The Number of Nucleated Cells Reflects the Hematopoietic Content of Umbilical Cord Blood for Transplantation

Total Page:16

File Type:pdf, Size:1020Kb

The Number of Nucleated Cells Reflects the Hematopoietic Content of Umbilical Cord Blood for Transplantation Bone Marrow Transplantation, (1999) 24, 965–970 1999 Stockton Press All rights reserved 0268–3369/99 $15.00 http://www.stockton-press.co.uk/bmt The number of nucleated cells reflects the hematopoietic content of umbilical cord blood for transplantation FTH Lim1,2, JM v Beckhoven3, A Brand3, JC Kluin-Nelemans1, JMH Hermans4, R Willemze1, HHH Kanhai2 and JHF Falkenburg1 Departments of 1Hematology, 2Obstetrics and 4Medical Statistics from the Leiden University Medical Center; and 3Red Cross Blood Bank, Leidsenhage, The Netherlands Summary: irradiated recipients. Since the colony-forming unit granulocyte–monocyte (CFU-GM) defined in a semi-solid A single umbilical cord blood (UCB) collection may con- culture assay, has been associated with hematopoietic tain sufficient hematopoietic stem cells to achieve engraftment of human bone marrow cells, this assay has engraftment and repopulation of the hematopoietic sys- been used as a quality control method for hematopoietic tem of children and adults after myeloablative therapy. stem cell grafts.12,13 The hematopoietic potential of a UCB unit is often The human hematopoietic stem cells reside in the frac- defined by the number of CD34+ cells or the number of tion of cells expressing the CD34 antigen.14,15 CD34+ cells colony-forming units as measured in semisolid hemato- can be identified by flow cytometry, but the various tech- poietic progenitor cell (HPC) cultures. However, these niques for CD34 enumeration that have been advocated assays are relatively difficult to standardize between may result in different estimated concentrations.16–18 Both UCB banks. The number of nucleated cells infused per the CD34+ cell content, and the numbers of hematopoietic kilogram body weight of the recipient is also reported progenitor cells (HPC) as determined in semi-solid medium to be a significant factor in the speed of recovery of culture assays are frequently used to predict the hematopoi- neutrophils and platelets after transplantation. To ana- etic potential of a stem cell transplant, and to estimate the lyze which parameters could be used to evaluate the viability of the stem cells after processing or cryopreserv- hematopoietic potential of a UCB graft, we evaluated ation. However, both the functional enumeration of HPC almost 300 UCB units that were collected for banking and the CD34+cells enumeration are difficult to standardize. for unrelated transplantation. A strong correlation was + The number of nucleated cells infused per kilogram of found between the frequencies of CD34 cells and the the recipient has been reported to be a significant factor HPC as measured in semi-solid medium cultures. From in the speed of recovery of neutrophils and platelets after the various leukocyte subpopulations, the concentration transplantation. In reports by Wagner et al19 on UCB trans- and total numbers of nucleated cells correlated best 20 + plants in 44 siblings, and Kurtzberg et al on 25 unrelated with both the HPC content and the number of CD34 UCB transplantations, a trend was found for the time to cells. Differentiation of these nucleated cells into subsets myeloid or platelet engraftment to decrease with the dose of leukocytes offered no advantage for better prediction + of clonogenic precursors or CD34 cells infused, but the of HPC or CD34+ cells. These results indicate that the correlations were not statistically significant. Gluckman et nucleated cell count probably reflects the hematopoietic al21 reported a significant correlation between the number potential of a UCB graft, and may for that reason corre- of nucleated cells per kg body weight infused and neutro- late with the speed of engraftment after transplantation. phil recovery. Recently Wagner et al22 showed a correlation Keywords: umbilical cord blood; transplantation; hema- + topoietic cells between the number of CD34 cells and the speed of recov- ery in 143 patients transplanted with unrelated UCB transplants. In this study, we evaluated the correlation between the Human umbilical cord blood (UCB) can be used as a source two methods of enumeration of HPC, and analyzed whether of hematopoietic stem cells for transplantation purposes.1 the nucleated cell counts or numbers of leukocyte subpopu- A single cord blood collection may contain enough hemato- lations correlated with the CD34+ cells or HPC content of poietic stem cells to achieve engraftment and repopulation UCB units. From the Cord Blood Bank of the Red Cross of the hematopoietic system of both children and adults.2–11 Blood Bank, Leidsenhage, which is part of the national Functionally, hematopoietic stem cells can be defined as umbilical cord blood bank EuroCord Nederland, we evalu- cells that are capable of lymphomyeloid reconstitution of ated data from the first 300 UCB units. We found that the number of nucleated cells correlated well with HPC and CD34 content of a UCB unit. Therefore we conclude that Correspondence: Dr JHF