Naja pallida Red spitting Cobra 235.00 Naja mossambica Mozambique Spitting Cobra 336.00 Naja Nubiae Nubian Spitting Cobra 235.00 Naja Nivea Cape Cobra 476.00 Naja Haje Haje Egyptian Cobra 392.00 Naja Nigricollis Black-necked Spitting Cobra 336.00 Proatheris Superciliaris Swamp Viper 2240.00 Pseudocerastes Persicus Spider Tail Horned Viper 874.00 Rhamphiophis Rostratus Rufous Beaked Snake 2240.00 Trimerusurus Okinawnesis Okinawa Habu 280.00 Walterinnesia Aegyptia Black Desert Cobra 1400.00 SCORPION VENOM N.B Certificate of origin available on request at $50.00 per certificate. SPECIES KNOWN AS US$ PRICE PER GRAM Androctonus Crassicauda Arabian Fat-Tailed Scorpion 8232.00 Androctonus Amoreuxi Fattail Scorpion 8512.00 Buthus Occitanus Common Yellow Scorpion 7672.00 Buthacus Arenicola North African Scorpion 9363.00 Lieurus Quinquestriatus Deathstalker 8568.00 FROG / TOAD VENOM N.B Certificate of origin available on request at $50.00 per certificate. SPECIES KNOWN AS US$ PRICE PER GRAM Phrynomantis Bifasciatus Red-Banded Rubber Frog 2520.00 Bufo Garmani Garman's Toad 840.00 Schismaderma Carens Red Toad 840.00 Kassina Senegalensis Bubbling Kassina 2520.00 [email protected] | [email protected] www.venomsa.com .
Recommended publications
  • Toxic Effects of Crude Venom of a Desert Cobra, Walterinnesia Aegyptia, on Liver, Abdominal Muscles and Brain of Male Albino Rats
    Pakistan J. Zool., vol. 45(5), pp. 1359-1366, 2013 Toxic Effects of Crude Venom of a Desert Cobra, Walterinnesia aegyptia, on Liver, Abdominal Muscles and Brain of Male Albino Rats Mohammed Khalid Al-Sadoon,1 * Gamal Mohamed Orabi1,2 and Gamal Badr3,4 1Zoology Department, College of Science, King Saud University, P.O. Box 2455Riyadh 11451, Saudi Arabia 2Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt 3Princes Johara Alibrahim Center for Cancer Research, Prostate Cancer Research Chair, College of Medicine, King Saud University, Riyadh, Saudi Arabia 4Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt Abstract.- The toxic effect of an acute dose of Walterinnesia aegyptia crude venom was studied in male albino rats. Liver enzymes,alaninetransaminase (ALT), aspartate transaminase (AST) and gamma glutamyltransferase(γ-GT), total protein concentration and Alkaline phosphatase(ALP) enzyme activity in the liver, abdominal muscles and cerebrum brain were measured at timed intervals of 1, 3, 6, 12, 24, 72 h and 7 days post envenomation. The histological changes in the liver sections were simultaneously investigated. These parameters were found to be fluctuated with time, with a tendency to regain to normal control levels within the first 6 h. Histological changes induced by treatment with LD50 of W. aegyptia crude venom in liver 3 to 6 hours post envenomation showed inflammatory cellular infiltrations(ICI) around the hepatic vein, dilated blood sinusoids (S), hepatocyticvacuolations (HV) and prominent van kuffer cells. The 12 to 24 h period seems to be crucial for the process of physiological recovery. Histological changes induced by treatment with LD50 of W.
