My Life and Functions

Total Page:16

File Type:pdf, Size:1020Kb

My Life and Functions Book Review My Life and Functions Reviewed by David Drasin his frustration that, My Life and Functions when preparing these, Walter K. Hayman he invariably would rec- Logic Press, October 2014 ognize how little he Printed and distributed by lulu.com knew of the subject’s 152 pages personal groundings, in- US$30.84 (hard cover) terests, or background. ISBN-13: 978-1-326-03224-1 Efforts to compen- US$15.34 (paperback) sate, including visits ISBN-13: 978-1-326-03020-9 to family members and associates, were little Walter Kurt Hayman has led a remarkably full and compensation. (His obit- interesting life, starting from accidents arising from uary of Rolf Nevanlinna his birth and ancestry to his later role as a leader of a [MR 0671785] displays major school of complex analysis. He was a prolific the seriousness and scientist, with extensive travels and interactions spirit with which he with major scientific and cultural leaders. As he fulfilled these responsibilities.) nears his ninetieth birthday his memory remains Some circumstances make having his own strong. This autobiography is a relaxed review of account especially notable. Walter was one of the his life, featuring abundant charming comments, large and talented German intellectual community anecdotes, insights and memories, with some which was displaced by the Nazi era; he emigrated illustrations. The author credits his current wife, to the UK at age twelve in 1938, only weeks before Marie Jennings, with the impetus to write this Kristallnacht dispelled any doubts of the future book. of Germans of Jewish ancestry (although by then Less emphasis is given to mathematics, and the the Haymans considered themselves Christian). author provides little insight into the mechanics or One great-grandparent was the celebrated pianist vision behind his achievements. His impish sense Fanny Mendelssohn, sister of Felix and an important of humor comes through consistently, and I could composer in her own right.1 The author’s middle fill paragraphs with some of his short quotations name refers to his maternal grandfather, Kurt and aphorisms. (One example is the thought that Hensel (who is credited with discovering p-adic his “athletic prowess was probably inherited from numbers); Hensel’s lemma is still part of the [his] father. He claimed to be the best tennis teacher graduate algebra curriculum. Walter’s final visit to in the world, since all his students beat him after his grandfather was shortly before leaving Germany, the first game.”) In recent years many of Walter’s publications 1Dover books still offers a selection of Fanny’s piano music, have been obituaries. Walter once mentioned and the recent very interesting documentary Mendelssohn, the Nazis and Me, directed by his daughter Sheila, includes David Drasin is professor emeritus of mathematics at Pur- testimony from Walter and fascinating insights from those due University. His email address is [email protected]. times. Another Mendelssohn sister, Rebecka, married the DOI: http://dx.doi.org/10.1090/noti1250 mathematician P. G. L. Dirichlet. May 2015 Notices of the AMS 517 and his warm memories of their mathematical Muslim Quaker.” At present, he is married to Marie and musical interactions must have influenced his Jennings, whom he met a few years after Wafika’s career choice. passing in 2001. The circumstances behind this The family’s status and contacts allowed him courtship are very touching, and their partnership and (when they arrived later) his parents to avoid flourishes to this day. the most severe hardships of a time of worldwide Walter won major recognition from his British economic insecurity, and Walter was able to colleagues throughout his career: both Junior attend excellent schools and Cambridge University. Berwick (now known as Berwick) and Senior Berwick Notable was Gourdonstown School, which had been Prizes (he was the first to receive both; the second founded in Scotland by his mother’s cousin Kurt double recipient only came decades later in 1994), Hahn soon after Hahn’s expulsion from Germany; culminating in the London Mathematical Society’s enrollees would include members of the British deMorgan Medal (1995), considered the society’s Royal Family. The generosity and help which top recognition for mathematical achievement. He Walter and his family encountered in England is was elected Fellow of the Royal Society at age thirty. gratefully acknowledged throughout, and it was In spite of these accolades, he willingly recounts an important motivation for his lifelong service many doubts, weaknesses, and insecurities. As and charitable activities (another came from his examples, his discomfort when first encountering joining the Society of Friends (Quakers) and his the towering leaders of his research area, Rolf marriage to Margaret Crann, whom he met at a Nevanlinna and Lars Ahlfors, or his having the Friends meeting while both were at Cambridge). naiveté to directly ask A. S. Besicovitch to compare Walter was always conscious of the responsibilities him to