Review of N-Acetylcysteine for the Treatment of Acetaminophen (Paracetamol) Toxicity in Pediatrics

Total Page:16

File Type:pdf, Size:1020Kb

Review of N-Acetylcysteine for the Treatment of Acetaminophen (Paracetamol) Toxicity in Pediatrics Second Meeting of the Subcommittee of the Expert Committee on the Selection and Use of Essential Medicines Geneva, 29 September to 3 October 2008 REVIEW OF N-ACETYLCYSTEINE FOR THE TREATMENT OF ACETAMINOPHEN (PARACETAMOL) TOXICITY IN PEDIATRICS D. Adam Algren, M.D. Assistant Professor of Emergency Medicine and Pediatrics Divisions of Emergency Medicine and Pediatric Pharmacology & Medical Toxicology University of Missouri – Kansas City Attending Physician, Truman Medical Center, Kansas City, MO Attending Medical Toxicologist, Children’s Mercy Hospitals and Clinics, Kansas City, MO 1 EXECUTIVE SUMMARY Acetaminophen (paracetamol) toxicity is a common cause of drug-induced hepatotoxicity in children and adults. N-acetylcysteine (NAC) has been used for several decades and has proven to be the antidote of choice in treating acetaminophen-induced hepatotoxicity. There is significant clinical evidence to support that oral and intravenous NAC are equally efficacious in the prevention of hepatotoxicity. An important factor in assessing the efficacy of NAC is the timing of therapy initiation in relation to the ingestion. Patients that ingest an acute overdose and have NAC therapy initiated within 8 hours do well and have less than a 10% incidence of hepatotoxicity and generally do not develop liver failure or die. Those patients that chronically ingest excessive doses of acetaminophen over many hours and/or have NAC therapy initiated more than 8 hours after an acute overdose have an approximately 8-50% incidence of hepatotoxicity. Unlike clinical scenarios in which NAC therapy is initiated early, patients that have administration delayed are at risk of developing fulminant hepatic failure and death. Oral administration is the preferred route for NAC therapy unless contraindications exist (e.g aspiration, persistent vomiting). The usual recommended loading dose is 140 mg/kg followed in 4 hours by a maintenance dose of 70 mg/kg orally given every 4 hours. This dosing is commonly recommended to be continued for 72 hours; however more recent clinical experience supports tailoring the duration of therapy to the patient’s clinical condition. Intravenous NAC is recommended in situations in which the patient is not able to tolerate oral administration of NAC or has fulminant hepatic failure. The most commonly used IV protocol is to administer 150 mg/kg IV over 1 hour, followed by 50 mg/kg over 4 hours, then 100 mg/kg over 16 hours. A modified intravenous dosing formulation for pediatric patients (weighing less than 40 kg) is recommended to prevent excessive fluid administration. The antidotal efficacy of NAC is determined by great extent to the time that treatment is initiated after an overdose of acetaminophen. NAC therapy should be initiated within 8 hours of an acute ingestion and otherwise as soon as possible. While many protocols have defined lengths of treatment, it is generally recommended that NAC be administered until the serum acetaminophen concentration is undetectable (<10 mcg/ml) and the patient is clinically well with normal liver function tests. In cases of hepatotoxicity, NAC should be continued until: 1) the serum liver transaminases fall to less than 1000 IU/L, bilirubin and coagulation studies are normal, and the patient is clinically well; 2) the patient receives a liver transplant; or 3) the patient dies. Both oral and intravenous NAC are well tolerated. Nausea and vomiting are common with oral administration. Intravenous use has been associated with the development of anaphylactoid reactions. Generally these reactions are characterized by the development of a mild rash or urticaria. They typically respond to antihistamines and often the infusion is able to be completed. Life-threatening anaphylactoid reactions and deaths have been reported, but are uncommon. 