Falkenburg, Department of Hematology, Build- as long as the enumeration of CD34+ cells and cultured ing 1, C2-R, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands HPC from an UCB transplant are not standardized, the Received 24 November 1998; accepted 16 June 1999 number of nucleated cells can be used as an alternative to Hematopoietic content of umbilical cord blood FTH Lim et al 966 indicate the hematopoietic potential of UCB units for the gated CD14−/CD66e− population, the CD34+ cells could transplantation. be identified in a CD34 vs SSC dot plot (Figure 1). The sample that was stained with the mixture containing mouse- IgG1, was used as a negative control. In the calculation of + Materials and methods CD34 cells, the percentage of isotype control binding cells was subtracted from the percentage of CD34+ cells. Con- + Collection of umbilical cord blood centrations of CD34 cells and leukocyte subpopulations were calculated by multiplying the percentage with the After informed consent was obtained from the mother number of nucleated cells per ml UCB counted by the Sys- before delivery, UCB was collected from the umbilical cord mex. White blood cells (WBC) were defined as lympho- after the expulsion of the placenta. After puncture of the cytes, monocytes and granulocytes; mononuclear cells umbilical vein, the UCB was collected into a 250 ml collec- (MNC) were defined as lymphocytes and monocytes. tion bag containing 15 ml of Hanks’ balanced salt solution (BioWhittaker, Verviers, Belgium) with 75 IU/ml of pre- servative-free heparin as anticoagulant. Two samples of the Hematopoietic progenitor cell cultures UCB were sent to two different laboratories. The cell counts and phenotype were independently analyzed in one For the culture of HPC, UCB samples were diluted 10 times laboratory, while the HPC culture frequencies were defined in Iscove’s modified Dulbecco’s medium (IMDM) by the other laboratory. (BioWhittaker). Cells were seeded in three 35-mm tissue culture dishes with different concentrations of cord blood ␮ ␮ ␮ Cell counts and FACS analysis cells. Quantities of 10 l, 20 lor40 l of the diluted UCB were added to 1.5 ml of a semisolid culture-mixture Nucleated cells were counted using a Sysmex K1000 (Toa of IMDM, containing 30% fresh-frozen AB-heparin Medical Electronics, Kobe, Japan), which was validated in plasma, 0.5% deionized bovine serum albumin (BSA), quality rounds. human transferrin (0.47 g/l) (Behringwerke, Marburg, × −5 Phenotype analysis of umbilical cord blood was perfor- Germany) saturated with FeCl3-H2O, 5 10 m beta-mer- med within 36 h after harvest, using a Becton Dickinson captoethanol (Sigma Chemicals, St Louis, MO, USA), FACScan flow cytometer. For the determination of CD45 1.1% methylcellulose (Methocel 4000 cps; Fluka, Freiburg, and CD34 expressing cells, a method for whole blood coun- Germany), and the following human hematopoietic growth ting was used which was based on a protocol for CD34+ factors: recombinant granulocyte colony-stimulating factor cell enumeration with flow cytometry, described by the (G-CSF) 10 ng/ml, kindly provided by Amgen (Thousand national workshop SIHON.16 Oaks, CA, USA); granulocyte–macrophage colony-stimul- Three samples of 100 ␮l blood were labeled with combi- ating factor (GM-CSF) 10 ng/ml, Sandoz (Basel, nations of directly fluorescein isothiocyanate (FITC)- or Switzerland); stem cell factor (SCF) 50 ng/ml, kindly pro- phycoerythin (PE)-labeled monoclonal antibodies: CD45 vided by Amgen; interleukin-3 (IL-3) 25 ng/ml, a gift from FITC + CD14 PE for leukocyte subsets, CD14 Sandoz; and human recombinant erythropoietin (Epo) 2 FITC/CD66e FITC + CD34 PE for CD34+ cell assessment, U/ml, a kind gift from Organon Technica (Turnhout, and CD14 FITC/CD66e FITC + mouse-IgG1 PE for isotype Belgium). After 14 days of culture in 35 mm tissue culture ° control. The CD45 FITC/CD34 PE combination, CD14 dishes (37 C, fully humidified atmosphere, 5% CO2), col- FITC, mouse-IgG1 PE and CD34 PE were from Becton onies were counted. Colonies were defined as aggregates Dickinson (San Jose, CA, USA); CD66e FITC, was of more than 50 cells. Erythroid burst-forming unit (BFU- obtained from the Central Laboratory of the Blood Trans- E) colonies were defined as bursts of colonies consisting fusion Services (Amsterdam, The Netherlands). Cellquest of hemoglobinized cells. Granulocyte–macrophage colony- software was used to determine percentages lymphocytes, forming unit (CFU-GM) colonies contained granulocytes or monocytes, granulocytes and CD34+ cells. Briefly, LDS macrophages or both. Granulocyte–erythroid–macrophage– 751 (Exciton, Daton, OH, USA)23 was used to set a live megakaryocyte CFU (CFU-GEMM) colonies were defined gate, discriminating between damaged and intact nucleated as aggregates containing at least both erythroid and myeloid cells (LDS 751+ cells). Within this live gate, 50000 events cells. HPC was defined as the sum of BFU-E, CFU-GM and were analyzed, and a distinction between subpopulations of CFU-GEMM. From the three samples plated in different CD45+ leukocytes was made; CD45− nucleated cells were concentrations, the concentrations of HPC/ml UCB were considered nucleated red blood cells.
