Quantum Sensors for Earth Observation

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Sensors for Earth Observation SR17_Weltraum_V8_Abstract_InfosysII.qxd 10.12.10 10:39 Seite 178 Quantum sensors for Earth observation M. Gilowski and E.M. Rasel Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany Abstract mes [3-8]. This field represents an emerging We report on our development of various area of science quantum engineering, with a kinds of quantum sensors based on matter- high potential for a future technology and mul - wave interferometry for precise inertial sensing tidisciplinary applications. Thanks to an impres- of Earth`s rotation rate and gravity. By manipu- sive evolution and remarkable inventions, the lating cold or ultra cold atoms with coherent ultimate potential of matter-wave sensors is still light fields we realize several experimental plat- entirely open. For the closely related field of ato- forms for the detailed investigation of different mic clocks, the growth in performance was interferometer types and of their key technolo- exponential during the last decades! This is the gies. In an atomic gyroscope using cold Ru bi di - reason, why matter-wave sensors are conside- um atoms we demonstrate a sensitivity for red as one of the most promising fields to pro- rotations of 6x10-7 rad/s. In an atomic gravi- gress in metrology and fundamental tests. meter, which is under construction, we study Atomic gyroscopes and gravimeters provide a the source system based on ultra cold atoms in new tool for the precise detection of tiny for- a Bose-Einstein condensate. Finally, a miniatu- ces. The outstanding feature of these sensors rized and robust experiment using ultra cold is the precisely known scaling factor: there is atoms in a free fall environment is realized as a no need for calibration which predestines test-bed for matter-wave interferometry on these sensors for inertial references and for long timescales. These experiments pave the applications in the Système International. way in the direction of utilizing the technolo- The following report summarizes our activities gy of matter-wave interferometry for future and achievements in the field of matter-wave space applications. interferometry. We will describe the features of this technology by presenting three experi- ments which point out the development of Introduction atomic inertial sensors. The first one is an ato- Atomic quantum sensors are a key-technology mic gyroscope for the high-precision measure- for the ultra-precise monitoring of accelera- ment of rotations. The second one is a dual tions and rotations. These sensors evolved atomic gravimeter, which is under construction from a new kind of optics based on matter- and which provides a source of ultra cold waves rather than light-waves. Matter-wave atoms. The third one is a miniaturized trans- optics is still a young, but rapidly progressing portable experiment with ultra cold atoms in a science which recently generated sensational microgravity environment, which is performed Nobel-prize awarded inventions such as laser in the drop tower facility (ZARM) in Bremen. cooling and atom lasers [1,2]. These experiments are steppingstones in the The applications of atomic quantum sensors direction of the realization of future inertial are truly interdisciplinary, covering diverse and atomic sensors with sensitivities compared or important topics such as tests of fundamental even beyond current state-of-the-art devices. physics, the realization of SI-units, prospecting for resources, GALILEO technology, environ- ment monitoring and major Earth-science the- 178 SR17_Weltraum_V8_Abstract_InfosysII.qxd 10.12.10 10:39 Seite 179 The gyroscope a subsequent 3D-MOT with a high flux of seve- The interferometric measurement of rotations ral 109 at/s. Using the moving molasses techni- is based on the Sagnac-effect [9], which indi- que 108 atoms with a forward drift velocity of cates that a phase shift is induced between 2.8 m/s and a temperature of 8 µK are laun- two interferometer paths which enclose an ched in each interferometry pulse. In a next area A, due to a rotation with the angular step the atoms are state- and velocity-selecti- velocity Ω. This phase shift is then given by vely transferred into the magnetically insensiti- dfrot=4pEAΩ/hc, where E is the energy of the ve hyperfine state F = 1, mF = 0 (where F and wave, h the Planck’s constant and c the speed mF are the quantum numbers for the total an - of light. Since this relation is also valid for light gular momentum and the Zeeman sublevel, res - as well as for matter-wave interferometers, the pectively) via a multi-stage preparation using high potential of gyroscopes based on atoms is precisely controllable laser manipulation. obvious. By comparing the phase shifts using In the interferometery section a symmetric Ram - the energies of matter and visible light, an im - sey-Bordé interferometer configuration