2 PROPOSAL The World Health Organization Model List of Essential Medicines and Model Formulary of 2006 lists acetylcysteine (NAC) as an antidote for use in the treatment of acetaminophen (paracetamol) overdose.1,2 It is proposed that acetylcysteine be considered the antidote of choice in the treatment of acetaminophen toxicity. Acetylcysteine is widely available and can be administered by both oral and intravenous (IV) routes. Both oral and IV use of NAC in this setting have proven to be safe and effective. INTRODUCTION Acetaminophen (Paracetamol) is used worldwide for its analgesic and antipyretic properties. It is widely available and present in many prescription and non-prescription medications. Unfortunately, however, acetaminophen toxicity remains the most common cause of drug-induced hepatic failure. Repeated supratherapeutic misuse, non-intentional misuse, and intentional ingestion may all result in hepatic toxicity. The mechanism of acetaminophen toxicity has been well studied. Following ingestion a majority (>90%) of acetaminophen undergoes phase II metabolism (via glucuronidation and sulfation) to produce non-toxic metabolites. A small fraction (<5-10%) of acetaminophen is metabolized by CYP450 isoforms (predominately CYP2E1) to N-acetyl- p-benzoquinoneimine (NAPQI), a toxic metabolite. Under normal conditions NAPQI is detoxified through conjugation with glutathione. With acetaminophen toxicity, cellular glutathione is depleted resulting in the availability of NAPQI to bind to cellular macromoleclues, the consequences of which are hepatocellular injury and cell death. Hepatic toxicity is generally thought to occur when glutathione stores are depleted to less than 30% of normal.3 Children may be less susceptible to acetaminophen toxicity4,5 consequent to a developmentally associated increase in sulfation ability.6 Certain factors can place patients at higher risk of acetaminophen toxicity. Diseases, such as alcoholism, malnutrition, HIV and cancer are associated with glutathione deficiency. This could result in a decreased ability to detoxify NAPQI. Concurrent use of drugs or ethanol that induce CYP2E1 and potentially, other CYP450 enzymes involved in NAPQI production (eg. CYP1A2, CYP3A4) could result in an increase in the amount of acetaminophen that is metabolized to NAPQI. Chronic ethanol use has been associated with an increased risk of acetaminophen hepatotoxicity. In the first 4 to 6 hours following an acetaminophen ingestion, patients may be asymptomatic or may have mild symptoms such as nausea or vomiting. A latent period may then ensue in which the patient appears clinically well. However, with the development of NAPQI and depletion of hepatic glutathione stores to a critical level, hepatotoxicity ensures. Most patients will develop elevations of the AST and ALT within 24 hours of an ingestion, and almost all with have elevations at 36 hours.7 Occasionally, there is a delay in rise of the transaminases. Generally, maximal hepatotoxicity occurs at 72-96 hours. Progression to hepatic failure is characterized by development of encephalopathy, coma, cerebral edema, coagulopathy, gastrointestinal bleeding, and sepsis. Most deaths from hepatic failure occur within the first week following an acetaminophen overdose. Patients that recover do well and do not develop chronic liver dysfunction. 3 Following an acute acetaminophen ingestion, current recommendations are to obtain a serum acetaminophen level 4 hours following the ingestion. This level can then be plotted on the Rummack-Matthew nomogram to determine the patient’s risk of hepatotoxicity. There is limited evidence that following an ingestion of acetaminophen elixir that a serum level obtained two hours post-ingestion can determine children at risk for hepatotoxicity.8 Obtaining a serum acetaminophen level prior to complete absorption of an ingested dose limits the predictive ability of the nomogram. Finally, the rate of decline for a serum acetaminophen level following overdose can not be predicted using the Rummack-Matthew nomogram. An alternative approach to laboratory testing is warranted in cases of chronic acetaminophen ingestion or repeated supratherapeutic dosing. A chronic ingestion is generally defined as occurring over more than 4-8 hours. In such cases an acetaminophen level should be obtained along with liver function and coagulation profiles. If the acetaminophen level is >10mcg/ml or the AST or ALT are >50 IU/L, then NAC therapy is recommended.9,10 This approach has been evaluated in a prospective case series of 249 patients. No patient that was below the recommended laboratory parameters subsequently developed hepatotoxicity.9 An acute acetaminophen ingestion of ≥150 mg/kg is potentially toxic. Several studies have reviewed the incidence of hepatotoxicity in patients who present within the “possible” hepatotoxicity range when plotted on the Rummack-Matthew nomogram. Brandwene et al. retrospectively identified 23 patients (15 were <18 years old) that had acetaminophen serum levels in the “possibly” toxic