Recommended publications
  • Pearls of Laboratory Medicine Transcript Document
    Pearls of Laboratory Medicine www.traineecouncil.org TITLE: Transfusion Support in Hematopoietic Stem Cell Transplant PRESENTER: Erin K. Meyer, DO, MPH Slide 1: Title Slide Hello, my name is Erin Meyer. I am the medical director of apheresis and associate medical director of Transfusion Services at Nationwide Children’s Hospital in Columbus Ohio. Welcome to this Pearl of Laboratory Medicine on “Transfusion Support in Hematopoietic Stem Cell Transplant or HSCT.” Slide 2: Transfusion Support for Hematopoietic Stem Cell Transplant (HSCT) The objectives of my talk are a brief overview of the different types of HSCT followed by a review of the sources of HSCT available and transfusion thresholds for patients receiving the different types of HSCT. Finally, I will discuss ABO-incompatible HSCT with a focus on the complications of and transfusion support for each possible ABO-incompatible combination. Hematopoietic stem cells came to light after the dropping of the atomic bombs in 1945. People who survived the initial explosions later died of bone marrow failure from radiation. A series of sentinel experiments by Till and McCulloch in the 1960s then showed that transfer of bone marrow cells from donor mice into lethally irradiated recipient mice resulted in the formation of colonies of myeloid, erythroid, and megakaryocytic cells in the recipient’s spleen approximately 7-14 days later. Stem cells have two very unique properties: the ability to self-renew and the ability to regenerate. The field of stem cell biology has only grown and HSCTs are able to be transplanted now to recipients to help a variety of diseases.
    [Show full text]
  • Hematopoietic Stem Cell Therapy) in MS
    FAQ About HSCT (Hematopoietic Stem Cell Therapy) in MS There is growing evidence that autologous HSCT is not for everyone with MS but may be highly effective for people with relapsing MS who meet very specific characteristics. The National Medical Advisory Committee of the National MS Society has written an article reviewing evidence related to the optimal use of autologous hematopoietic stem cell transplantation (aHSCT, commonly known as bone marrow transplants) for the treatment of specific types of relapsing multiple sclerosis. The committee’s findings are published in JAMA Neurology (online October 26, 2020). Q. What is HSCT for multiple sclerosis? A. HSCT (Hematopoietic Stem Cell Transplantation) attempts to “reboot” the immune system, which is responsible for damaging the brain and spinal cord in MS. In HSCT for MS, hematopoietic (blood cell-producing) stem cells, which are derived from a person’s own (“autologous”) bone marrow or blood, are collected and stored, and the rest of the individual’s immune cells are depleted by chemotherapy. Then the stored hematopoietic stem cells are reintroduced to the body. The new stem cells migrate to the bone marrow and over time produce new white blood cells. Eventually they repopulate the body with immune cells. Q. What is the idea behind autologous HSCT (aHSCT) for MS? A. The goal of aHSCT is to reset the immune system and stop the inflammation that contributes to active relapsing MS. Q. Is aHSCT an FDA-approved therapy option for people with MS? A. The medications and procedures used in aHSCT are already approved by the FDA. Publication of the outcomes from well-controlled clinical studies of aHSCT therapy will encourage greater acceptance and use by the medical community.