is reali- provement in the order of 1011 for atom inter fe - zed by applying four so called p/2-light pulses rometers is in principle possible. Further more, [14]. This coherent beam splitting processes the sensor is also sensitive to accelerations [10]. are based on a Raman-transition between two In order to distinguish between phase shifts due hyperfine states which form the ground states to rotations and accelerations the sensor con- of the interferometer. With these light pulses sists of two interferometers allowing a differen- the matter-wave is split, redirected and finally tial measurement [10]. The basic schematic of recombined. In this way, the created interfero- the atomic gyroscope is sketched in Fig. 1. meter paths enclose an area of 8.6 mm2 lea- ding to a high sensitivity for the Sagnac-effect. Two identical atomic sources [13] emit atoms In this interferometer configuration phase on flat parabolic trajectories into the interfero- shifts imprinted during the interferometric meter chamber, but with opposite launch di - cycle are translated into a change of the distri- rec tions. Each source consists of a two-dimen- bution in the two ground states [14]. Thus, we sional magneto-optical trap (2D-MOT) loading finally obtain the phase shift of each interfero- Figure 1: Schematic overview of the gyroscope with its key-element sections. Laser beams for cooling and trapping as well as for the preparation, the interferometry and the detection process are represented by the arrows. More details can be found in reference [11,12]. 179 SR17_Weltraum_V8_Abstract_InfosysII.qxd 10.12.10 10:39 Seite 180 Figure 2: The Interference fringes of the two interferometers are obtained by sweeping the phase of the beam splitting light field before the last pulse is applied. Figure 3: Allan standard deviation of the combined signals of the two interferometers. meter by using a state-selective fluorescence gain the contrast of the interferometer signal. detection, applied after the interferometry se - Furthermore, a reduction of the initial tempera- quence. We detect in the gyroscope approxima - ture of the ensemble would increase the effi- tely several 107 atoms. ciency of this process and thus motivates the Typical interference patterns of the two interfe- use of ultra cold atoms (see below). The diffe- rometers of the gyroscope are shown in Fig. 2. rence in contrast can be attributed to the align- We reach a contrast in the four pulse geome- ment of the spatial interaction position, which is try of 11% and 16%. The reduced contrast different for the four beam splitting pulses for can be attributed to a reduced efficiency of the the two interferometers, respectively. beam splitting process, which depends on the one hand on the temperature and the spatial Finally, we can infer the rotation sensitivity of width of the atoms and on the other hand on the gyroscope by measuring the phase noise of the spatial intensity profile of the beam split- the two interferometers. In Fig. 3 the Allan ting light field. A further selection of velocity standard deviation for the combined signal of classes in the preparation stage will in future the two interferometers is shown. Here, the 180 SR17_Weltraum_V8_Abstract_InfosysII.qxd 10.12.10 10:39 Seite 181 rotation signal can be inferred from the sum of on matter-wave interferometry is setup for the the two interferometer signals whereas the test of the Equivalence principle. For this purpo- acceleration might be calculated from the dif- se the free fall of two atomic species, Rubidium ferential signal. It is clearly visible that vibration and Potassium, will be compared. In this experi- noise coming from accelerations is highly sup- ment the aimed shot-noise limited sensitivity is pressed due to the dual measurement scheme. 10-9 g. This corresponds to the highest sensitivi- After averaging the combined signal over 300 s ty for the test of the Equivalence principle with a phase noise of 9.5 mrad is reached. This cor - laser cooled atoms so far [12]. responds to a reached sensitivity in the gyrosco- One of the essential aspects of the dual gravi- pe of 6x10-7 rad/s which is two orders of mag- meter is the source of ultra cold atoms to reach nitude below the Earth rotation rate. the demanded accuracy. The first step in this direction was reached by creating a Bose-Ein - Currently, this sensitivity is limited by the noise stein condensate (BEC) of 87Rb atoms in a near- of the detection process as well as inertial noise. infrared single beam optical dipole trap (ODT). The implementation of an optimized detection The ODT is formed from laser light with a wa ve - sys tem and an improvement of the vibration length close to 2 µm. Fur ther more, an additional isolation are under way and will further impro- constant confinement in the axial direction of ve the sensitivity by at least one order of mag- the trap is provided by a magnetic quadrupole nitude on the short-term scale.
