1 Supplementary Material for: 2 Preservation of terrestrial organic carbon in marine 3 sediments offshore Taiwan: Mountain building and 4 atmospheric carbon dioxide sequestration 5 S.-J. Kao1,2*, R. G. Hilton3, K. Selvaraj1,2, M. Dai2, F. Zehetner4, J.-C. Huang5, S.-C. 6 Hsu1, R. Sparkes6, J. T. Liu7, T.-Y. Lee1, J.-Y. T. Yang2, A. Galy6, X. Xu8 and N. 7 Hovius9 8 [1]{Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan} 9 [2]{State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 10 China} 11 [3]{Department of Geography, Durham University, Durham, United Kingdom} 12 [4]{Institute of Soil Research, University of Natural Resources and Applied Life Sciences, 13 Vienna, Austria} 14 [5]{Department of Geography, National Taiwan University, Taipei, Taiwan} 15 [6]{Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom} 16 [7]{Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung, 17 Taiwan} 18 [8]{School of Physical Sciences, University of California Irvine, CA, USA} 19 [9]{Section 5.1: Geoecology and Geomorphology, GFZ German Research Centre, 20 Telegrafenberg, Potsdam, Germany} 21 Correspondence to: S.-J. Kao (
[email protected];
[email protected]) 22 23 1 Mixing or organic carbon loss control on the variables 14 13 24 The linear relationship between Δ Corg and δ Corg (see Fig. 4a, P<0.0001) in marine sediments 25 receiving fluvial sediments away from submarine canyons and direct hyperpycnal inputs 26 (Okinawa Trough, Taiwan Strait, Gaoping Shelf) may be the result of mixing two end members 27 with distinct isotopic compositions (see main text for discussion).