Quantum Computing: Lecture Notes

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Computing: Lecture Notes Quantum Computing: Lecture Notes Ronald de Wolf QuSoft, CWI and University of Amsterdam arXiv:1907.09415v2 [quant-ph] 20 Jan 2021 Dedicated to the memory of my father Abraham de Wolf (1942{2019) ii Preface from 2011 These lecture notes were formed in small chunks during my \Quantum computing" course at the University of Amsterdam, Feb-May 2011, and compiled into one text thereafter. Each chapter was covered in a lecture of 2 × 45 minutes, with an additional 45-minute lecture for exercises and homework. The first half of the course (Chapters 1{7) covers quantum algorithms, the second half covers quantum complexity (Chapters 8{9), stuff involving Alice and Bob (Chapters 10{13), and error-correction (Chapter 14). A 15th lecture about physical implementations and general outlook was more sketchy, and I didn't write lecture notes for it. These chapters may also be read as a general introduction to the area of quantum computation and information from the perspective of a theoretical computer scientist. While I made an effort to make the text self-contained and consistent, it may still be somewhat rough around the edges; I hope to continue polishing and adding to it. Comments & constructive criticism are very welcome, and can be sent to [email protected] Those who want to read more (much more. ): see the book by Nielsen and Chuang [144] for the general area, the book of John Watrous [175] for quantum information theory, and the lecture notes of John Preskill [146] for the theoretical physics perspective. Attribution, acknowledgments, subsequent updates Most of the material in Chapters 1{6 [chapter numbers in this paragraph are for the 2011 ver- sion] comes from the first chapter of my PhD thesis [176], with a number of additions: the lower bound for Simon, the Fourier transform, the geometric explanation of Grover. Chapter 7 is newly written for these notes, inspired by Santha's survey [153]. Chapters 8 and 9 are largely new as well. Section 3 of Chapter 8, and most of Chapter 10 are taken (with many changes) from my \quantum proofs" survey paper with Andy Drucker [70]. Chapters 11 and 12 are partly taken from my non-locality survey with Harry Buhrman, Richard Cleve, and Serge Massar [46]. Chapters 13 and 14 are new. Thanks to Giannicola Scarpa (the teaching assistant for the first two editions of this course) for useful comments on some of the chapters. Jan'13 : Updated and corrected a few things for the Feb-Mar 2013 version of this course, and included exercises for each chapter. Thanks to Harry Buhrman, Florian Speelman, and Jeroen Zuiddam for spotting some typos in the earlier version. April'13 : More updates, clarifications and corrections; moved some material from Chapter 2 to 1; changed and added some exercises. Thanks to Jouke Witteveen for useful comments. April'14 : Fixed and clarified a few more things. Thanks to Maarten Wegewijs for spotting a typo in Chapter4. March'15 : Updated a few small things. July'15 : Updated and corrected a few small things, added more exercises. Thanks to Srinivasan Arunachalam, Carla Groenland, and Koen Groenland for useful comments. May'16 : A few more corrections, thanks to Ralph Bottesch for useful comments. Jan'18 : Many more corrections, more exercises, a new Chapter 6 about the Hidden Subgroup Prob- iii lem (the above-mentioned chapter numbers are for the earlier version of the notes), and moved the hints about exercises to an Appendix for students who want to try the exercises first without hints. Thanks to Joran van Apeldoorn, Srinivasan Arunachalam, Rens Baardman, Alexander Belov, Koen de Boer, Daniel Chernowitz, Andr´asGily´en,Ronald de Haan, Leon Ingelse, Stacey Jeffery, Rafael Kiesel, Jens Klooster, Sam Kuypers, Christian Nesenberend, and Christian Schaffner for useful comments. Jan'19 : More corrections and exercises, and new chapters about Hamiltonian simulation (Chap- ter9) and the HHL algorithm (Chapter 10). These two chapters can be taught together in two lectures, with the longer Chapter 9 spilling over into the second lecture if necessary. I marked by `(H)' the exercises having a hint in AppendixC, and removed citations from exercises to prevent students