Recommended publications
  • Underwater Quantum Sensing Deteccion´ Cuantica´ Subacuatica´ Marco Lanzagorta a ?
    Journal de Ciencia e Ingenier´ıa, Vol. 6, No. 1, Agosto de 2014, pp. 1-10 Investigacion´ - Tecnolog´ıas Cuanticas´ Underwater quantum sensing Deteccion´ cuantica´ subacuatica´ Marco Lanzagorta a ? aUS Naval Research Laboratory, 4555 Overlook Ave. SW, Washington DC 20375 Recibido: 12/3/2014; revisado: 18/3/2014; aceptado: 10/7/2014 M. Lanzagorta: Underwater quantum sensing. Jou.Cie.Ing. 6 (1): 1-10, 2014. ISSN 2145-2628. Abstract In this paper we explore the possibility of underwater quantum sensing. More specifically, we analyze the performance of a quantum interferometer submerged in different types of oceanic water. Because of the strong optical attenuation produced by even the clearest ocean waters, the supersensitivity range of an underwater quantum sensor using N = 2 NOON entangled states is severely limited to about 18 meters, while the advantage provided by entanglement disappears at about 30 meters. As a consequence, long-range underwater quantum sensing is not feasible. Nevertheless, we discuss how underwater quantum sensing could be relevant for the detection of underwater vehicles. Keywords: Quantum information, quantum sensing, underwater sensing.. Resumen En este articulo exploramos la posibilidad de deteccion´ cuantica´ subacuatica.´ En particular, analizamos el comportamiento de un interferometro cuantico´ sumergido en diferentes tipos de aguas oceanicas.´ Debido a la fuerte atenuacion´ optica´ producida por aguas oceanicas,´ incluso las mas´ puras, el rango de super- sensitividad de un detector cuantico´ subacuatico´ usando estados NOON con N = 2 esta´ severamente limitado a una profundidad de 18 metros, mientras que la ventaja debida a los estados entrelazados desaparece a unos 30 metros. Como consecuencia, la deteccion´ cuantica´ subacuatica´ de largo alcance no es posible.
    [Show full text]
  • Quantum Robot: Structure, Algorithms and Applications
    Quantum Robot: Structure, Algorithms and Applications Dao-Yi Dong, Chun-Lin Chen, Chen-Bin Zhang, Zong-Hai Chen Department of Automation, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China e-mail: [email protected] [email protected] SUMMARY: A kind of brand-new robot, quantum robot, is proposed through fusing quantum theory with robot technology. Quantum robot is essentially a complex quantum system and it is generally composed of three fundamental parts: MQCU (multi quantum computing units), quan- tum controller/actuator, and information acquisition units. Corresponding to the system structure, several learning control algorithms including quantum searching algorithm and quantum rein- forcement learning are presented for quantum robot. The theoretic results show that quantum ro- 2 bot can reduce the complexity of O( N ) in traditional robot to O( N N ) using quantum searching algorithm, and the simulation results demonstrate that quantum robot is also superior to traditional robot in efficient learning by novel quantum reinforcement learning algorithm. Considering the advantages of quantum robot, its some potential important applications are also analyzed and prospected. KEYWORDS: Quantum robot; Quantum reinforcement learning; MQCU; Grover algorithm 1 Introduction The naissance of robots and the establishment of robotics is one of the most important achievements in science and technology field in the 20th century [1-3]. With the advancement of technology [4-8], robots are serving the community in many aspects, such as industry production, military affairs, na- tional defence, medicinal treatment and sanitation, navigation and spaceflight, public security, and so on. Moreover, some new-type robots such as nanorobot, biorobot and medicinal robot also come to our world through fusing nanotechnology, biology and medicinal engineering into robot technology.