    [Show full text]
  • Early German Herpetological Observations and Explorations in Southern Africa, with Special Reference to the Zoological Museum of Berlin
    Bonner zoologische Beiträge Band 52 (2003) Heft 3/4 Seiten 193–214 Bonn, November 2004 Early German Herpetological Observations and Explorations in Southern Africa, With Special Reference to the Zoological Museum of Berlin Aaron M. BAUER Department of Biology, Villanova University, Villanova, Pennsylvania, USA Abstract. The earliest herpetological records made by Germans in southern Africa were casual observations of common species around Cape Town made by employees of the Dutch East India Company (VOC) during the mid- to late Seven- teenth Century. Most of these records were merely brief descriptions or lists of common names, but detailed illustrations of many reptiles were executed by two German illustrators in the employ of the VOC, Heinrich CLAUDIUS and Johannes SCHUMACHER. CLAUDIUS, who accompanied Simon VAN DER STEL to Namaqualand in 1685, left an especially impor- tant body of herpetological illustrations which are here listed and identified to species. One of the last Germans to work for the Dutch in South Africa was Martin Hinrich Carl LICHTENSTEIN who served as a physician and tutor to the last Dutch governor of the Cape from 1802 to 1806. Although he did not collect any herpetological specimens himself, LICHTENSTEIN, who became the director of the Zoological Museum in Berlin in 1813, influenced many subsequent workers to undertake employment and/or expeditions in southern Africa. Among the early collectors were Karl BERGIUS and Ludwig KREBS. Both collected material that is still extant in the Berlin collection today, including a small number of reptile types. Because of LICHTENSTEIN’S emphasis on specimens as items for sale to other museums rather than as subjects for study, many species first collected by KREBS were only described much later on the basis of material ob- tained by other, mostly British, collectors.
    [Show full text]
  • Reptile and Amphibian Enforcement Applicable Law Sections
    Reptile and Amphibian Enforcement Applicable Law Sections Environmental Conservation Law 11-0103. Definitions. As used in the Fish and Wildlife Law: 1. a. "Fish" means all varieties of the super-class Pisces. b. "Food fish" means all species of edible fish and squid (cephalopoda). c. "Migratory fish of the sea" means both catadromous and anadromous species of fish which live a part of their life span in salt water streams and oceans. d. "Fish protected by law" means fish protected, by law or by regulations of the department, by restrictions on open seasons or on size of fish that may be taken. e. Unless otherwise indicated, "Trout" includes brook trout, brown trout, red-throat trout, rainbow trout and splake. "Trout", "landlocked salmon", "black bass", "pickerel", "pike", and "walleye" mean respectively, the fish or groups of fish identified by those names, with or without one or more other common names of fish belonging to the group. "Pacific salmon" means coho salmon, chinook salmon and pink salmon. 2. "Game" is classified as (a) game birds; (b) big game; (c) small game. a. "Game birds" are classified as (1) migratory game birds and (2) upland game birds. (1) "Migratory game birds" means the Anatidae or waterfowl, commonly known as geese, brant, swans and river and sea ducks; the Rallidae, commonly known as rails, American coots, mud hens and gallinules; the Limicolae or shorebirds, commonly known as woodcock, snipe, plover, surfbirds, sandpipers, tattlers and curlews; the Corvidae, commonly known as jays, crows and magpies. (2) "Upland game birds" (Gallinae) means wild turkeys, grouse, pheasant, Hungarian or European gray-legged partridge and quail.
    [Show full text]
  • Annotated Checklist of Reptilian Fauna of Basrah, South of Iraq
    Saman R. Afrasiab et al. Bull. Iraq nat. Hist. Mus. DOI: http://dx.doi.org/10.26842/binhm.7.2018.15.1.0077 July, (2018) 15 (1): 77-92 ANNOTATED CHECKLIST OF REPTILIAN FAUNA OF BASRAH, SOUTH OF IRAQ Saman R. Afrasiab* Azhar A. Al-Moussawi and Hind D. Hadi Iraq Natural History Research Center and Museum, University of Baghdad, Baghdad, Iraq *Corresponding author: [email protected] Received Date: 03 January 2018 Accepted Date: 02 April 2018 ABSTRACT Basrah province is situated at the extreme south of Iraq, it has an interesting reptile fauna (Squamata and Serpentes) and represents a land bridge between three different zoogeographical regions ( Oriental, Palaearctic and Ethiopian). This situation gave Basrah province a topographic specific opportunity for raising its own faunal diversity including reptiles; in this study Basrah province was divided into four main zones: the cities and orchards, marshes and wetlands (sabkha), the true dessert, the seashore and Shat Al-Arab. Forty nine reptile species were recorded including snakes, sea and fresh water turtles, and Lizards; brief notes and descriptions for the rare and important species were provided and supported by Plates. Key words: Basrah, Squamata, Serpentes, Turtles, Zoogeography. INTRODUCTION There are some previous lists for Iraqi herpetofauna (Boulenger, 1920 a, b) and for snakes Corkill (1932), Khalaf (1959), Mahdi and Georg (1969) and Habeeb and Rastegar-Pouyani (2016); most of them depended on references, there is no specific collection list for Basrah province except that of Afrasiab and Ali (1989a) for west Basrah. The Basrah province is a very important area from the geographical point of view because it is a triple bridge connecting three different zoogeographical regions, at south east the oriental penetration, at south west the Arabian and Ethiopian penetration and from north the dominant Palaearctic region.