range that did not develop hepatotoxicity when NAC was withheld.11 Some evidence suggests that the threshold dose of 150 mg/kg is too conservative and that up to 200 mg/kg may be ingested without development of toxicity (especially in children). Caravati assessed the risk of children having a toxic (possible and probable) acetaminophen level according to the Rummack-Matthew nomogram following an acute, unintentional ingestion. A total of 1,015 patients (mean age 28 ± 12 months) were identified that ingested a mean APAP dose of 213 ± 148 mg/kg. Six patients were identified with potentially or probably toxic acetaminophen ingestions. In three cases, the amount ingested was >200 mg/kg,
Recommended publications
  • Management of Poisoning
    MOH CLINICAL PRACTICE GUIDELINES December/2011 Management of Poisoning Health Ministry of Sciences Chapter of Emergency College of College of Family Manpower Authority Physicians Physicians, Physicians Academy of Medicine, Singapore Singapore Singapore Singapore Medical Pharmaceutical Society Society for Emergency Toxicology Singapore Paediatric Association of Singapore Medicine in Singapore Society (Singapore) Society Executive summary of recommendations Details of recommendations can be found in the main text at the pages indicated. Principles of management of acute poisoning – resuscitating the poisoned patient GPP In a critically poisoned patient, measures beyond standard resuscitative protocol like those listed above need to be implemented and a specialist experienced in poisoning management should be consulted (pg 55). GPP D Prolonged resuscitation should be attempted in drug-induced cardiac arrest (pg 55). Grade D, Level 3 1 C Titrated doses of naloxone, together with bag-valve-mask ventilation, should be administered for suspected opioid-induced coma, prior to intubation for respiratory insuffi ciency (pg 56). Grade C, Level 2+ D In bradycardia due to calcium channel or beta-blocker toxicity that is refractory to conventional vasopressor therapy, intravenous calcium, glucagon or insulin should be used (pg 57). Grade D, Level 3 B Patients with actual or potential life threatening cardiac arrhythmia, hyperkalaemia or rapidly progressive toxicity from digoxin poisoning should be treated with digoxin-specifi c antibodies (pg 57). Grade B, Level 2++ B Titrated doses of benzodiazepine should be given in hyperadrenergic- induced tachycardia states resulting from poisoning (pg 57). Grade B, Level 1+ D Non-selective beta-blockers, like propranolol, should be avoided in stimulant toxicity as unopposed alpha agonism may worsen accompanying hypertension (pg 57).
    [Show full text]
  • Acetadote (Acetylcysteine) Injection Is Available As a 20% Solution in 30 Ml (200Mg/Ml) Single Dose Glass Vials
    NDA 21-539/S-004 Page 3 Acetadote® (acetylcysteine) Injection Package Insert NDA 21-539/S-004 Page 4 RX ONLY PRESCRIBING INFORMATION ACETADOTE® (acetylcysteine) Injection For Intravenous Use DESCRIPTION Acetylcysteine injection is an intravenous (I.V.) medication for the treatment of acetaminophen overdose. Acetylcysteine is the nonproprietary name for the N-acetyl derivative of the naturally occurring amino acid, L-cysteine (N-acetyl-L-cysteine, NAC). The compound is a white crystalline powder, which melts in the range of 104° to 110°C and has a very slight odor. The molecular formula of the compound is C5H9NO3S, and its molecular weight is 163.2. Acetylcysteine has the following structural formula: H CH3 N SH O COOH Acetadote is supplied as a sterile solution in vials containing 20% w/v (200 mg/mL) acetylcysteine. The pH of the solution ranges from 6.0 to 7.5. Acetadote contains the following inactive ingredients: 0.5 mg/mL disodium edetate, sodium hydroxide (used for pH adjustment), and Sterile Water for Injection, USP. CLINICAL PHARMACOLOGY Acetaminophen Overdose: Acetaminophen is absorbed from the upper gastrointestinal tract with peak plasma levels occurring between 30 and 60 minutes after therapeutic doses and usually within 4 hours following an overdose. It is extensively metabolized in the liver to form principally the sulfate and glucoronide conjugates which are excreted in the urine. A small fraction of an ingested dose is metabolized in the liver by isozyme CYP2E1 of the cytochrome P-450 mixed function oxidase enzyme system to form a reactive, potentially toxic, intermediate metabolite. The toxic metabolite preferentially conjugates with hepatic glutathione to form nontoxic cysteine and mercapturic acid derivatives, which are then excreted by the kidney.