    [Show full text]
  • Quantum Sensor
    OWNER’S MANUAL QUANTUM SENSOR Model SQ-500 APOGEE INSTRUMENTS, INC. | 721 WEST 1800 NORTH, LOGAN, UTAH 84321, USA TEL: (435) 792-4700 | FAX: (435) 787-8268 | WEB: APOGEEINSTRUMENTS.COM Copyright © 2016 Apogee Instruments, Inc. 2 TABLE OF CONTENTS Owner’s Manual ................................................................................................................................................................................................................ 1 Certificate of Compliance .................................................................................................................................................................................... 3 Introduction ............................................................................................................................................................................................................. 4 Sensor Models ......................................................................................................................................................................................................... 5 Specifications ........................................................................................................................................................................................................... 6 Deployment and Installation .............................................................................................................................................................................. 9 Operation and
    [Show full text]
  • Conceptual Framework for Quantum Affective Computing and Its Use in Fusion of Multi-Robot Emotions
    electronics Article Conceptual Framework for Quantum Affective Computing and Its Use in Fusion of Multi-Robot Emotions Fei Yan 1 , Abdullah M. Iliyasu 2,3,∗ and Kaoru Hirota 3,4 1 School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China; [email protected] 2 College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia 3 School of Computing, Tokyo Institute of Technology, Yokohama 226-8502, Japan; [email protected] 4 School of Automation, Beijing Institute of Technology, Beijing 100081, China * Correspondence: [email protected] Abstract: This study presents a modest attempt to interpret, formulate, and manipulate the emotion of robots within the precepts of quantum mechanics. Our proposed framework encodes emotion information as a superposition state, whilst unitary operators are used to manipulate the transition of emotion states which are subsequently recovered via appropriate quantum measurement operations. The framework described provides essential steps towards exploiting the potency of quantum mechanics in a quantum affective computing paradigm. Further, the emotions of multi-robots in a specified communication scenario are fused using quantum entanglement, thereby reducing the number of qubits required to capture the emotion states of all the robots in the environment, and therefore fewer quantum gates are needed to transform the emotion of all or part of the robots from one state to another. In addition to the mathematical rigours expected of the proposed framework, we present a few simulation-based demonstrations to illustrate its feasibility and effectiveness. This exposition is an important step in the transition of formulations of emotional intelligence to the quantum era.
    [Show full text]
  • High Energy Physics Quantum Information Science Awards Abstracts
    High Energy Physics Quantum Information Science Awards Abstracts Towards Directional Detection of WIMP Dark Matter using Spectroscopy of Quantum Defects in Diamond Ronald Walsworth, David Phillips, and Alexander Sushkov Challenges and Opportunities in Noise‐Aware Implementations of Quantum Field Theories on Near‐Term Quantum Computing Hardware Raphael Pooser, Patrick Dreher, and Lex Kemper Quantum Sensors for Wide Band Axion Dark Matter Detection Peter S Barry, Andrew Sonnenschein, Clarence Chang, Jiansong Gao, Steve Kuhlmann, Noah Kurinsky, and Joel Ullom The Dark Matter Radio‐: A Quantum‐Enhanced Dark Matter Search Kent Irwin and Peter Graham Quantum Sensors for Light-field Dark Matter Searches Kent Irwin, Peter Graham, Alexander Sushkov, Dmitry Budke, and Derek Kimball The Geometry and Flow of Quantum Information: From Quantum Gravity to Quantum Technology Raphael Bousso1, Ehud Altman1, Ning Bao1, Patrick Hayden, Christopher Monroe, Yasunori Nomura1, Xiao‐Liang Qi, Monika Schleier‐Smith, Brian Swingle3, Norman Yao1, and Michael Zaletel Algebraic Approach Towards Quantum Information in Quantum Field Theory and Holography Daniel Harlow, Aram Harrow and Hong Liu Interplay of Quantum Information, Thermodynamics, and Gravity in the Early Universe Nishant Agarwal, Adolfo del Campo, Archana Kamal, and Sarah Shandera Quantum Computing for Neutrino‐nucleus Dynamics Joseph Carlson, Rajan Gupta, Andy C.N. Li, Gabriel Perdue, and Alessandro Roggero Quantum‐Enhanced Metrology with Trapped Ions for Fundamental Physics Salman Habib, Kaifeng Cui1,