    [Show full text]
  • IDF Guide to Hematopoietic Stem Cell Transplantation
    Guide to Hematopoietic Stem Cell Transplantation Immune Deficiency Foundation Guide to Hematopoietic Stem Cell Transplantation This publication contains general medical information that cannot be applied safely to any individual case. Medical knowledge and practice can change rapidly. Therefore, this publication should not be used as a substitute for professional medical advice. In all cases, patients and caregivers should consult their healthcare providers. Each patient’s condition and treatment are unique. Copyright 2018 by Immune Deficiency Foundation, USA Readers may redistribute this guide to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. Immune Deficiency Foundation Guide to Hematopoietic Stem Cell Transplantation may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from the Immune Deficiency Foundation (IDF). If you have any questions about permission, please contact: Immune Deficiency Foundation, 110 West Road, Suite 300, Towson, MD 21204, USA, or by telephone: 800-296-4433. For more information about IDF, go to: www.primaryimmune.org. This publication has been made possible through the IDF SCID Initiative and the SCID, Angels for Life Foundation. Acknowledgements The Immune Deficiency Foundation would like to thank the organizations and individuals who helped make this publication possible and contributed to the development of the Immune Deficiency Foundation Guide to Hematopoietic Stem
    [Show full text]
  • Stem Cell Hematopoiesis
    Hematopoietic and Lymphoid Neoplasm Project Introduction to the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues 4th edition 2 Hematopoietic and Lymphoid Lineages, Part I Steven Peace, CTR Westat September 2009 3 Objectives • Understand stem cell hematopoiesis • Understand proliferation • Understand differentiation • Provide a History of Classification of Tumors of Hematopoietic and Lymphoid Tissues • Understand the delineation of cell lines (lineage) in relation to the WHO Classification 4 Objectives (2) • Introduce WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues, 4th ed. • Introduce NEW ICD-O histology codes • Introduce NEW reportable conditions 5 Stem Cell Hematopoiesis • What is a hematopoietic stem cell? • Where are hematopoietic stem cells found? • What is Hematopoiesis? • Hematopoietic stem cells give rise to ALL blood cell types including; • Myeloid lineages • Lymphoid lineages 6 Hematopoietic stem cells give rise to two major progenitor cell lineages, myeloid and lymphoid progenitors Regenerative Medicine, 2006. http://www.dentalarticles.com/images/hematopoiesis.png 7 Proliferation and Differentiation • Regulation of proliferation • Regulation of differentiation • Both affect development along cell line • Turn on/Turn off • Growth factors • Genes (including mutations) • Proteins • Ongogenesis – becoming malignant 8 Blood Lines – Donald Metcalf, AlphaMED Press, 2005 Figure 3.2 The eight major hematopoietic lineages generated by self-renewing multipotential stem cellsB Copyright © 2008 by AlphaMed
    [Show full text]
  • Cell Division History Determines Hematopoietic Stem Cell Potency Fumio Arai1,†,*, Patrick S
    bioRxiv preprint doi: https://doi.org/10.1101/503813; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cell Division History Determines Hematopoietic Stem Cell Potency Fumio Arai1,†,*, Patrick S. Stumpf2,†, Yoshiko M. Ikushima3,†, Kentaro Hosokawa1, Aline Roch4, Matthias P. Lutolf4, Toshio Suda5, and Ben D. MacArthur2,6,7,* †† 1Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan. 2Centre for Human Development, Stem Cells and Regeneration, University of Southampton, SO17 1BJ, UK 3Research Institute National Center for Global Health and Medicine, Tokyo, Japan 4Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland 5Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, 117599 Singapore, Singapore 6Institute for Life Sciences, University of Southampton, SO17 1BJ, United Kingdom 7Mathematical Sciences, University of Southampton, SO17 1BJ, United Kingdom *Correspondence to Fumio Arai ([email protected]) and Ben MacArthur ([email protected]) †These authors contributed equally. ††Lead Author ABSTRACT Loss of stem cell self-renewal may underpin aging. Here, we combined single cell profiling, deep-learning, mathematical modelling and in vivo functional studies to explore how hematopoietic stem cell (HSC) division patterns evolve with age. We trained an artificial neural network (ANN) to accurately identify cell types in the hematopoietic hierarchy and predict their age from their gene expression patterns.