    [Show full text]
  • The Promise of N-Acetylcysteine in Neuropsychiatry
    Review The promise of N-acetylcysteine in neuropsychiatry 1,2,3,4 5,6 1 1,2,4 Michael Berk , Gin S. Malhi , Laura J. Gray , and Olivia M. Dean 1 School of Medicine, Deakin University, Geelong, Victoria, Australia 2 Department of Psychiatry, University of Melbourne, Parkville, Victoria, Australia 3 Orygen Research Centre, Parkville, Victoria, Australia 4 The Florey Institute of Neuroscience and Mental Health, Victoria, Australia 5 Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, Australia 6 CADE Clinic, Department of Psychiatry, Level 5 Building 36, Royal North Shore Hospital, St Leonards, 2065, Australia N-Acetylcysteine (NAC) targets a diverse array of factors with the pathophysiology of a diverse range of neuropsy- germane to the pathophysiology of multiple neuropsy- chiatric disorders, including autism, addiction, depression, chiatric disorders including glutamatergic transmission, schizophrenia, bipolar disorder, and Alzheimer’s and Par- the antioxidant glutathione, neurotrophins, apoptosis, kinson’s diseases [3]. Determining precisely how NAC mitochondrial function, and inflammatory pathways. works is crucial both to understanding the core biology This review summarises the areas where the mecha- of these illnesses, and to opening the door to other adjunc- nisms of action of NAC overlap with known pathophysi- tive therapies operating on these pathways. The current ological elements, and offers a pre´ cis of current literature article will initially review the possible mechanisms of regarding the use of NAC in disorders including cocaine, action of NAC, and then critically appraise the evidence cannabis, and smoking addictions, Alzheimer’s and Par- that suggests it has efficacy in the treatment of neuropsy- kinson’s diseases, autism, compulsive and grooming chiatric disorders.
    [Show full text]
  • (Acetylcysteine) Effervescent Tablets for Oral Solution Intratracheal Instillation Initial U.S
    HIGHLIGHTS OF PRESCRIBING INFORMATION • See the Full Prescribing Information for instructions on how to use the These highlights do not include all the information needed to use nomogram to determine the need for loading and maintenance dosing. CETYLEV® safely and effectively. See full prescribing information for CETYLEV. Recommended Adult and Pediatric Dosage (2.3): • CETYLEV is for oral administration only; not for nebulization or CETYLEV (acetylcysteine) effervescent tablets for oral solution intratracheal instillation Initial U.S. Approval: 1963 • Loading dose: 140 mg/kg • Maintenance doses: 70 mg/kg repeated every 4 hours for a total of 17 ----------------------------INDICATIONS AND USAGE--------------------------- doses. CETYLEV is an antidote for acetaminophen overdose indicated to prevent or • lessen hepatic injury after ingestion of a potentially hepatotoxic quantity of See Full Prescribing Information for weight-based dosage and preparation acetaminophen in patients with acute ingestion or from repeated and administration instructions. supratherapeutic ingestion. (1) Repeated Supratherapeutic Acetaminophen Ingestion (2.4): -----------------------DOSAGE AND ADMINISTRATION----------------------- • Obtain acetaminophen concentration and other laboratory tests to guide Pre-Treatment Assessment Following Acute Ingestion (2.1): treatment; Rumack-Matthew nomogram does not apply. Obtain a plasma or serum sample to assay for acetaminophen concentration at least 4 hours after ingestion. ----------------------DOSAGE FORMS AND STRENGTHS---------------------
    [Show full text]
  • A Randomized Placebo-Controlled Trial of N-Acetylcysteine for Cannabis Use Disorder in Adults
