Flat Laminated Microbial Mat Communities Earth-Science Reviews

Total Page:16

File Type:pdf, Size:1020Kb

Flat Laminated Microbial Mat Communities Earth-Science Reviews Earth-Science Reviews 96 (2009) 163–172 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Flat laminated microbial mat communities Jonathan Franks, John F. Stolz ⁎ Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, United States article info abstract Article history: Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments Received 28 January 2008 (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane Accepted 24 October 2008 and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by Available online 6 November 2008 physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) Keywords: microbial mat parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., oxygenic phototroph cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing anoxygenic phototroph bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of microbiolite respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems. © 2008 Elsevier B.V. All rights reserved. Contents 1. Introduction .............................................................. 163 2. Physical–chemical environment ..................................................... 164 2.1. Light quantity and quality .................................................... 165 2.2. Temperature .......................................................... 166 2.3. Oxygen ............................................................. 166 2.4. pH ............................................................... 166 2.5. Salinity ............................................................. 166 2.6. Electron acceptors and donors, and chemical species ....................................... 167 3. Community structure.......................................................... 167 4. Advances in techniques......................................................... 168 5. Summary ............................................................... 169 Acknowledgements ............................................................. 169 References ................................................................. 169 1. Introduction Microbial mats are communities of microorganisms that colonize surfaces. They range in complexity from simple, almost mono-species fi ⁎ Corresponding author. Tel.: +1 412 396 6333; fax: +1 412 396 5907. bio lms, to multi-layered ecosystems containing diverse populations of E-mail address: [email protected] (J.F. Stolz). prokaryotes and small eukaryotes (e.g., diatoms, unicellular algae) 0012-8252/$ – see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.earscirev.2008.10.004 164 J. Franks, J.F. Stolz / Earth-Science Reviews 96 (2009) 163–172 arranged into assemblages and guilds (Stolz, 2000). Typically associated with the sediment/water interface these communities interact with the sediment, trapping and binding particles and clastics, and in some cases inducing precipitation and lithification (Stolz, 2003, Dupraz and Visscher, 2005). These activities in concert with the predominant mineralogy (e.g., clay, silt, siliciclastic, evaporite, carbonate) can impact the structure and fabric yielding sediments with distinctive characteristics (e.g., micro- biolites). The structures can be preserved in the rock record and their interpretation can be enhanced by the study of modern microbiolites (Grotzinger and Knoll, 1999; Des Marais, 2003; Tice and Lowe, 2004; Noffke, 2007). Stromatolites and thrombolites are organosedimentary structures that commonly have a vertical profile that protrudes above the horizontal plane (Monte, 1976; Reid et al., 1995, 2000). Flat laminated microbial mats rarely form relief above the horizon (e.g., desiccation cracks, Fig. 1), but the layered sediments they produce may extend to some depth below the surface (e.g., a few centimeters to meters) (Figs. 1 and 2). They thrive in a wide range of habitats including extremes in pH (e.g., acidic sulfur caves and iron springs), temperature (e.g., thermal springs and pools, deep sea vents), and salinity (e.g., salt marshes, hypersaline ponds and lagoons), as well as ones with chemolithotrophic sources of energy (e.g., methane seeps, sea mounts). Their ecological success is a reflection of the metabolic versatility and physiological adaptability found within the Bacteria and Archaea. Flat laminated microbial mats are models for microbial ecology and have been studied extensively under the auspices of evolution and astrobiology as they represent the modern analogs to ancient life and possibly extraterrestrial ecosystems (Des Marais, 2003). Over the past twenty odd years several volumes have been published dedicated to microbial mats (e.g., Cohen et al., 1984; Cohen and Rosenberg, 1989 Stal and Caumette, 1994, Riding and Awramik, 2000, Krumbein et al., 2003, Inskeep and McDermott, 2005a). The purpose of this review is to present a synopsis of the current concepts, highlight some of the recent discoveries, and provide a glimpse at what lies ahead with application of new technologies. 