    [Show full text]
  • Differential Contributions of Haematopoietic Stem Cells to Foetal and Adult Haematopoiesis: Insights from Functional Analysis of Transcriptional Regulators
    Oncogene (2007) 26, 6750–6765 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW Differential contributions of haematopoietic stem cells to foetal and adult haematopoiesis: insights from functional analysis of transcriptional regulators C Pina and T Enver MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK An increasing number of molecules have been identified ment and appropriate differentiation down the various as candidate regulators of stem cell fates through their lineages. involvement in leukaemia or via post-genomic gene dis- In the adult organism, HSC give rise to differentiated covery approaches.A full understanding of the function progeny following a series of relatively well-defined steps of these molecules requires (1) detailed knowledge of during the course of which cells lose proliferative the gene networks in which they participate and (2) an potential and multilineage differentiation capacity and appreciation of how these networks vary as cells progress progressively acquire characteristics of terminally differ- through the haematopoietic cell hierarchy.An additional entiated mature cells (reviewed in Kondo et al., 2003). layer of complexity is added by the occurrence of different As depicted in Figure 1, the more primitive cells in the haematopoietic cell hierarchies at different stages of haematopoietic differentiation hierarchy are long-term ontogeny.Beyond these issues of cell context dependence, repopulating HSC (LT-HSC),
    [Show full text]
  • Transfusion Support Issues in Hematopoietic Stem Cell Transplantation Claudia S
    Knowledge of transfusion complications related to HSCT can help with the early detection and treatment of patients before and after transplantation. Ray Paul. SP12-6796 × 40, 2013. Acrylic, latex, enamel on canvas printed with an image of myxofibrosarcoma with metastases to the artist’s lung, 26" × 36". Transfusion Support Issues in Hematopoietic Stem Cell Transplantation Claudia S. Cohn, MD, PhD Background: Patients receiving hematopoietic stem cell transplantation require extensive transfusion support until red blood cell and platelet engraftment occurs. Rare but predictable complications may arise when the transplanted stem cells are incompatible with the native ABO type of the patient. Immediate and delayed hemolysis is often seen. Methods: A literature review was performed and the results from peer-reviewed papers that contained reproducible findings were integrated. Results: A strong body of clinical evidence has developed around the common complications experienced with ABO-incompatible hematopoietic stem cell transplantation. These complications are discussed and the underlying pathophysiology is explained. General treatment options and guidelines are enumerated. Conclusions: ABO-incompatible hematopoietic stem cell transplantations are frequently performed. Immune-related hemolysis is a commonly encountered complication; therefore, health care professionals must recognize the signs of immune-mediated hemolysis and understand the various etiologies that may drive the process. Introduction antigen (HLA) matching remains an important predic- Hematopoietic stem cell transplantation (HSCT) is used tor of success with HSCT; however, the ABO barrier is to treat a variety of hematological and congenital diseas- often crossed when searching for the most appropriate es. The duration and specificity of transfusion support HLA match between donor and patient.
    [Show full text]
  • Stem-Cell Transplant Acute Myeloid Leukemia, 11A-2
    NC Medicaid Medicaid and Health Choice Hematopoietic Stem-Cell Clinical Coverage Policy No: 11A-2 Transplantation for Amended Date: July 1, 2021 Acute Myeloid Leukemia (AML) To all beneficiaries enrolled in a Prepaid Health Plan (PHP): for questions about benefits and services available on or after implementation, please contact your PHP. Table of Contents 1.0 Description of the Procedure, Product, or Service ........................................................................... 1 1.1 Definitions .......................................................................................................................... 4 1.1.1 Donor Lymphocyte Infusion (DLI) ....................................................................... 4 2.0 Eligibility Requirements .................................................................................................................. 4 2.1 Provisions............................................................................................................................ 4 2.1.1 General ................................................................................................................... 4 2.1.2 Specific .................................................................................................................. 5 2.2 Special Provisions ............................................................................................................... 5 2.2.1 EPSDT Special Provision: Exception to Policy Limitations for a Medicaid Beneficiary under 21 Years of Age ......................................................................
