Hematopoietic Developmental Pathways: on Cellular Basis
Oncogene (2007) 26, 6687–6696 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW Hematopoietic developmental pathways: on cellular basis H Iwasaki1 and K Akashi1,2 1Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan and 2Department of Cancer Immunology and AIDS, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA To elucidate the molecular mechanisms underlying normal counterpart, the common myeloid progenitor (CMP) and malignant hematopoietic development, it is critical to that can be a source of all myeloid cell types, supports identify developmental intermediates for each lineage the concept that lymphoid and myeloid lineages develop downstream of hematopoietic stem cells. Recent advances independently downstream of HSCs (Kondo et al., 1997; in prospective isolation of hematopoietic stem and Akashi et al., 2000). progenitor cells, and efficient xenogeneic transplantation Recent progresses in the fluorescence-activated cell systems have provided a detailed developmental map in sorting analysis using additional surface markers for both mouse and human hematopoiesis, demonstrating that early hematopoiesis, however, have provided more surface phenotypes of mouse stem–progenitor cells and detailed developmental map downstream of HSCs. their human counterparts are considerably different. Importantly, prior to proceed into the classical myeloid Here, we summarize the phenotype and functional vs lymphoid pathways, HSCs appear to form myelo- properties and their differences of hematopoietic stem erythroid vs myelo-lymphoid progenitors (Arinobu and progenitor cell populations between mouse and et al., 2007). Furthermore, it is now clear that there human. are considerable differences in distribution of surface Oncogene (2007) 26, 6687–6696; doi:10.1038/sj.onc.1210754 markers between human and mouse hematopoiesis, which makes identification of human counterparts of Keywords: hematopoietic stem cell; lineage commitment; mouse progenitors difficult.
[Show full text]