2. Physical–chemical environment Species occurrence and abundance in microbial mats are strongly influenced by the physical properties and the chemical parameters of a Fig. 1. Sippewissett Marsh, Massachusetts. A) Field photo facing westward, B) Close up given environment. Important physical properties include light (both showing flat laminated mat on surface. quantity and quality), temperature, and pressure. Key chemical Fig. 2. Flat laminated mat at Laguna Figueroa, Baja California, Mexico. A) Field photo facing eastward, B) Cross section of laminated sediments. The top 3 mm is the seasonal sediment accreting community. J. Franks, J.F. Stolz / Earth-Science Reviews 96 (2009) 163–172 165 parameters include oxygen, pH, oxidation/reduction potential, salinity, and available electron acceptors and donors, as well as the presence or absence of specific chemical species. In this section, specific properties and parameters that create unique environments that support microbial mat communities are presented. 2.1. Light quantity and quality Photoautotrophic communities depend on both the appropriate amount of light (e.g., light quantity) and the particular wavelengths (e.g., light quality) that can be used by the light harvesting pigments and photosystems. The average amount of light that illuminates a surface on a sunny day is 1000 to 2000 μE/m2/s. Depending on the environment, however, light absorption and scattering can be significant. Particles and populations of organisms readily attenuate light in the water column. Sediment type can impact the depth at which light can penetrate into the subsurface. This light scattering can be significant resulting in the scalar irradiance being greater than the downward irradiance (Des Marais, 2003). Most phototrophs are adapted to low light intensities and often are photoinhibited. The optimum light intensity for cyanobacteria in the microbial mats of Mellum Island in the North Sea is 50 to 150 μE/m2/s. Purple sulfur bacteria from the same mats use from 5 to 10 μE/m2/s (Stal et al., 1985). Mat communities have a variety of strategies to obtain the appropriate amount of light. Cyanobacteria produce carotenoids and other light attenuating products (e.g., scytonemin), or may lie beneath a coating of sediment (Palmisano et al., 1989). Conversely, some photo- trophs are extremely adept at capturing rare photons in light-limited environments. Bacteriochlorophyll e containing green sulfur bacteria have been found at 100 m depth in the Black Sea (Manske et al., 2005). Green sulfur bacteria are particularly well suited for low light as they can produce large numbers of light harvesting structures (e.g., chlorosomes) and have a high ratio of accessory pigment to reaction center (Jochum et al., 2008). The Black Sea chlorobia, for example, are capable of photoautotrophy with only 0.015 μmol quanta m−2 s−1 (Manske et al., 2005). Geographic location can be important with respect to the growing season of mats. While equatorial mats see little annual change, northern and southern latitudes are subject to seasonality, while artic and Antarctic systems are subject to month long extremes of constant light or darkness. Phototrophic organisms have evolved light harvesting
Recommended publications
  • A Study on the Phototrophic Microbial Mat Communities of Sulphur Mountain Thermal Springs and Their Association with the Endangered, Endemic Snail Physella Johnsoni
    A Study on the Phototrophic Microbial Mat Communities of Sulphur Mountain Thermal Springs and their Association with the Endangered, Endemic Snail Physella johnsoni By Michael Bilyj A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Department of Microbiology Faculty of Science University of Manitoba Winnipeg, Manitoba October 2011 © Copyright 2011, Michael A. Bilyj 1 Abstract The seasonal population fluctuation of anoxygenic phototrophs and the diversity of cyanobacteria at the Sulphur Mountain thermal springs of Banff, Canada were investigated and compared to the drastic population changes of the endangered snail Physella johnsoni. A new species and two strains of Rhodomicrobium were taxonomically characterized in addition to new species of Rhodobacter and Erythromicrobium. Major mat-forming organisms included Thiothrix-like species, oxygenic phototrophs of genera Spirulina, Oscillatoria, and Phormidium and purple nonsulfur bacteria Rhodobacter, Rhodopseudomonas and Rhodomicrobium. Aerobic anoxygenic phototrophs comprised upwards of 9.6 x 104 CFU/cm2 of mat or 18.9% of total aerobic heterotrophic bacterial isolates at certain sites, while maximal purple nonsulfur and purple sulfur bacteria were quantified at 3.2 x 105 and 2.0 x 106 CFU/cm2 of mat, respectively. Photosynthetic activity measurements revealed incredibly productive carbon fixation rates averaging 40.5 mg C/cm2/24 h. A temporal mismatch was observed for mat area and prokaryote-based organics to P. johnsoni population flux in a ―tracking inertia‖ manner. 2 Acknowledgements It is difficult to express sufficient gratitude to my supervisor Dr. Vladimir Yurkov for his unfaltering patience, generosity and motivation throughout this entire degree.