    [Show full text]
  • ARTICLE in PRESS Cloning, Characterization and Phylogenetic
    ARTICLE IN PRESS Toxicon 51 (2008) 1245– 1254 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Cloning, characterization and phylogenetic analyses of members of three major venom families from a single specimen of Walterinnesia aegyptia,$, $$ Hsin-Yu Tsai a, Ying Ming Wang a, Inn-Ho Tsai a,b,Ã a Institute of Biological Chemistry, Academia Sinica, P.O. Box 23-106, Taipei, Taiwan b Graduate Institute of Biochemical Sciences, National Taiwan University, Taiwan article info abstract Article history: Walterinnesia aegyptia is a monotypic elapid snake inhabiting in Africa and Mideast. Received 18 December 2007 Although its envenoming is known to cause rapid deaths and paralysis, structural data of Received in revised form its venom proteins are rather limited. Using gel filtration and reverse-phase HPLC, 14 February 2008 phospholipases A2 (PLAs), three-fingered toxins (3FTxs), and Kunitz-type protease Accepted 20 February 2008 inhibitors (KIns) were purified from the venom of a single specimen of this species Available online 29 February 2008 caught in northern Egypt. In addition, specific primers were designed and PCR was carried Keywords: out to amplify the cDNAs encoding members of the three venom families, respectively, Phospholipase A2 using total cDNA prepared from its venom glands. Complete amino acid sequences of two Three-finger toxin acidic PLAs, three short chain 3FTxs, and four KIns of this venom species were thus Kunitz protease inhibitor cDNA cloning and sequencing deduced after their cDNAs were cloned and sequenced. They are all novel sequences and Walterinnesia venom match the mass data of purified proteins. For members of each toxin family, protein sequences were aligned and subjected to molecular phylogenetic analyses.
    [Show full text]
  • Study of Dental Fluorosis in Subjects Related to a Phosphatic Fertilizer
    Indian Journal of Experimental Biology Vol. 56, October 2018, pp. 707-715 Minireview Nanotechnology in snake venom research—an overview Antony Gomes*1, Sourav Ghosh1, Jayeeta Sengupta2, Kalyani Saha1 & Aparna Gomes3 1Laboratory of Toxinology & Experimental Pharmacodynamics, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata-700 009, West Bengal, India 2Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada, T6G 1H9 3CSIR-Indian Institute of Chemical Biology (IICB), Kolkata-700 032, West Bengal, India Received 02 June 2017; revised 12 July 2018 Nanotechnology has revolutionized the paradigm of today’s upcoming biological sciences through its applications in the field of biomedical research. One such promising aspect is by interfacing this modern technology with snake venom research. Snake venom is a valuable resource of bioactive molecules, which has shown efficient and promising contributions in biomedical research. The potentiality of merging these two unique fields lies in the approach of interfacing active bioactive molecules derived from snake venoms, which would yield better therapeutic molecules for future applications in terms of drug delivery, enhanced stability, reduced toxicity, bioavailability and targeted drug delivery. Available literature on nanoconjugation of snake venom bioactive molecules have suggest that these molecules have better therapeutic advantage in several fields of biomedical research viz., arthritis, cancer, etc. Another perspective in snake venom research could be green synthesis or herbal based synthesis of nanoparticles, which has shown enhanced effect in snake venom neutralizing capacity. Therefore, in terms of snake venom therapeutic potential and development of snake venom antidote, nanotechnology is a prodigious tool to be taken into serious consideration by the researchers.