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Drug Alcohol Manuscript Author Depend. Author Manuscript Author manuscript; available in PMC 2018 August 01. Published in final edited form as: Drug Alcohol Depend. 2017 August 01; 177: 249–257. doi:10.1016/j.drugalcdep.2017.04.020. A randomized placebo-controlled trial of N-acetylcysteine for cannabis use disorder in adults Kevin M. Graya, Susan C. Sonnea, Erin A. McClurea, Udi E. Ghitzab, Abigail G. Matthewsc, Aimee L. McRae-Clarka, Kathleen M. Carrolld, Jennifer S. Pottere, Katharina Wiestf, Larissa J. Mooneyg, Albert Hassong, Sharon L. Walshh, Michelle R. Lofwallh, Shanna Babalonish, Robert W. Lindbladc, Steven Sparenborgb,†, Aimee Wahlec, Jacqueline S. Kingc, Nathaniel L. Bakera, Rachel L. Tomkoa, Louise F. Haynesa, Ryan G. Vandreyi, and Frances R. Levinj aMedical University of South Carolina, Charleston SC bNational Institute on Drug Abuse Center for the Clinical Trials Network, Rockville MD cThe Emmes Corporation, Rockville MD dYale University, New Haven CT Correspondence: Kevin M. Gray, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President Street, MSC861, Charleston, SC USA 29425, Phone: (843) 792-6330, Fax: (843) 792-8206, [email protected]. †Retired Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
    [Show full text]
  • Delayed Dosing of Minocycline Plus N-Acetylcysteine Reduces Neurodegeneration in Distal Brain Regions and Restores Spatial Memor
    Manuscript bioRxiv preprint doi: https://doi.org/10.1101/2021.03.28.437090; this version posted March 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Delayed dosing of minocycline plus N-acetylcysteine reduces neurodegeneration in distal brain regions and restores spatial memory after experimental traumatic brain injury Kristen Whitney 1,2, Elena Nikulina1, Syed N. Rahman1, Alisia Alexis1 and Peter J. Bergold1,2 1Department of Physiology and Pharmacology 2Program in Neural and Behavioral Science, School of Graduate Studies State University of New York-Downstate Health Sciences University, Brooklyn NY 11215 Corresponding Author: [email protected] Department of Physiology and Pharmacology, Box 29 State University of New York – Downstate Health Sciences University 450 Clarkson Avenue Brooklyn, NY 11215 Declarations of interest: none Abbreviations: CHI- closed head injury Contra- contralateral Ipsi- ipsilateral MAP2 -microtubule associated protein 2 MINO- minocycline MN12- MINO plus NAC first dosed 12 hours after injury MN72- MINO plus NAC first dosed 72 hours after injury NAC- N-acetylcysteine TBI- Traumatic brain injury 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.28.437090; this version posted March 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Multiple drugs to treat traumatic brain injury (TBI) have failed clinical trials. Most drugs lose efficacy as the time interval increases between injury and treatment onset. Insufficient therapeutic time window is a major reason underlying failure in clinical trials.
    [Show full text]
  • Poisoning in Children
    ARTICLE IN PRESS Current Paediatrics (2005) 15, 563–568 www.elsevier.com/locate/cupe Poisoning in children Fiona JepsenÃ, Mary Ryan Emergency Medicine, Royal Liverpool Children’s NHS Trust, Alder Hey, Liverpool L12 2AP, UK KEYWORDS Summary Poisoning accounts for about 7% of all accidents in children under 5 Poisoning; years and is implicated in about 2% of all childhood deaths in the developed world, Child; and over 5% in the developing world (National Poisons Information Service). In Accidents; considering this topic, however, it is important to differentiate accidental overdose Home (common in the younger age groups) and deliberate overdose (more common in young adults). Although initial assessment and treatment of these groups may not differ significantly, the social issues and ongoing follow-up of these children will be totally different and the treating physician must remain aware of this difference. The initial identification and treatment of these children remains the mainstay of management, and many ingested substances do not have a specific antidote. Supportive treatment must be planned and the potential for delayed or long-term effects noted. The specific presentation and treatment of some of the commonly ingested substances will be addressed in this article, and guidance given on when to contact expert help. & 2005 Elsevier Ltd. All rights reserved. Introduction such as bleaches, detergents and turpentine sub- stitutes. More than 100 000 individuals are admitted to Toxic compounds may be ingested or inhaled hospital in England and Wales annually due to either accidentally or deliberately. Accidental poisoning, accounting for 10% of all acute admis- poisoning can occur at any age, but is much more 1 sions.1 However, the true incidence of acute common in children.