another student, Freeman Dyson: “He said which came from his prominence and successes. quite rightly that Dyson was better.” It appears that Walter was reluctant to ask The center of his professional career was his J. E. Littlewood to be his thesis supervisor, but thirty years at Imperial College until the first of he noticed that Mary L. Cartwright’s work was his retirements in 1985. The Hayman Monday one of the few directly cited in Littlewood’s morning seminar (at 11 sharp) featured work monograph Lectures on the Theory of Functions of students, colleagues, and recent literature, [MR 0012121], which made her a logical choice. augmented by presentations from a steady stream He and Cartwright remained close until her death, of visitors. Walter was proud of his department’s and Walter’s obituary of Dame Mary [MR 1866432] outstanding status in the British academic world. is a fascinating tribute. His pride in helping the department flourish is His marriage to Margaret lasted forty-seven evident when discussing recruiting the complex years, and their partnership also had consequences dynamist I. N. Baker to the faculty well before for the mathematical world. Margaret later was the subject became fashionable. That the Fields appointed Head of Maths (mathematics) at Putney Medalists Klaus Roth (now deceased) and Simon High School and became well known in British Donaldson were among his colleagues is of course education circles. In 1965 Walter and Margaret mentioned. He also discusses the contributions were invited by the Ministry of Education to a and interesting personalities among his students workshop on competitions. During the following and his clerical support staff (anyone who has summer, when the Hayman family made a motor encountered Walter’s handwriting will appreciate trip to the Moscow International Congress, Walter the effort needed to bring his work to the scientific was able to meet the Russian minister of education. public). The result was that, upon their return to the UK, Walter always thrived at mathematical confer- the Haymans arranged that Britain participate ences, where his direct, energetic, and unsnobbish in the International Mathematical Olympiad. The behavior was atypical among leading mathemati- British team was the first non-Socialist entry, and cians I have known. He considered himself today over one hundred nations compete. In her duty-bound to ask questions, not being afraid private life, Margaret was a respected violin player; to show that one need not be an expert to partici- Hayman’s family life often included chamber music pate: “There’s nothing worse than a dead silence featuring the parents with their three daughters. at the end of a lecture,” an inevitable result of Upon Margaret’s death, Walter married his “[m]athematicians are very used to listening to former student Wafika al-Katifi and accepted her lectures which we do not understand.” A familiar Moslem faith. This trajectory of religious affiliations scene at meetings would be Walter with a younger would result in remarkable situations; for example, attendee patiently addressing mathematical ques- once when in Israel, “I stayed in a Presbyterian tions. These interactions often would lead to Guest House in Jerusalem…and I found myself detailed answers at the meeting or by mail soon on Sunday morning accompanying the hymns on after (this process was important for my career), the piano, a curious place and occupation for a and he became an important research catalyst to 518 Notices of the AMS Volume 62, Number 5 the complex analysis community. In his phrasing, “…I found myself acting as a sort of Post Office.” His standing in British mathematics during the Cold War, along with this zeal for travel and sci- entific contact, had other consequences; however, many significant trips are not mentioned in the book. Visits to the USSR (1960) and China (1977) (both with Margaret) brought important recogni- tion to mathematicians in both countries. In 1960 he was writing his book on meromorphic functions, where work of A. A. Goldberg would be highlighted. At the time, Goldberg was little known, since he was at Uzhgorod, a small provincial university. Moscow authorities were likely surprised that Goldberg’s name was the first on a list Walter provided his hosts, and Goldberg was able to come to Moscow while Hayman was lecturing there. This imprimatur seems to have impressed the Soviet authorities, and Goldberg was then able to defend his (second) thesis and become a professor at Lviv University, Photo courtesy of Christine Cockett,of Department Mathematics, University of York, UK. where he developed a major research program and Walter Hayman. group. Their 1977 China trip came soon after the end of China’s Cultural Revolution. An American dele- in London [MR 0217268]; it was praised not only gation, led by Saunders Mac Lane, had visited China for the quality and abundance of problems but for shortly before, during the Cultural Revolution, but its coherent organization into research areas, ac- Walter’s interest had already been piqued by a companied by general background discussion.