looking up the original papers when doing the exercises (which is neither necessary nor helpful). Those references are [29, 66, 72, 42, 71, 82, 49, 23, 30, 21, 57, 12]. Thanks to Arjan Cornelissen, Sven Cornets de Groot, Gerrit Vos, and Harm de Vries for useful comments, and to Andr´asGily´enfor much help with Chapters9 and 10. Thanks to my father and Mieke Beer for hosting me for two months while I was recovering from an ankle fracture in a wheelchair, from which much of these two chapters was written. July'19 : More corrections, clarifications and exercises. Thanks to Joran van Apeldoorn, Andr´as Gily´en,Stephanie Gonzalez, Sander Gribling, Jaco ter Hoeve, Arnold Kole, Lotte Mertens, Stefano Pironio, Merel Schalkers, Jim Skulte, Iris Smit, Manuel Van, and Sebastian Zur for useful com- ments. Thanks to Barbara Terhal for suggesting the possibility of dedicating these notes. January'21 : More corrections, clarifications and exercises, and a new chapter about QMA and the local Hamiltonian problem (Chapter 13). Thanks to Dorit Aharonov, Tomas Ehrencron, Alex Grilo, Joris Kattem¨olle, Tessel Majtlis, Nikhil Mande, Andrea Mazzocco, Robert Modderman, Noah Lin- den, Thomas Preu, Stan de Lange, Noah Linden, Philip Verduyn Lunel, Baer Ververgaert, and Carel Wagenaar for useful comments. © Ronald de Wolf, January 2021, Amsterdam iv Contents 1 Quantum Computing1 1.1 Introduction . .1 1.2 Quantum mechanics . .2 1.2.1 Superposition . .3 1.2.2 Measurement . .3 1.2.3 Unitary evolution . .6 1.3 Qubits and quantum memory . .6 1.4 Elementary gates . .8 1.5 Example: quantum teleportation . .9 2 The Circuit Model and Deutsch-Jozsa 13 2.1 Quantum computation . 13 2.1.1 Classical circuits . 13 2.1.2 Quantum circuits . 14 2.2 Universality of various sets of elementary gates . 15 2.3 Quantum parallelism . 16 2.4 The early algorithms . 16 2.4.1 Deutsch-Jozsa . 17 2.4.2 Bernstein-Vazirani . 18 3 Simon's Algorithm 21 3.1 The problem . 21 3.2 The quantum algorithm . 21 3.3 Classical algorithms for Simon's problem . 22 3.3.1 Upper bound . 22 3.3.2 Lower bound . 23 4 The Fourier Transform 27 4.1 The classical discrete Fourier transform . 27 4.2 The Fast Fourier Transform . 28 4.3 Application: multiplying two polynomials . 28 4.4 The quantum Fourier transform . 29 4.5 An efficient quantum circuit . 30 4.6 Application: phase estimation . 31 v 5 Shor's Factoring Algorithm 35 5.1 Factoring . 35 5.2 Reduction from factoring to period-finding . 35 5.3 Shor's period-finding algorithm . 37 5.4 Continued fractions . 39 6 Hidden Subgroup Problem 43 6.1 Hidden Subgroup Problem . 43 6.1.1 Group theory reminder . 43 6.1.2 Definition and some instances of the HSP . 44 6.2 An efficient quantum algorithm if G is Abelian . 45 6.2.1 Representation theory and the quantum Fourier transform . 45 6.2.2 A general algorithm for Abelian HSP . 46 6.3 General non-Abelian HSP . 48 6.3.1 The symmetric group and the graph isomorphism problem . 48 6.3.2 Non-Abelian QFT on coset states . 48 6.3.3 Query-efficient algorithm . 49 7 Grover's Search Algorithm 51 7.1 The problem . 51 7.2 Grover's algorithm . 51 7.3 Amplitude amplification . 54 7.4 Application: satisfiability . 55 8 Quantum Walk Algorithms 59 8.1 Classical random walks . 59 8.2 Quantum walks . 60 8.3 Applications . 63 8.3.1 Grover search . 63 8.3.2 Collision problem . 63 8.3.3 Finding a triangle in a graph . 64 9 Hamiltonian Simulation 67 9.1 Hamiltonians . 67 9.2 Method 1: Lie-Suzuki-Trotter methods . 68 9.3 Method 2: Linear combination of unitaries (LCU) . 69 9.3.1 Hamiltonian simulation via LCU . 71 9.4 Method 3: Transforming block-encoded matrices . 72 9.4.1 Hamiltonian simulation via transforming block-encoded matrices . 74 10 The HHL Algorithm 77 10.1 The linear-system problem . 77 10.2 The basic HHL algorithm for linear systems . 78 10.3 Improving the efficiency of the HHL agorithm . 79 vi 11 Quantum Query Lower Bounds 81 11.1 Introduction . 81 11.2 The polynomial method . 82 11.3 The quantum adversary method . 84 12 Quantum Complexity Theory 89 12.1 Most functions need exponentially many gates . 89 12.2 Classical and quantum complexity classes . 90 12.3 Classically simulating quantum computers in polynomial space . 92 13 QMA and the Local Hamiltonian Problem 95 13.1 Quantum Merlin-Arthur (QMA)............................. 95 13.2 The local Hamiltonian problem . 96 13.3 Local Hamiltonian is QMA-complete . 98 13.3.1 Completeness and soundness . 99 13.3.2 Reducing the locality . 101 13.4 Other interesting problems in QMA ........................... 101 13.5 Quantum interactive proofs . 102 14 Quantum Encodings, with a Non-Quantum Application 105 14.1 Mixed states and general measurements . 105 14.2 Quantum encodings and their limits . 106 14.3 Lower bounds on locally decodable codes . 108 15 Quantum Communication Complexity 113 15.1 Classical communication complexity . ..