    [Show full text]
  • Keynote,Quantum Information Science
    Quantum Information Science What is it? What is it good for? How can we make progress faster? Celia Merzbacher, PhD QED-C Associate Director Managed by SRI International Background 0 What differentiates quantum? • Quantized states • Uncertainty 1 • Superposition • Entanglement Classical “bit” Quantum “bit” Managed by SRI International Examples of qubits quantum effects require kBT << E01 ⇒ go cryogenic or use laser cooling Credit: Daniel Slichter, NIST Managed by SRI International CandidatesMajor quantum for computingpractical qubits platforms U. Innsbruck trapped ions CNRS/Palaiseau neutral atoms IBM UNSW superconducting qubits UCSB U. Bristol Si qubits NV centers photonics Managed by SRI International Credit: Daniel Slichter, NIST DiVincenzo's criteria for a quantum computer A scalable physical system with well characterized qubit Ability to initialize the state of the qubits to a simple fiducial state Long relevant decoherence times A "universal" set of quantum gates A qubit-specific measurement capability Managed by SRI International What about software? • Basic steps of running a quantum computer: • Qubits are prepared in a particular state • Qubits undergo a sequence of quantum logic gates • A quantum measurement extracts the output • Current quantum computers are “noisy” and error prone • Need error correction • Hybrid quantum/classical computation will be essential • Companies are developing software that is technology agnostic and can take advantage of NISQ* systems that will be available relatively soon *Noisy Intermediate
    [Show full text]
  • Quantum Sensing for High Energy Physics (HEP) in Early December 2017 at Argonne National Laboratory
    Quantum Sensing for High Energy Physics Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics. Organized by the Coordinating Panel for Advanced Detectors of the Division of Particles and Fields of the American Physical Society March 27, 2018 arXiv:1803.11306v1 [hep-ex] 30 Mar 2018 Karl van Bibber (UCB), Malcolm Boshier (LANL), Marcel Demarteau (ANL, co-chair) Matt Dietrich (ANL), Maurice Garcia-Sciveres (LBNL) Salman Habib (ANL), Hannes Hubmayr (NIST), Kent Irwin (Stanford), Akito Kusaka (LBNL), Joe Lykken (FNAL), Mike Norman (ANL), Raphael Pooser (ORNL), Sergio Rescia (BNL), Ian Shipsey (Oxford, co-chair), Chris Tully (Princeton). i Executive Summary The Coordinating Panel for Advanced Detectors (CPAD) of the APS Division of Particles and Fields organized a first workshop on Quantum Sensing for High Energy Physics (HEP) in early December 2017 at Argonne National Laboratory. Participants from universities and national labs were drawn from the intersecting fields of Quantum Information Science (QIS), high energy physics, atomic, molecular and optical physics, condensed matter physics, nuclear physics and materials science. Quantum-enabled science and technology has seen rapid technical advances and growing national interest and investments over the last few years. The goal of the workshop was to bring the various communities together to investigate pathways to integrate the expertise of these two disciplines to accelerate the mutual advancement of scientific progress. Quantum technologies manipulate individual quantum states and make use of superposition, entanglement, squeezing and backaction evasion.
    [Show full text]
  • Arxiv:2003.12516V1 [Physics.Atom-Ph] 27 Mar 2020 Mental Physics
    High-accuracy inertial measurements with cold-atom sensors High-accuracy inertial measurements with cold-atom sensors Remi Geiger,1, a) Arnaud Landragin,1, b) S´ebastienMerlet,1, c) and Franck Pereira Dos Santos1, d) LNE-SYRTE, Observatoire de Paris - Universit´ePSL, CNRS, Sorbonne Universit´e,61, avenue de l'Observatoire, 75014 Paris, France (Dated: 30 March 2020) The research on cold-atom interferometers gathers a large community of about 50 groups worldwide both in the academic and now in the industrial sectors. The interest in this sub-field of quantum sensing and metrology lies in the large panel of possible applications of cold-atom sensors for measuring inertial and gravitational signals with a high level of stability and accuracy. This review presents the evolution of the field over the last 30 years and focuses on the acceleration of the research effort in the last 10 years. The article describes the physics principle of cold-atom gravito-inertial sensors as well as the main parts of hardware and the expertise required when starting the design of such sensors. It then reviews the progress in the development of instruments measuring gravitational and inertial signals, with a highlight on the limitations to the performances of the sensors, on their applications, and on the latest directions of research. Keywords: Atom interferometry, cold atoms, inertial sensors, quantum metrology and sens- ing. I. INTRODUCTION the research focuses on three mains aspects: 1. pushing the performances of current sensors; Interferometry with matter waves nearly dates back to the first ages of quantum mechanics as the concept of 2.