    [Show full text]
  • Acute Poisoning: Understanding 90% of Cases in a Nutshell S L Greene, P I Dargan, a L Jones
    204 REVIEW Postgrad Med J: first published as 10.1136/pgmj.2004.027813 on 5 April 2005. Downloaded from Acute poisoning: understanding 90% of cases in a nutshell S L Greene, P I Dargan, A L Jones ............................................................................................................................... Postgrad Med J 2005;81:204–216. doi: 10.1136/pgmj.2004.024794 The acutely poisoned patient remains a common problem Paracetamol remains the most common drug taken in overdose in the UK (50% of intentional facing doctors working in acute medicine in the United self poisoning presentations).19 Non-steroidal Kingdom and worldwide. This review examines the initial anti-inflammatory drugs (NSAIDs), benzodiaze- management of the acutely poisoned patient. Aspects of pines/zopiclone, aspirin, compound analgesics, drugs of misuse including opioids, tricyclic general management are reviewed including immediate antidepressants (TCAs), and selective serotonin interventions, investigations, gastrointestinal reuptake inhibitors (SSRIs) comprise most of the decontamination techniques, use of antidotes, methods to remaining 50% (box 1). Reductions in the price of drugs of misuse have led to increased cocaine, increase poison elimination, and psychological MDMA (ecstasy), and c-hydroxybutyrate (GHB) assessment. More common and serious poisonings caused toxicity related ED attendances.10 Clinicians by paracetamol, salicylates, opioids, tricyclic should also be aware that severe toxicity can result from exposure to non-licensed pharmaco-
    [Show full text]
  • Cheminformatics Tools for Enabling Metabolomics by Yannick Djoumbou Feunang
    Cheminformatics Tools for Enabling Metabolomics by Yannick Djoumbou Feunang A thesis submitted in partial fulfillment of requirements for the degree of Doctor of Philosophy in Microbiology and Biotechnology Department of Biological Sciences University of Alberta ©Yannick Djoumbou Feunang, 2017 ii Abstract Metabolites are small molecules (<1500 Da) that are used in or produced during chemical reactions in cells, tissues, or organs. Upon absorption or biosynthesis in humans (or other organisms), they can either be excreted back into the environment in their original form, or as a pool of degradation products. The outcome and effects of such interactions is function of many variables, including the structure of the starting metabolite, and the genetic disposition of the host organism. For this reasons, it is usually very difficult to identify the transformation products as well as their long-term effect in humans and the environment. This can be explained by many factors: (1) the relevant knowledge and data are for the most part unavailable in a publicly available electronic format; (2) when available, they are often represented using formats, vocabularies, or schemes that vary from one source (or repository) to another. Assuming these issues were solved, detecting patterns that link the metabolome to a specific phenotype (e.g. a disease state), would still require that the metabolites from a biological sample be identified and quantified, using metabolomic approaches. Unfortunately, the amount of compounds with publicly available experimental data (~20,000) is still very small, compared to the total number of expected compounds (up to a few million compounds). For all these reasons, the development of cheminformatics tools for data organization and mapping, as well as for the prediction of biotransformation and spectra, is more crucial than ever.
    [Show full text]
  • Sound Management of Pesticides and Diagnosis and Treatment Of
    * Revision of the“IPCS - Multilevel Course on the Safe Use of Pesticides and on the Diagnosis and Treatment of Presticide Poisoning, 1994” © World Health Organization 2006 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. CONTENTS Preface Acknowledgement Part I. Overview 1. Introduction 1.1 Background 1.2 Objectives 2. Overview of the resource tool 2.1 Moduledescription 2.2 Training levels 2.3 Visual aids 2.4 Informationsources 3. Using the resource tool 3.1 Introduction 3.2 Training trainers 3.2.1 Organizational aspects 3.2.2 Coordinator’s preparation 3.2.3 Selection of participants 3.2.4 Before training trainers 3.2.5 Specimen module 3.3 Trainers 3.3.1 Trainer preparation 3.3.2 Selection of participants 3.3.3 Organizational aspects 3.3.4 Before a course 4.