Recommended publications
  • Key Concepts for Future QIS Learners Workshop Output Published Online May 13, 2020
    Key Concepts for Future QIS Learners Workshop output published online May 13, 2020 Background and Overview On behalf of the Interagency Working Group on Workforce, Industry and Infrastructure, under the NSTC Subcommittee on Quantum Information Science (QIS), the National Science Foundation invited 25 researchers and educators to come together to deliberate on defining a core set of key concepts for future QIS learners that could provide a starting point for further curricular and educator development activities. The deliberative group included university and industry researchers, secondary school and college educators, and representatives from educational and professional organizations. The workshop participants focused on identifying concepts that could, with additional supporting resources, help prepare secondary school students to engage with QIS and provide possible pathways for broader public engagement. This workshop report identifies a set of nine Key Concepts. Each Concept is introduced with a concise overall statement, followed by a few important fundamentals. Connections to current and future technologies are included, providing relevance and context. The first Key Concept defines the field as a whole. Concepts 2-6 introduce ideas that are necessary for building an understanding of quantum information science and its applications. Concepts 7-9 provide short explanations of critical areas of study within QIS: quantum computing, quantum communication and quantum sensing. The Key Concepts are not intended to be an introductory guide to quantum information science, but rather provide a framework for future expansion and adaptation for students at different levels in computer science, mathematics, physics, and chemistry courses. As such, it is expected that educators and other community stakeholders may not yet have a working knowledge of content covered in the Key Concepts.
    [Show full text]
  • Software for Numerical Computation
    Purdue University Purdue e-Pubs Department of Computer Science Technical Reports Department of Computer Science 1977 Software for Numerical Computation John R. Rice Purdue University, [email protected] Report Number: 77-214 Rice, John R., "Software for Numerical Computation" (1977). Department of Computer Science Technical Reports. Paper 154. https://docs.lib.purdue.edu/cstech/154 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. SOFTWARE FOR NUMERICAL COMPUTATION John R. Rice Department of Computer Sciences Purdue University West Lafayette, IN 47907 CSD TR #214 January 1977 SOFTWARE FOR NUMERICAL COMPUTATION John R. Rice Mathematical Sciences Purdue University CSD-TR 214 January 12, 1977 Article to appear in the book: Research Directions in Software Technology. SOFTWARE FOR NUMERICAL COMPUTATION John R. Rice Mathematical Sciences Purdue University INTRODUCTION AND MOTIVATING PROBLEMS. The purpose of this article is to examine the research developments in software for numerical computation. Research and development of numerical methods is not intended to be discussed for two reasons. First, a reasonable survey of the research in numerical methods would require a book. The COSERS report [Rice et al, 1977] on Numerical Computation does such a survey in about 100 printed pages and even so the discussion of many important fields (never mind topics) is limited to a few paragraphs. Second, the present book is focused on software and thus it is natural to attempt to separate software research from numerical computation research. This, of course, is not easy as the two are intimately intertwined.