Recommended publications
  • Condenser Capacity and Hyperbolic Perimeter
    CONDENSER CAPACITY AND HYPERBOLIC PERIMETER MOHAMED M. S. NASSER, OONA RAINIO, AND MATTI VUORINEN Abstract. We apply domain functionals to study the conformal capacity of condensers (G; E) where G is a simply connected domain in the complex plane and E is a compact subset of G. Due to conformal invariance, our main tools are the hyperbolic geometry and functionals such as the hyperbolic perimeter of E. Novel computational algorithms based on implementations of the fast multipole method are combined with analytic techniques. Computational experiments are used throughout to, for instance, demonstrate sharpness of established inequalities. In the case of model problems with known analytic solutions, very high precision of computation is observed. 1. Introduction A condenser is a pair (G; E), where G ⊂ Rn is a domain and E is a compact non-empty subset of G. The conformal capacity of this condenser is defined as [14, 17, 20] Z (1.1) cap(G; E) = inf jrujndm; u2A G 1 where A is the class of C0 (G) functions u : G ! [0; 1) with u(x) ≥ 1 for all x 2 E and dm is the n-dimensional Lebesgue measure. The conformal capacity of a condenser is one of the key notions in potential theory of elliptic partial differential equations [20, 29] and it has numerous applications to geometric function theory, both in the plane and in higher dimensions, [10, 14, 15, 17]. The isoperimetric problem is to determine a plane figure of the largest possible area whose boundary has a specified length, or, perimeter. Constrained extremal problems of this type, where the constraints involve geometric or physical quantities, have been studied in several thousands of papers, see e.g.
    [Show full text]
  • Harmonic and Complex Analysis and Its Applications
    Trends in Mathematics Alexander Vasil’ev Editor Harmonic and Complex Analysis and its Applications Trends in Mathematics Trends in Mathematics is a series devoted to the publication of volumes arising from conferences and lecture series focusing on a particular topic from any area of mathematics. Its aim is to make current developments available to the community as rapidly as possible without compromise to quality and to archive these for reference. Proposals for volumes can be submitted using the Online Book Project Submission Form at our website www.birkhauser-science.com. Material submitted for publication must be screened and prepared as follows: All contributions should undergo a reviewing process similar to that carried out by journals and be checked for correct use of language which, as a rule, is English. Articles without proofs, or which do not contain any significantly new results, should be rejected. High quality survey papers, however, are welcome. We expect the organizers to deliver manuscripts in a form that is essentially ready for direct reproduction. Any version of TEX is acceptable, but the entire collection of files must be in one particular dialect of TEX and unified according to simple instructions available from Birkhäuser. Furthermore, in order to guarantee the timely appearance of the proceedings it is essential that the final version of the entire material be submitted no later than one year after the conference. For further volumes: http://www.springer.com/series/4961 Harmonic and Complex Analysis and its Applications Alexander Vasil’ev Editor Editor Alexander Vasil’ev Department of Mathematics University of Bergen Bergen Norway ISBN 978-3-319-01805-8 ISBN 978-3-319-01806-5 (eBook) DOI 10.1007/978-3-319-01806-5 Springer Cham Heidelberg New York Dordrecht London Mathematics Subject Classification (2010): 13P15, 17B68, 17B80, 30C35, 30E05, 31A05, 31B05, 42C40, 46E15, 70H06, 76D27, 81R10 c Springer International Publishing Switzerland 2014 This work is subject to copyright.
    [Show full text]
  • Roth's Theorem in the Primes
    Annals of Mathematics, 161 (2005), 1609–1636 Roth’s theorem in the primes By Ben Green* Abstract We show that any set containing a positive proportion of the primes con- tains a 3-term arithmetic progression. An important ingredient is a proof that the primes enjoy the so-called Hardy-Littlewood majorant property. We de- rive this by giving a new proof of a rather more general result of Bourgain which, because of a close analogy with a classical argument of Tomas and Stein from Euclidean harmonic analysis, might be called a restriction theorem for the primes. 1. Introduction Arguably the second most famous result of Klaus Roth is his 1953 upper bound [21] on r3(N), defined 17 years previously by Erd˝os and Tur´an to be the cardinality of the largest set A [N] containing no nontrivial 3-term arithmetic ⊆ progression (3AP). Roth was the first person to show that r3(N) = o(N). In fact, he proved the following quantitative version of this statement. Proposition 1.1 (Roth). r (N) N/ log log N. 3 " There was no improvement on this bound for nearly 40 years, until Heath- Brown [15] and Szemer´edi [22] proved that r N(log N) c for some small 3 " − positive constant c. Recently Bourgain [6] provided the best bound currently known. Proposition 1.2 (Bourgain). r (N) N (log log N/ log N)1/2. 3 " *The author is supported by a Fellowship of Trinity College, and for some of the pe- riod during which this work was carried out enjoyed the hospitality of Microsoft Research, Redmond WA and the Alfr´ed R´enyi Institute of the Hungarian Academy of Sciences, Bu- dapest.