    [Show full text]
  • QIS Based Quantum Sensors
    High Energy Physics Quantum Information Science-based Quantum Sensors Nanowire Detection of Photons from the Dark Side PI: Karl K. Berggren, MIT Co-PIs: Asimina Arvanitaki (Perimeter), Masha Baryakhtar (NYU), Junwu Huang (Perimeter), Ilya Charaev (MIT), Jeffrey Chiles (NIST), Andrew E. Dane (MIT), Robert Lasenby (Stanford), Sae Woo Nam (NIST), Ken Van Tilburg (NYU/IAS) Quantum Simulation and Optimization of Dark Matter Detectors PI: A.B. Balantekin, University of Wisconsin- Madison Co-PIs: S. Coppersmith (UW), C. Johnson (San Diego State), P.J. Love (Tufts), K. J. Palladino (UW), R.C. Pooser (ORNL), and M. Saffman (UW) Microwave Single-Photon Sensors for Dark Matter Searches PI: Daniel Bowring, Fermi National Accelerator Laboratory Quantum Metrology for Axion Dark Matter Detection PI: Aaron S. Chou, Fermilab Co-PIs: Konrad Lehnert (Colorado/JILA/NIST), Reina Maruyama (Yale), David Schuster (Chicago) Search for Bosonic Dark Matter Using Magnetic Tunnel Junction Arrays PIs: Marcel Demarteau, Argonne National Laboratory & Vesna Mitrovic, Brown University Co-PIs: Ulrich Heintz, John B. Marston, Meenakshi Narain, Gang Xiao (Brown) Quantum Sensors HEP-QIS Consortium Maurice Garcia-Sciveres, Lawrence Berkeley National Laboratory Quantum-Enhanced Metrology with Trapped Ions for Fundamental Physics PIs: Salman Habib, Argonne National Laboratory & David B. Hume, NIST Co-PIs: John J. Bollinger & David R. Leibrandt (NIST) The Dark Matter Radio: A Quantum-Enhanced Dark Matter Search PI: Kent Irwin, Stanford/SLAC Co-PI: Peter Graham (Stanford) Quantum
    [Show full text]
  • Detection of Biological Signals from a Live Mammalian Muscle Using a Diamond Quantum Sensor
    Detection of biological signals from a live mammalian muscle using a diamond quantum sensor James Luke Webb1, Luca Troise1, Nikolaj Winther Hansen2, Christoffer Olsson3, Adam M. Wojciechowski4, Jocelyn Achard5, Ovidiu Brinza5, Robert Staacke6, Michael Kieschnick6, Jan Meijer6, Axel Thielscher3,7, Jean-François Perrier2, Kirstine Berg-Sørensen1, Alexander Huck1, and Ulrik Lund Andersen1 1Center for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark 2Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark 3Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark 4Jagiellonian University, Krakow, Poland 5Laboratoire des Sciences des Procédés et des Matériaux, Université Sorbonne Paris Nord, 93430 Villetaneuse, France 6Division Applied Quantum System, Felix Bloch Institute for Solid State Physics, Leipzig University, 04103, Leipzig, Germany 7Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark Abstract The ability to perform noninvasive, non-contact measurements of electric signals pro- arXiv:2008.01002v1 [physics.bio-ph] 3 Aug 2020 duced by action potentials is essential in biomedicine. A key method to do this is to remotely sense signals by the magnetic field they induce. Existing methods for magnetic field sensing of mammalian tissue, used in techniques such as magnetoencephalography of the brain, require cryogenically cooled superconducting detectors. These have many disadvantages in terms of high cost, flexibility and limited portability as well as poor spa- tial and temporal resolution. In this work we demonstrate an alternative technique for detecting magnetic fields generated by the current from action potentials in living tissue p using nitrogen vacancy centres in diamond.