    [Show full text]
  • Varying Constants, Gravitation and Cosmology
    Varying constants, Gravitation and Cosmology Jean-Philippe Uzan Institut d’Astrophysique de Paris, UMR-7095 du CNRS, Universit´ePierre et Marie Curie, 98 bis bd Arago, 75014 Paris (France) and Department of Mathematics and Applied Mathematics, Cape Town University, Rondebosch 7701 (South Africa) and National Institute for Theoretical Physics (NITheP), Stellenbosch 7600 (South Africa). email: [email protected] http//www2.iap.fr/users/uzan/ September 29, 2010 Abstract Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to mat- ter. This will induce a violation of the universality of free fall. It is thus of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We thus detail the relations between the constants, the tests of the local posi- tion invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, Solar system observations, meteorites dating, quasar absorption spectra, stellar physics, pul- sar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we arXiv:1009.5514v1 [astro-ph.CO] 28 Sep 2010 describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of differ- ent constants.
    [Show full text]
  • On the Complexity of Numerical Analysis
    On the Complexity of Numerical Analysis Eric Allender Peter B¨urgisser Rutgers, the State University of NJ Paderborn University Department of Computer Science Department of Mathematics Piscataway, NJ 08854-8019, USA DE-33095 Paderborn, Germany [email protected] [email protected] Johan Kjeldgaard-Pedersen Peter Bro Miltersen PA Consulting Group University of Aarhus Decision Sciences Practice Department of Computer Science Tuborg Blvd. 5, DK 2900 Hellerup, Denmark IT-parken, DK 8200 Aarhus N, Denmark [email protected] [email protected] Abstract In Section 1.3 we discuss our main technical contribu- tions: proving upper and lower bounds on the complexity We study two quite different approaches to understand- of PosSLP. In Section 1.4 we present applications of our ing the complexity of fundamental problems in numerical main result with respect to the Euclidean Traveling Sales- analysis. We show that both hinge on the question of under- man Problem and the Sum-of-Square-Roots problem. standing the complexity of the following problem, which we call PosSLP: Given a division-free straight-line program 1.1 Polynomial Time Over the Reals producing an integer N, decide whether N>0. We show that PosSLP lies in the counting hierarchy, and combining The Blum-Shub-Smale model of computation over the our results with work of Tiwari, we show that the Euclidean reals provides a very well-studied complexity-theoretic set- Traveling Salesman Problem lies in the counting hierarchy ting in which to study the computational problems of nu- – the previous best upper bound for this important problem merical analysis.
    [Show full text]
  • Quantum Machine Learning: Benefits and Practical Examples
    Quantum Machine Learning: Benefits and Practical Examples Frank Phillipson1[0000-0003-4580-7521] 1 TNO, Anna van Buerenplein 1, 2595 DA Den Haag, The Netherlands [email protected] Abstract. A quantum computer that is useful in practice, is expected to be devel- oped in the next few years. An important application is expected to be machine learning, where benefits are expected on run time, capacity and learning effi- ciency. In this paper, these benefits are presented and for each benefit an example application is presented. A quantum hybrid Helmholtz machine use quantum sampling to improve run time, a quantum Hopfield neural network shows an im- proved capacity and a variational quantum circuit based neural network is ex- pected to deliver a higher learning efficiency. Keywords: Quantum Machine Learning, Quantum Computing, Near Future Quantum Applications. 1 Introduction Quantum computers make use of quantum-mechanical phenomena, such as superposi- tion and entanglement, to perform operations on data [1]. Where classical computers require the data to be encoded into binary digits (bits), each of which is always in one of two definite states (0 or 1), quantum computation uses quantum bits, which can be in superpositions of states. These computers would theoretically be able to solve certain problems much more quickly than any classical computer that use even the best cur- rently known algorithms. Examples are integer factorization using Shor's algorithm or the simulation of quantum many-body systems. This benefit is also called ‘quantum supremacy’ [2], which only recently has been claimed for the first time [3]. There are two different quantum computing paradigms.