    [Show full text]
  • How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity As a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting
    toxins Article How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity as a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting Nadya Panagides 1,†, Timothy N.W. Jackson 1,†, Maria P. Ikonomopoulou 2,3,†, Kevin Arbuckle 4,†, Rudolf Pretzler 1,†, Daryl C. Yang 5,†, Syed A. Ali 1,6, Ivan Koludarov 1, James Dobson 1, Brittany Sanker 1, Angelique Asselin 1, Renan C. Santana 1, Iwan Hendrikx 1, Harold van der Ploeg 7, Jeremie Tai-A-Pin 8, Romilly van den Bergh 9, Harald M.I. Kerkkamp 10, Freek J. Vonk 9, Arno Naude 11, Morné A. Strydom 12,13, Louis Jacobsz 14, Nathan Dunstan 15, Marc Jaeger 16, Wayne C. Hodgson 5, John Miles 2,3,17,‡ and Bryan G. Fry 1,*,‡ 1 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; [email protected] (N.P.); [email protected] (T.N.W.J.); [email protected] (R.P.); [email protected] (S.A.A.); [email protected] (I.K.); [email protected] (J.D.); [email protected] (B.S.); [email protected] (A.A.); [email protected] (R.C.S.); [email protected] (I.H.) 2 QIMR Berghofer Institute of Medical Research, Herston, QLD 4049, Australia; [email protected] (M.P.I.); [email protected] (J.M.) 3 School of Medicine, The University of Queensland, Herston, QLD 4002, Australia 4 Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK; [email protected] 5 Monash Venom Group, Department of Pharmacology, Monash University,
    [Show full text]
  • 2017 Jones B Msc
    Bangor University MASTERS BY RESEARCH The Evolution of Defensive Strategies in Cobras Jones, Bryony Award date: 2017 Awarding institution: Bangor University Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 The Evolution of Defensive Strategies in Cobras Bryony Jones Supervisor: Dr Wolfgang Wüster Thesis submitted for the degree of Masters of Science by Research Biological Sciences The Evolution of Defensive Strategies in Cobras Abstract Species use multiple defensive strategies aimed at different sensory systems depending on the level of threat, type of predator and options for escape. The core cobra clade is a group of highly venomous Elapids that share defensive characteristics, containing true cobras of the genus Naja and related genera Aspidelaps, Hemachatus, Walterinnesia and Pseudohaje. Species combine the use of three visual and chemical strategies to prevent predation from a distance: spitting venom, hooding and aposematic patterns.
    [Show full text]
  • Report of the Presence of Wild Animals
    Report of the Presence of Wild Animals The information recorded here is essential to emergency services personnel so that they may protect themselves and your neighbors, provide for the safety of your animals, ensure the maximum protection and preservation of your property, and provide you with emergency services without unnecessary delay. Every person in New York State, who owns, possesses, or harbors a wild animal, as set forth in General Municipal Law §209-cc, must file this Report annually, on or before April 1, of each year, with the clerk of the city, village or town (if outside a village) where the animal is kept. A list of the common names of animals to be reported is enclosed with this form. Failure to file as required will subject you to penalties under law. A separate Report is required to be filed annually for each address where a wild animal is harbored. Exemptions: Pet dealers, as defined in section 752-a of the General Business Law, zoological facilities and other exhibitors licensed pursuant to U.S. Code Title 7 Chapter 54 Sections 2132, 2133 and 2134, and licensed veterinarians in temporary possession of dangerous dogs, are not required to file this report. Instructions for completing this form: 1. Please print or type all information, using blue or black ink. 2. Fill in the information requested on this page. 3. On the continuation sheets, fill in the information requested for each type of animal that you possess. 4. Return the completed forms to the city, town, or village clerk of each municipality where the animal or animals are owned, possessed or harbored.
    [Show full text]
  • Ecological Distribution of Snakes' Fauna of Jazan Region of Saudi Arabia
    Egypt. Acad. J. Biolog. Sci., 4(1): 183-197 (2012) B. Zoology Email: [email protected] ISSN: 2090 - 0759 Received: 29 /8 /2012 www.eajbs.eg.net Ecological distribution of snakes' fauna of Jazan region of Saudi Arabia Mostafa Fathy Masood1&2* 1-Department of biology, Faculty of Science, Jazan University, Kingdom of Saudi Arabia 2- Department of Zoology, Faculty of Science, Al Azhar University (Assiut-Egypt) *Email: [email protected] ABSTRACT This study was carried out in Jazan region in the Southwestern part of Saudi Arabia, bounded in the south and east by the Republic of Yemen, Asir area in the north and the Red Sea in the west. The study area is one of the richest regions of the Kingdom of Saudi Arabia with animal biodiversity, where the region is characterized by the presence of a large group of wild animals that belong to different animal families. This work is devoted to the study of the biodiversity and geographical and ecological distribution of snakes found in the region. The results showed that there are 36 species of eight families of snakes living in Jazan region; family Typholopidae represented by two species, while families Leptotypholopidae, Boidae and Atractaspididae represented by one species only respectively; whereas family Colubridae was the most represented one having 12 species, and family Elapidae was represented by three species. Family Viperidae was represented by six species and family Hydrophiidae represented by ten species. Nevertheless, this work concentrated on terrestrial snakes. This work was suggested to throw light on the biodiversity of snakes' fauna in Jazan region as an important part of the ecosystem that has to be maintained.