    [Show full text]
  • Development of Quantum Interconnects (Quics) for Next-Generation Information Technologies
    Development of Quantum InterConnects (QuICs) for Next-Generation Information Technologies 1 2 1 3 4 5 David Awschalom ,​ Karl K. Berggren ,​ Hannes Bernien ,​ Sunil Bhave ,​ Lincoln D. Carr ,​ Paul Davids ,​ ​ 6 ​ 2 7,​ 8 ​9 10, 11​ , 12 ​ Sophia E. Economou ,​ Dirk Englund ,​ Andrei Faraon ,​ Marty Fejer ,​ Saikat Guha ,​ Martin V. 13 ​ 14, 15 ​ 1 ​ 16, 17 ​ 18 ​ 19, 20 Gustafsson ,​ Evelyn Hu ,​ Liang Jiang ,​ Jungsang Kim ,​ Boris Korzh ,​ Prem Kumar ,​ Paul G. 21, 22 ​ ​ 14, 15 ​ 15, 23 ​ 9 ​ ​ 24, 25, 26 Kwiat ,​ Marko Lončar *​ , Mikhail D. Lukin ,​ David A. B. Miller ,​ Christopher Monroe ,​ ​ 27 ​ 14, 15 ​ 28 ​ 29, 30 ​ Sae Woo Nam ,​ Prineha Narang ,​ Jason S. Orcutt ,​ Michael G. Raymer *​ , Amir H. 9 ​ 31 ​ 25, 32 ​ 9, 33 ​ 9 25, 34 Safavi-Naeini ,​ Maria Spiropulu ,​ Kartik Srinivasan ,​ Shuo Sun ,​ Jelena Vučković ,​ Edo Waks ,​ ​ ​ 24, 34, 35, 36 ​ 3, 37​ 10, 38 ​ ​ Ronald Walsworth ,​ Andrew M. Weiner ,​ Zheshen Zhang ​ ​ ​ 1 P​ ritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637 2 D​ epartment of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139 3 S​ chool of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 4 D​ epartment of Physics, 1500 Illinois St., Colorado School of Mines, Golden, Colorado, 80401 5 P​ hotonic & Phononic Microsystems, Sandia National Laboratory, Albuquerque, NM 87185 6 D​ epartment of Physics, Virginia Tech, Blacksburg, VA 24061 7 T​ .J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125 8 K​ avli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125 9 E​ .L. Ginzton Laboratory, Stanford University, Stanford, CA 94305 10 C​ ollege of Optical Sciences, The University of Arizona, Tucson, AZ 85721 11 D​ epartment of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ 85721 12 D​ epartment of Applied Mathematics, The University of Arizona, Tucson, AZ 85721 13 R​ aytheon BBN Technologies, Cambridge, MA 02138 14 J​ ohn A.
    [Show full text]
  • Robust Quantum-Enhanced Interferometry
    Quantum-EnhancedQuantum-Enhanced SensingSensing andand MetrologyMetrology DoesDoes functionalityfunctionality illuminateilluminate fundamentals?fundamentals?Ian A. Walmsley Clarendon Laboratory University of Oxford, UK EC JRC 2013 Quantum vs. classical technologies Doing the impossible • Qualitatively different operating principles Potential for improved performance • All technologies are physical • Use quantum physics to do something not possible using classical rules EC JRC 2013 EC JRC 2013 A sensor A sensor Trial; state List Preparation Sensing Detection EC JRC 2013 Some QuantumSensorOpportunities TheThe quantumquantum fruitfruit machinemachine Can we tell what the fruit sequence is by putting in less money? Resource input Output information EC JRC 2013 TheThe utilityutility ofof utilityutility The cost of doing something is indicative of its origin. Einstein’s most important equations: Time = Money Space = Money Kit = Money EC JRC 2013 On-chip optical sensor 2-photon non-classical interferometer Phase controlled externally thermo- optically Smith et al, Optics Express 17, 13516 (2009) Matthews et al, Nat. Photon. 3, 346–350 (2009) 7 EC JRC 2013 Optimal precision measurement Robust sensors, immune to imperfections, are possible Optimal N00N state • Optimal sensor better than classical even when more than 50% of the light is • …but not as good as the ideal quantum sensor Dorner et al., Phys. Rev. Lett. 102, 040403 (2009 EC JRC 2013 Quantum Networks • Distributed entanglement across many nodes Quantum operations are probabilistic… Networks
    [Show full text]