    [Show full text]
  • Limits on Efficient Computation in the Physical World
    Limits on Efficient Computation in the Physical World by Scott Joel Aaronson Bachelor of Science (Cornell University) 2000 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the GRADUATE DIVISION of the UNIVERSITY of CALIFORNIA, BERKELEY Committee in charge: Professor Umesh Vazirani, Chair Professor Luca Trevisan Professor K. Birgitta Whaley Fall 2004 The dissertation of Scott Joel Aaronson is approved: Chair Date Date Date University of California, Berkeley Fall 2004 Limits on Efficient Computation in the Physical World Copyright 2004 by Scott Joel Aaronson 1 Abstract Limits on Efficient Computation in the Physical World by Scott Joel Aaronson Doctor of Philosophy in Computer Science University of California, Berkeley Professor Umesh Vazirani, Chair More than a speculative technology, quantum computing seems to challenge our most basic intuitions about how the physical world should behave. In this thesis I show that, while some intuitions from classical computer science must be jettisoned in the light of modern physics, many others emerge nearly unscathed; and I use powerful tools from computational complexity theory to help determine which are which. In the first part of the thesis, I attack the common belief that quantum computing resembles classical exponential parallelism, by showing that quantum computers would face serious limitations on a wider range of problems than was previously known. In partic- ular, any quantum algorithm that solves the collision problem—that of deciding whether a sequence of n integers is one-to-one or two-to-one—must query the sequence Ω n1/5 times.
    [Show full text]
  • On the Tightness of the Buhrman-Cleve-Wigderson Simulation
    On the tightness of the Buhrman-Cleve-Wigderson simulation Shengyu Zhang Department of Computer Science and Engineering, The Chinese University of Hong Kong. [email protected] Abstract. Buhrman, Cleve and Wigderson gave a general communica- 1 1 n n tion protocol for block-composed functions f(g1(x ; y ); ··· ; gn(x ; y )) by simulating a decision tree computation for f [3]. It is also well-known that this simulation can be very inefficient for some functions f and (g1; ··· ; gn). In this paper we show that the simulation is actually poly- nomially tight up to the choice of (g1; ··· ; gn). This also implies that the classical and quantum communication complexities of certain block- composed functions are polynomially related. 1 Introduction Decision tree complexity [4] and communication complexity [7] are two concrete models for studying computational complexity. In [3], Buhrman, Cleve and Wigderson gave a general method to design communication 1 1 n n protocol for block-composed functions f(g1(x ; y ); ··· ; gn(x ; y )). The basic idea is to simulate the decision tree computation for f, with queries i i of the i-th variable answered by a communication protocol for gi(x ; y ). In the language of complexity measures, this result gives CC(f(g1; ··· ; gn)) = O~(DT(f) · max CC(gi)) (1) i where CC and DT are the communication complexity and the decision tree complexity, respectively. This simulation holds for all the models: deterministic, randomized and quantum1. It is also well known that the communication protocol by the above simulation can be very inefficient.
    [Show full text]
  • Quantum Computing: Principles and Applications
    Journal of International Technology and Information Management Volume 29 Issue 2 Article 3 2020 Quantum Computing: Principles and Applications Yoshito Kanamori University of Alaska Anchorage, [email protected] Seong-Moo Yoo University of Alabama in Huntsville, [email protected] Follow this and additional works at: https://scholarworks.lib.csusb.edu/jitim Part of the Communication Technology and New Media Commons, Computer and Systems Architecture Commons, Information Security Commons, Management Information Systems Commons, Science and Technology Studies Commons, Technology and Innovation Commons, and the Theory and Algorithms Commons Recommended Citation Kanamori, Yoshito and Yoo, Seong-Moo (2020) "Quantum Computing: Principles and Applications," Journal of International Technology and Information Management: Vol. 29 : Iss. 2 , Article 3. Available at: https://scholarworks.lib.csusb.edu/jitim/vol29/iss2/3 This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Journal of International Technology and Information Management by an authorized editor of CSUSB ScholarWorks. For more information, please contact [email protected]. Journal of International Technology and Information Management Volume 29, Number 2 2020 Quantum Computing: Principles and Applications Yoshito Kanamori (University of Alaska Anchorage) Seong-Moo Yoo (University of Alabama in Huntsville) ABSTRACT The development of quantum computers over the past few years is one of the most significant advancements in the history of quantum computing. D-Wave quantum computer has been available for more than eight years. IBM has made its quantum computer accessible via its cloud service. Also, Microsoft, Google, Intel, and NASA have been heavily investing in the development of quantum computers and their applications.