    [Show full text]
  • Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide
    antioxidants Review Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide Ivan Kushkevych 1,* , Veronika Bosáková 1,2 , Monika Vítˇezová 1 and Simon K.-M. R. Rittmann 3,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] (V.B.); [email protected] (M.V.) 2 Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3 Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria * Correspondence: [email protected] (I.K.); [email protected] (S.K.-M.R.R.); Tel.: +420-549-495-315 (I.K.); +431-427-776-513 (S.K.-M.R.R.) Abstract: Hydrogen sulfide is a toxic compound that can affect various groups of water microorgan- isms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as Citation: Kushkevych, I.; Bosáková, well as the conditions for isolation and cultivation of these microorganisms will be presented. V.; Vítˇezová,M.; Rittmann, S.K.-M.R.
    [Show full text]
  • 7.014 Handout PRODUCTIVITY: the “METABOLISM” of ECOSYSTEMS
    7.014 Handout PRODUCTIVITY: THE “METABOLISM” OF ECOSYSTEMS Ecologists use the term “productivity” to refer to the process through which an assemblage of organisms (e.g. a trophic level or ecosystem assimilates carbon. Primary producers (autotrophs) do this through photosynthesis; Secondary producers (heterotrophs) do it through the assimilation of the organic carbon in their food. Remember that all organic carbon in the food web is ultimately derived from primary production. DEFINITIONS Primary Productivity: Rate of conversion of CO2 to organic carbon (photosynthesis) per unit surface area of the earth, expressed either in terns of weight of carbon, or the equivalent calories e.g., g C m-2 year-1 Kcal m-2 year-1 Primary Production: Same as primary productivity, but usually expressed for a whole ecosystem e.g., tons year-1 for a lake, cornfield, forest, etc. NET vs. GROSS: For plants: Some of the organic carbon generated in plants through photosynthesis (using solar energy) is oxidized back to CO2 (releasing energy) through the respiration of the plants – RA. Gross Primary Production: (GPP) = Total amount of CO2 reduced to organic carbon by the plants per unit time Autotrophic Respiration: (RA) = Total amount of organic carbon that is respired (oxidized to CO2) by plants per unit time Net Primary Production (NPP) = GPP – RA The amount of organic carbon produced by plants that is not consumed by their own respiration. It is the increase in the plant biomass in the absence of herbivores. For an entire ecosystem: Some of the NPP of the plants is consumed (and respired) by herbivores and decomposers and oxidized back to CO2 (RH).
    [Show full text]
  • Nitrogen-Fixing, Photosynthetic, Anaerobic Bacteria Associated with Pelagic Copepods
    - AQUATIC MICROBIAL ECOLOGY Vol. 12: 105-113. 1997 Published April 10 , Aquat Microb Ecol Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods Lita M. Proctor Department of Oceanography, Florida State University, Tallahassee, Florida 32306-3048, USA ABSTRACT: Purple sulfur bacteria are photosynthetic, anaerobic microorganisms that fix carbon di- oxide using hydrogen sulfide as an electron donor; many are also nitrogen fixers. Because of the~r requirements for sulfide or orgamc carbon as electron donors in anoxygenic photosynthesis, these bac- teria are generally thought to be lim~tedto shallow, organic-nch, anoxic environments such as subtidal marine sediments. We report here the discovery of nitrogen-fixing, purple sulfur bactena associated with pelagic copepods from the Caribbean Sea. Anaerobic incubations of bacteria associated with fuU- gut and voided-gut copepods resulted in enrichments of purple/red-pigmented purple sulfur bacteria while anaerobic incubations of bacteria associated with fecal pellets did not yield any purple sulfur bacteria, suggesting that the photosynthetic anaerobes were specifically associated with copepods. Pigment analysis of the Caribbean Sea copepod-associated bacterial enrichments demonstrated that these bactena possess bacter~ochlorophylla and carotenoids in the okenone series, confirming that these bacteria are purple sulfur bacteria. Increases in acetylene reduction paralleled the growth of pur- ple sulfur bactena in the copepod ennchments, suggesting that the purple sulfur bacteria are active nitrogen fixers. The association of these bacteria with planktonic copepods suggests a previously unrecognized role for photosynthetic anaerobes in the marine S, N and C cycles, even in the aerobic water column of the open ocean. KEY WORDS: Manne purple sulfur bacterla .