    [Show full text]
  • Categorizing Reptiles in Ancient Egypt: an Overview of Methods
    anthropozoologica 2020 ● 55 ● 9 Categorizing reptiles in Ancient Egypt: an overview of methods Riccardo ANDREOZZI art. 55 (9) — Published on 26 June 2020 www.anthropozoologica.com DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR : Bruno David Président du Muséum national d’Histoire naturelle RÉDACTRICE EN CHEF / EDITOR-IN-CHIEF: Joséphine Lesur RÉDACTRICE / EDITOR: Christine Lefèvre RESPONSABLE DES ACTUALITÉS SCIENTIFIQUES / RESPONSIBLE FOR SCIENTIFIC NEWS: Rémi Berthon ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR: Emmanuelle Rocklin ([email protected]) MISE EN PAGE / PAGE LAYOUT: Emmanuelle Rocklin, Inist-CNRS COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD: Louis Chaix (Muséum d’Histoire naturelle, Genève, Suisse) Jean-Pierre Digard (CNRS, Ivry-sur-Seine, France) Allowen Evin (Muséum national d’Histoire naturelle, Paris, France) Bernard Faye (Cirad, Montpellier, France) Carole Ferret (Laboratoire d’Anthropologie Sociale, Paris, France) Giacomo Giacobini (Università di Torino, Turin, Italie) Lionel Gourichon (Université de Nice, Nice, France) Véronique Laroulandie (CNRS, Université de Bordeaux 1, France) Stavros Lazaris (Orient & Méditerranée, Collège de France – CNRS – Sorbonne Université, Paris, France) Nicolas Lescureux (Centre d'Écologie fonctionnelle et évolutive, Montpellier, France) Marco Masseti (University of Florence, Italy) Georges Métailié (Muséum national d’Histoire naturelle, Paris, France) Diego Moreno (Università di Genova, Gènes, Italie) François Moutou (Boulogne-Billancourt, France) Marcel Otte (Université de Liège, Liège, Belgique)
    [Show full text]
  • Perceptions of the Serpent in the Ancient Near East: Its Bronze Age Role in Apotropaic Magic, Healing and Protection
    PERCEPTIONS OF THE SERPENT IN THE ANCIENT NEAR EAST: ITS BRONZE AGE ROLE IN APOTROPAIC MAGIC, HEALING AND PROTECTION by WENDY REBECCA JENNIFER GOLDING submitted in accordance with the requirements for the degree of MASTER OF ARTS in the subject ANCIENT NEAR EASTERN STUDIES at the UNIVERSITY OF SOUTH AFRICA SUPERVISOR: PROFESSOR M LE ROUX November 2013 Snake I am The Beginning and the End, The Protector and the Healer, The Primordial Creator, Wisdom, all-knowing, Duality, Life, yet the terror in the darkness. I am Creation and Chaos, The water and the fire. I am all of this, I am Snake. I rise with the lotus From muddy concepts of Nun. I am the protector of kings And the fiery eye of Ra. I am the fiery one, The dark one, Leviathan Above and below, The all-encompassing ouroboros, I am Snake. (Wendy Golding 2012) ii SUMMARY In this dissertation I examine the role played by the ancient Near Eastern serpent in apotropaic and prophylactic magic. Within this realm the serpent appears in roles in healing and protection where magic is often employed. The possibility of positive and negative roles is investigated. The study is confined to the Bronze Age in ancient Egypt, Mesopotamia and Syria-Palestine. The serpents, serpent deities and deities with ophidian aspects and associations are described. By examining these serpents and deities and their roles it is possible to incorporate a comparative element into his study on an intra- and inter- regional basis. In order to accumulate information for this study I have utilised textual and pictorial evidence, as well as artefacts (such as jewellery, pottery and other amulets) bearing serpent motifs.
    [Show full text]