    [Show full text]
  • Thesis Is Owed to Him, Either Directly Or Indirectly
    UvA-DARE (Digital Academic Repository) Quantum Computing and Communication Complexity de Wolf, R.M. Publication date 2001 Document Version Final published version Link to publication Citation for published version (APA): de Wolf, R. M. (2001). Quantum Computing and Communication Complexity. Institute for Logic, Language and Computation. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 Quantum Computing and Communication Complexity Ronald de Wolf Quantum Computing and Communication Complexity ILLC Dissertation Series 2001-06 For further information about ILLC-publications, please contact Institute for Logic, Language and Computation Universiteit van Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam phone: +31-20-525 6051 fax: +31-20-525 5206 e-mail: [email protected] homepage: http://www.illc.uva.nl/ Quantum Computing and Communication Complexity Academisch Proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magni¯cus prof.dr.
    [Show full text]
  • The Complexity Zoo
    The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/.
    [Show full text]
  • Quantum Hypercomputation—Hype Or Computation?
    Quantum Hypercomputation—Hype or Computation? Amit Hagar,∗ Alex Korolev† February 19, 2007 Abstract A recent attempt to compute a (recursion–theoretic) non–computable func- tion using the quantum adiabatic algorithm is criticized and found wanting. Quantum algorithms may outperform classical algorithms in some cases, but so far they retain the classical (recursion–theoretic) notion of computability. A speculation is then offered as to where the putative power of quantum computers may come from. ∗HPS Department, Indiana University, Bloomington, IN, 47405. [email protected] †Philosophy Department, University of BC, Vancouver, BC. [email protected] 1 1 Introduction Combining physics, mathematics and computer science, quantum computing has developed in the past two decades from a visionary idea (Feynman 1982) to one of the most exciting areas of quantum mechanics (Nielsen and Chuang 2000). The recent excitement in this lively and fashionable domain of research was triggered by Peter Shor (1994) who showed how a quantum computer could exponentially speed–up classical computation and factor numbers much more rapidly (at least in terms of the number of computational steps involved) than any known classical algorithm. Shor’s algorithm was soon followed by several other algorithms that aimed to solve combinatorial and algebraic problems, and in the last few years the- oretical study of quantum systems serving as computational devices has achieved tremendous progress. According to one authority in the field (Aharonov 1998, Abstract), we now have strong theoretical evidence that quantum computers, if built, might be used as powerful computational tool, capable of per- forming tasks which seem intractable for classical computers.
    [Show full text]
  • Arxiv:1506.08857V1 [Quant-Ph] 29 Jun 2015
    Absolutely Maximally Entangled states, combinatorial designs and multi-unitary matrices Dardo Goyeneche National Quantum Information Center of Gda´nsk,81-824 Sopot, Poland and Faculty of Applied Physics and Mathematics, Technical University of Gda´nsk,80-233 Gda´nsk,Poland Daniel Alsina Dept. Estructura i Constituents de la Mat`eria,Universitat de Barcelona, Spain. Jos´e I. Latorre Dept. Estructura i Constituents de la Mat`eria,Universitat de Barcelona, Spain. and Center for Theoretical Physics, MIT, USA Arnau Riera ICFO-Institut de Ciencies Fotoniques, Castelldefels (Barcelona), Spain Karol Zyczkowski_ Institute of Physics, Jagiellonian University, Krak´ow,Poland and Center for Theoretical Physics, Polish Academy of Sciences, Warsaw, Poland (Dated: June 29, 2015) Absolutely Maximally Entangled (AME) states are those multipartite quantum states that carry absolute maximum entanglement in all possible partitions. AME states are known to play a relevant role in multipartite teleportation, in quantum secret sharing and they provide the basis novel tensor networks related to holography. We present alternative constructions of AME states and show their link with combinatorial designs. We also analyze a key property of AME, namely their relation to tensors that can be understood as unitary transformations in every of its bi-partitions. We call this property multi-unitarity. I. INTRODUCTION entropy S(ρ) = −Tr(ρ log ρ) ; (1) A complete characterization, classification and it is possible to show [1, 2] that the average entropy quantification of entanglement for quantum states re- of the reduced state σ = TrN=2j ih j to N=2 qubits mains an unfinished long-term goal in Quantum Infor- reads: N mation theory.
    [Show full text]