    [Show full text]
  • Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-Rich, Geothermal Spring 2 3 Lewis M
    bioRxiv preprint doi: https://doi.org/10.1101/428698; this version posted September 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-rich, Geothermal Spring 2 3 Lewis M. Ward1,2,3*, Airi Idei4, Mayuko Nakagawa2,5, Yuichiro Ueno2,5,6, Woodward W. 4 Fischer3, Shawn E. McGlynn2* 5 6 1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA 7 2. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan 8 3. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 9 91125 USA 10 4. Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, 11 Japan 12 5. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 13 152-8551, Japan 14 6. Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth 15 Science and Technology, Natsushima-cho, Yokosuka 237-0061, Japan 16 Correspondence: [email protected] or [email protected] 17 18 Abstract 19 Hydrothermal systems, including terrestrial hot springs, contain diverse and systematic 20 arrays of geochemical conditions that vary over short spatial scales due to progressive interaction 21 between the reducing hydrothermal fluids, the oxygenated atmosphere, and in some cases 22 seawater. At Jinata Onsen, on Shikinejima Island, Japan, an intertidal, anoxic, iron- and 23 hydrogen-rich hot spring mixes with the oxygenated atmosphere and sulfate-rich seawater over 24 short spatial scales, creating an enormous range of redox environments over a distance ~10 m.
    [Show full text]
  • Detection of Purple Sulfur Bacteria in Purple and Non-Purple Dairy Wastewaters
    Published September 16, 2015 Journal of Environmental Quality TECHNICAL REPORTS environmental microbiology Detection of Purple Sulfur Bacteria in Purple and Non-purple Dairy Wastewaters Robert S. Dungan* and April B. Leytem hototrophic microorganisms, which reside Abstract in aquatic, benthic, and terrestrial environments, contain The presence of purple bacteria in manure storage lagoons is pigments that allow them to use light as an energy source. often associated with reduced odors. In this study, our objec- PAnoxygenic photosynthesis among prokaryotes (in contrast to tives were to determine the occurrence of purple sulfur bacteria oxygenic photosynthesis) occurs in purple and green bacteria (PSB) in seven dairy wastewater lagoons and to identify possible linkages between wastewater properties and purple blooms. but does not result in the production of oxygen (Madigan and Community DNA was extracted from composited wastewater Martinko, 2006). Anoxyphototrophs, such as purple sulfur samples, and a conservative 16S rRNA gene sequence within bacteria (PSB) and some purple nonsulfur bacteria (PNSB), Chromatiaceae and pufM genes found in both purple sulfur and use reduced sulfur compounds (e.g., hydrogen sulfide [H2S], nonsulfur bacteria was amplified. Analysis of the genes indicated elemental S), thiosulfate, and molecular hydrogen as electron that all of the lagoons contained sequences that were 92 to 97% similar with Thiocapsa roseopersicina. Sequences from a few la- donors in photosynthesis (Dilling et al., 1995; Asao et al., 2007). goons were also found to be similar with other PSB, such as Mari- Purple sulfur bacteria can also photoassimilate a number of chromatium sp. (97%), Thiolamprovum pedioforme (93–100%), simple organic compounds in the presence of sulfide, including and Thiobaca trueperi (95–98%).
    [Show full text]
  • The Supramolecular Organization of Self-Assembling Chlorosomal Bacteriochlorophyll C, D,Ore Mimics
    The supramolecular organization of self-assembling chlorosomal bacteriochlorophyll c, d,ore mimics Tobias Jochum*†, Chilla Malla Reddy†‡, Andreas Eichho¨ fer‡, Gernot Buth*, Je¸drzej Szmytkowski§¶, Heinz Kalt§¶, David Moss*, and Teodor Silviu Balaban‡¶ʈ *Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe, Germany; ‡Institute for Nanotechnology, Karlsruhe Institute of Technology, Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe, Germany; §Institute of Applied Physics, Karlsruhe Institute of Technology, Universita¨t Karlsruhe (TH), D-76131 Karslruhe, Germany; and ¶Center for Functional Nanostructures, Universita¨t Karlsruhe (TH), D-76131 Karslruhe, Germany Edited by James R. Norris, University of Chicago, Chicago, IL, and accepted by the Editorial Board July 18, 2008 (received for review March 22, 2008) Bacteriochlorophylls (BChls) c, d, and e are the main light-harvesting direct structural evidence from x-ray single crystal structures, the pigments of green photosynthetic bacteria that self-assemble into exact nature of BChl superstructures remain elusive and these nanostructures within the chlorosomes forming the most efficient have been controversially discussed in the literature (1–3, 7, antennas of photosynthetic organisms. All previous models of the 11–17). It is now generally accepted that the main feature of chlorosomal antennae, which are quite controversially discussed chlorosomes is the self-assembly of BChls and that these pig- because no single crystals could be grown so far from these or- ments are not bound by a rigid protein matrix as is the case of ganelles, involve a strong hydrogen-bonding interaction between the other, well characterized light-harvesting systems (1). Small- 31 hydroxyl group and the 131 carbonyl group.