    [Show full text]
  • Hospital Formulary (List of Drugs, Chemicals & Dressing Material)
    Hospital Formulary (List of drugs, chemicals & dressing material) Department of Pharmacy Government Medical College Hospital Sector-32, Chandigarh Compiled by: Jayati Khurana (M.Pharmacy in Pharmaceutics) Department of Pharmacy - In The Service of Humanity Prof Ravi Gupta Head Pharmacy Ms. Neetu Verma Dispensary Superintendent Ms. Manjeet Kaur Pharmacist Ms. Kuldeep Kaur Pharmacist Ms. Neelam Pharmacist Ms. Parveen Lata Pharmacist Ms. Monika Verma Pharmacist Mr. Jatinder Singh Pharmacist Ms. Bharti Rawat Pharmacist Ms. Neetu Verma Pharmacist Mr. Satinder Parkash Pharmacist Mr. Ravinder Pharmacist Ms. Rachna Bisht Pharmacist Ms. Alka Sinhmar Pharmacist Ms. Nisha Rani Pharmacist Ms. Pooja Pharmacist Ms. Charu Pharmacist Ms. Jayati Khurana Pharmacist Ms. Monika Yadav Pharmacist Ms. Kala Wanti Senior Assistant Ms. Vandana Junior Assistant Mr. Chhinder Data Entry Operator INDEX S. No. Pharmacological Category Page number 1 Abortifacients/Uterine stimulants 1 2 Alkalizing agent 1 3 Alpha-1 Blocker 1 4 Aminoglycoside antibiotics (Bactericidal) 1 5 Analgesic-Anti-inflammatory drugs 2-3 6 Antacids 3 7 Anti-acne drugs 4 8 Anti-allergic drugs 4 9 Anti-amoebic drugs 4 10 Antianginal drugs 4-5 11 Anti-anxiety drugs 5 12 Antiarrhythmic drugs 6 13 Antiarrhythmics-Local Anesthetics 6 14 Antiasthmatic drugs 6-8 15 Anticancer drugs 8-10 16 Anticholinergic drugs 10 17 Anti-coagulant 10-11 18 Antidepressants 11 19 Antidiarrhoeal drugs 12 20 Anti-Diuretic Hormone 12 21 Antidotes 12-13 22 Anti-Emetic drugs 13-14 23 Anti-Epileptics 14-15 24 Antifungal drugs 15-16 25 Anthelminthic drugs 16 26 Antihistamines 17 27 Anti-hyperglycemics 17 28 Antihypertensive drugs 18 29 Antiinflammatory-local anesthetics 18 30 Anti-leishmaniasis (Kala-azar) 18 31 Anti-leprotics 19 32 Anti-malarial drugs 19-20 33 Antimaniac drugs 20 34 Antiparkison drugs 21 35 Anti-peptic ulcers 21-22 36 Antiplatelets 22 37 Anti-psoriatics 22 38 Anti-psychotics 22-23 39 Anti-pyretics 23 40 Anti-scabies/Anti-lice 23 41 Antiseptic-Disinfectants 23-24 42 Antispasmodics 24-25 43 Anti-T.B.
    [Show full text]
  • Pattern of Paracetamol Poisoning: Influence on Outcome and Complications
    toxics Article Pattern of Paracetamol Poisoning: Influence on Outcome and Complications Diego Castanares-Zapatero 1, Valérie Dinant 1, Ilaria Ruggiano 1, Harold Willem 1, Pierre-François Laterre 1 and Philippe Hantson 1,2,* 1 Department of Intensive Care, Cliniques St-Luc, Université catholique de Louvain, 1200 Brussels, Belgium; [email protected] (D.C.-Z.); [email protected] (V.D.); [email protected] (I.R.); [email protected] (H.W.); [email protected] (P.-F.L.) 2 Louvain Centre for Toxicology and Applied Pharmacology, 1200 Brussels, Belgium * Correspondence: [email protected]; Tel.: +00-327-642-755 Received: 5 September 2018; Accepted: 28 September 2018; Published: 29 September 2018 Abstract: Acute paracetamol poisoning due to a single overdose may be effectively treated by the early administration of N-acetylcysteine (NAC) as an antidote. The prognosis may be different in the case of intoxication due to multiple ingestions or when the antidote is started with delay. The aim of this work was to investigate the outcome of paracetamol poisoning according to the pattern of ingestion and determine the factors associated with the outcome. We performed a retrospective analysis over the period 2007–2017 of the patients who were referred to a tertiary hospital for paracetamol-related hepatotoxicity. Inclusion criteria were: accidental or voluntary ingestion of paracetamol, delay for NAC therapy of 12 h or more, liver enzymes (ALT) >1000 IU/L on admission. Ninety patients were considered. Poisoned patients following multiple ingestion were significantly older (45 ± 12 vs. 33 ± 14) (p = 0.001), with a higher incidence of liver steatosis (p = 0.016) or chronic ethanol abuse (p = 0.04).
    [Show full text]