    [Show full text]
  • Quiescence and Self-Renewal Hematopoietic Stem Cell Status
    The Endothelial Antigen ESAM Monitors Hematopoietic Stem Cell Status between Quiescence and Self-Renewal This information is current as Takao Sudo, Takafumi Yokota, Kenji Oritani, Yusuke of October 2, 2021. Satoh, Tatsuki Sugiyama, Tatsuro Ishida, Hirohiko Shibayama, Sachiko Ezoe, Natsuko Fujita, Hirokazu Tanaka, Tetsuo Maeda, Takashi Nagasawa and Yuzuru Kanakura J Immunol 2012; 189:200-210; Prepublished online 30 May 2012; doi: 10.4049/jimmunol.1200056 Downloaded from http://www.jimmunol.org/content/189/1/200 Supplementary http://www.jimmunol.org/content/suppl/2012/05/30/jimmunol.120005 http://www.jimmunol.org/ Material 6.DC1 References This article cites 57 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/189/1/200.full#ref-list-1 Why The JI? Submit online. by guest on October 2, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American
    [Show full text]
  • Hematopoiesis Hematopoietic Stem Cells in Adult AML1/Runx1 Negatively Regulates Quiescent
    AML1/Runx1 Negatively Regulates Quiescent Hematopoietic Stem Cells in Adult Hematopoiesis This information is current as Motoshi Ichikawa, Susumu Goyama, Takashi Asai, Masahito of September 28, 2021. Kawazu, Masahiro Nakagawa, Masataka Takeshita, Shigeru Chiba, Seishi Ogawa and Mineo Kurokawa J Immunol 2008; 180:4402-4408; ; doi: 10.4049/jimmunol.180.7.4402 http://www.jimmunol.org/content/180/7/4402 Downloaded from References This article cites 37 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/180/7/4402.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology AML1/Runx1 Negatively Regulates Quiescent Hematopoietic Stem Cells in Adult Hematopoiesis1 Motoshi Ichikawa, Susumu Goyama, Takashi Asai, Masahito Kawazu, Masahiro Nakagawa, Masataka Takeshita, Shigeru Chiba, Seishi Ogawa, and Mineo Kurokawa2 Transcription factor AML1/Runx1, initially isolated from the t(8;21) chromosomal translocation in human leukemia, is essential for the development of multilineage hematopoiesis in mouse embryos.
    [Show full text]
  • Hematopoietic Developmental Pathways: on Cellular Basis
    Oncogene (2007) 26, 6687–6696 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW Hematopoietic developmental pathways: on cellular basis H Iwasaki1 and K Akashi1,2 1Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan and 2Department of Cancer Immunology and AIDS, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA To elucidate the molecular mechanisms underlying normal counterpart, the common myeloid progenitor (CMP) and malignant hematopoietic development, it is critical to that can be a source of all myeloid cell types, supports identify developmental intermediates for each lineage the concept that lymphoid and myeloid lineages develop downstream of hematopoietic stem cells. Recent advances independently downstream of HSCs (Kondo et al., 1997; in prospective isolation of hematopoietic stem and Akashi et al., 2000). progenitor cells, and efficient xenogeneic transplantation Recent progresses in the fluorescence-activated cell systems have provided a detailed developmental map in sorting analysis using additional surface markers for both mouse and human hematopoiesis, demonstrating that early hematopoiesis, however, have provided more surface phenotypes of mouse stem–progenitor cells and detailed developmental map downstream of HSCs. their human counterparts are considerably different. Importantly, prior to proceed into the classical myeloid Here, we summarize the phenotype and functional vs lymphoid pathways, HSCs appear to form myelo- properties and their differences of hematopoietic stem erythroid vs myelo-lymphoid progenitors (Arinobu and progenitor cell populations between mouse and et al., 2007). Furthermore, it is now clear that there human. are considerable differences in distribution of surface Oncogene (2007) 26, 6687–6696; doi:10.1038/sj.onc.1210754 markers between human and mouse hematopoiesis, which makes identification of human counterparts of Keywords: hematopoietic stem cell; lineage commitment; mouse progenitors difficult.
    [Show full text]
  • Human Dendritic Cell–Derived Induced Pluripotent Stem Cell Lines Are Not Immunogenic
    Human Dendritic Cell−Derived Induced Pluripotent Stem Cell Lines Are Not Immunogenic This information is current as Arvind Chhabra, I-Ping Chen and Deepika Batra of September 29, 2021. J Immunol 2017; 198:1875-1886; Prepublished online 23 January 2017; doi: 10.4049/jimmunol.1601676 http://www.jimmunol.org/content/198/5/1875 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2017/01/20/jimmunol.160167 Material 6.DCSupplemental References This article cites 41 articles, 12 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/198/5/1875.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 29, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Human Dendritic Cell–Derived Induced Pluripotent Stem Cell Lines Are Not Immunogenic Arvind Chhabra,* I-Ping Chen,† and Deepika Batra* Donor-specific induced pluripotent stem cells (iPSC) can be used to generate desired cell types, including naive immune effectors, for the treatment of different diseases.
    [Show full text]