    [Show full text]
  • Aerobic Respiration
    Life is based on redox • All energy generation in biological systems is due to redox (reduction-oxidation) reactions Aerobic Respiration: + - C6H12O6 + 6 H2O ==> 6 CO2 + 24 H +24 e oxidation electron donor (aka energy source) + - (O2+ 4H + 4e ==> 2H2O) x6 reduction electron acceptor --------------------------------------- C6H12O6 + 6 O2 ==> 6 CO2 + 6 H2O overall reaction (24 electrons) Types of bacterial metabolisms • While eukaryotes only reduce O2 and oxidize organic compounds, prokaryotes can use a variety of electron donors and acceptors, organic and inorganic. - • Aerobic respiration: e acceptor is O2 - • Anaerobic respiration: e acceptor is not O2 • Fermentation: e- donor and acceptor are organic molecules • Chemolithotrophy: e- donor and acceptor are inorganic molecules • Phototrophy: e- donor is light and e- acceptor is either organic or inorganic all microorganisms energy source? chemical light chemotroph phototroph carbon source? carbon source? organic organic CO CO compound 2 compound 2 chemoheterotroph chemoautotroph photoheterotroph photoautotroph e- acceptor? Nitrifying and sulfur- use H O to reduce CO ? oxidizing bacteria 2 2 green non-sulfur and O Other than O 2 2 purple non-sulfur bacteria anoxygenic oxygenic photosynthesis: photosynthesis: green sulfur and most bacteria Organic Inorganic cyanobacteria compound compound purple sulfur bacteria fermentative organism anaerobic respiration: nitrate, sulfate, Fe(III) Aerobic or anaerobic respiration Chemolithotrophy Important molecules Redox Electron Carrier: for example the
    [Show full text]
  • The Vulnerability of Microbial Ecosystems in a Changing Climate: Potential Impact in Shark Bay
    life Review The Vulnerability of Microbial Ecosystems in a Changing Climate: Potential Impact in Shark Bay Max Reinold 1,2, Hon Lun Wong 1,2, Fraser I. MacLeod 1,2, Julia Meltzer 1,2, April Thompson 1,2 and Brendan P. Burns 1,2,* 1 School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia 2 Australian Centre for Astrobiology, The University of New South Wales, Sydney 2052, Australia * Correspondence: [email protected]; Tel.: +612-9385-3659; Fax: +612-9385-1591 Received: 30 July 2019; Accepted: 28 August 2019; Published: 2 September 2019 Abstract: The potential impact of climate change on eukaryotes, including humans, has been relatively well described. In contrast, the contribution and susceptibility of microorganisms to a changing climate have, until recently, received relatively less attention. In this review, the importance of microorganisms in the climate change discourse is highlighted. Microorganisms are responsible for approximately half of all primary production on earth, support all forms of macroscopic life whether directly or indirectly, and often persist in “extreme” environments where most other life are excluded. In short, microorganisms are the life support system of the biosphere and therefore must be included in decision making regarding climate change. Any effects climate change will have on microorganisms will inevitably impact higher eukaryotes and the activity of microbial communities in turn can contribute to or alleviate the severity of the changing climate. It is of vital importance that unique, fragile, microbial ecosystems are a focus of research efforts so that their resilience to extreme weather events and climate change are thoroughly understood and that conservation efforts can be implemented as a response.
    [Show full text]
  • Biofilm Forming Purple Sulfur Bacteria Enrichment from Trunk River
    Different biofilm-forming purple sulfur bacteria enriched from Trunk River Xiaolei Liu Abstract Three different types of biofilm were developed on the bottles of purple sulfur bacteria enrichments. The original inoculum is a piece of sea grass covered with purple biofilm that collected from Trunk River during the course. Microscopy imaging showed that two of the three biofilms were apparently composed of two major species. MonoFISH probing supports the recognition of purple sulfur bacteria as Chromatium in the class of gammaproteobacteria which grow together with a deltaproteobacteria species. Such a combination of Chromatium colonize with deltaproteobacteria species is also originally present in the purple biofilm on sea grass. Further work is needed to investigate the potential interactions between these two species. Introduction Purple sulfur bacteria are photosynthetic anearobes in the phylum of Proteobacteria (Fowler et al., 1984), which is capable of fixing carbon dioxide with sulfide other than water as the electron donors. Since oxygen is not produced during their photosynthesis these purple sulfur bacteria are also known as anoxygenic photoautotrophs. Most purple sulfur bacteria synthesize bacteriochlorophyll and carotenoids as their light-harvesting pigment complex (Iba et al., 1988). Because their photosynthesis reQuires anoxic condition and sulfide, these purple sulfur bacteria are often found in organic rich aquatic environments where sulfate reducing heterotrophic bacteria thrive. Both planktonic and benthic species of purple sulfur bacteria exist in different sulfidic environments. In the habitat of stratified meromictic lakes with external sulfate input, such as Green Lake, Mahoney Lake and Lake Cadagno, the phototrophic chemocline microbial communities are often dominated by planktonic purple sulfur bacteria living on sulfide diffused up from organic rich sediment (e.g.
    [Show full text]
  • Cycad Forensics: Tracing the Origin of Poached Cycads Using Stable Isotopes, Trace Element Concentrations and Radiocarbon Dating Techniques
    Cycad forensics: Tracing the origin of poached cycads using stable isotopes, trace element concentrations and radiocarbon dating techniques by Kirsten Retief Supervisors: Dr Adam West (UCT) and Ms Michele Pfab (SANBI) Submitted in partial fulfillment of the requirements for the degree of Masters of Science in Conservation Biology 5 June 2013 Percy FitzPatrick Institution of African Ornithology, UniversityDepartment of Biologicalof Cape Sciences Town University of Cape Town, Rondebosch Cape Town South Africa 7701 i The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Table of Contents Acknowledgements iii Plagiarism declaration iv Abstract v Chapter 1: Status of cycads and background to developing a forensic technique 1 1. Why are cycads threatened? 2 2. Importance of cycads 4 3. Current conservation strategies 5 4. Stable isotopes in forensic science 7 5. Trace element concentrations 15 6. Principles for using isotopes as a tracer 15 7. Radiocarbon dating 16 8. Cycad life history, anatomy and age of tissues 18 9. Recapitulation 22 Chapter 2: Applying stable isotope and radiocarbon dating techniques to cycads 23 1. Introduction 24 2. Methods 26 2.1 Sampling selection and sites 26 2.2 Sampling techniques 30 2.3 Processing samples 35 2.4 Cellulose extraction 37 2.5 Oxygen and sulphur stable isotopes 37 2.6 CarbonUniversity and nitrogen stable of isotopes Cape Town 38 2.7 Strontium, lead and elemental concentration analysis 39 2.8 Radiocarbon dating 41 2.9 Data analysis 42 3.
    [Show full text]
  • Part IX – Appendices
    Monterey Bay National Marine Sanctuary – Proposed Action Plans Part IX – Appendices Monterey Bay Sanctuary Advisory Council Membership List of Acronyms 445 Monterey Bay National Marine Sanctuary – Proposed Action Plans Appendix 1 – Sanctuary Advisory Council Membership Non-Governmental Members ------------------------------------------------------------------------ Agriculture (Primary & SAC Vice Chair) Mr. Richard Nutter [email protected] ------------------------------------------------------------------------ Agriculture (Alternate) Mr. Kirk Schmidt Quail Mountain Herbs 831-722-8456 [email protected] ------------------------------------------------------------------------ Business/Industry (Primary) Mr. Dave Ebert, Ph.D. Project Manager, Pacific Shark Research Center 831-771-4427 [email protected] or [email protected] ------------------------------------------------------------------------ Business/Industry (Alternate) Mr. Tony Warman 831-462-4059 [email protected] ------------------------------------------------------------------------ Conservation (Primary) Ms. Vicki Nichols Director of Research & Policy Save Our Shores 831-462-5660 [email protected] ------------------------------------------------------------------------ Conservation (Alternate) Ms. Kaitilin Gaffney Central Coast Program Director The Ocean Conservancy 831-425-1363 [email protected] ------------------------------------------------------------------------ Diving (Primary) Mr. Frank Degnan CSUMB [email protected] ------------------------------------------------------------------------
    [Show full text]