    [Show full text]
  • All That Math Portraits of Mathematicians As Young Researchers
    Downloaded from orbit.dtu.dk on: Oct 06, 2021 All that Math Portraits of mathematicians as young researchers Hansen, Vagn Lundsgaard Published in: EMS Newsletter Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hansen, V. L. (2012). All that Math: Portraits of mathematicians as young researchers. EMS Newsletter, (85), 61-62. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Editorial Obituary Feature Interview 6ecm Marco Brunella Alan Turing’s Centenary Endre Szemerédi p. 4 p. 29 p. 32 p. 39 September 2012 Issue 85 ISSN 1027-488X S E European M M Mathematical E S Society Applied Mathematics Journals from Cambridge journals.cambridge.org/pem journals.cambridge.org/ejm journals.cambridge.org/psp journals.cambridge.org/flm journals.cambridge.org/anz journals.cambridge.org/pes journals.cambridge.org/prm journals.cambridge.org/anu journals.cambridge.org/mtk Receive a free trial to the latest issue of each of our mathematics journals at journals.cambridge.org/maths Cambridge Press Applied Maths Advert_AW.indd 1 30/07/2012 12:11 Contents Editorial Team Editors-in-Chief Jorge Buescu (2009–2012) European (Book Reviews) Vicente Muñoz (2005–2012) Dep.
    [Show full text]
  • Klaus Friedrich Roth, 1925–2015 the Godfrey Argent Studio C
    e Bull. London Math. Soc. 50 (2018) 529–560 C 2017 Authors doi:10.1112/blms.12143 OBITUARY Klaus Friedrich Roth, 1925–2015 The Godfrey Argent Studio C Klaus Friedrich Roth, who died in Inverness on 10 November 2015 aged 90, made fundamental contributions to different areas of number theory, including diophantine approximation, the large sieve, irregularities of distribution and what is nowadays known as arithmetic combinatorics. He was the first British winner of the Fields Medal, awarded in 1958 for his solution in 1955 of the famous Siegel conjecture concerning approximation of algebraic numbers by rationals. He was elected a member of the London Mathematical Society on 17 May 1951, and received its De Morgan Medal in 1983. 1. Life and career Klaus Roth, son of Franz and Matilde (n´ee Liebrecht), was born on 29 October 1925, in the German city of Breslau, in Lower Silesia, Prussia, now Wroclaw in Poland. To escape from Nazism, he and his parents moved to England in 1933 and settled in London. He would recall that the flight from Berlin to London took eight hours and landed in Croydon. Franz, a solicitor by training, had suffered from gas poisoning during the First World War, and died a few years after their arrival in England. Roth studied at St Paul’s School between 1937 and 1943, during which time the school was relocated to Easthampstead Park, near Crowthorne in Berkshire, as part of the wartime evac- uation of London. There he excelled in mathematics and chess, and one master, Mr Dowswell, observed interestingly that he possessed complete intellectual honesty.
    [Show full text]
  • Complex Numbers and Colors
    Complex Numbers and Colors For the sixth year, “Complex Beauties” provides you with a look into the wonderful world of complex functions and the life and work of mathematicians who contributed to our understanding of this field. As always, we intend to reach a diverse audience: While most explanations require some mathemati- cal background on the part of the reader, we hope non-mathematicians will find our “phase portraits” exciting and will catch a glimpse of the richness and beauty of complex functions. We would particularly like to thank our guest authors: Jonathan Borwein and Armin Straub wrote on random walks and corresponding moment functions and Jorn¨ Steuding contributed two articles, one on polygamma functions and the second on almost periodic functions. The suggestion to present a Belyi function and the possibility for the numerical calculations came from Donald Marshall; the November title page would not have been possible without Hrothgar’s numerical solution of the Bla- sius equation. The construction of the phase portraits is based on the interpretation of complex numbers z as points in the Gaussian plane. The horizontal coordinate x of the point representing z is called the real part of z (Re z) and the vertical coordinate y of the point representing z is called the imaginary part of z (Im z); we write z = x + iy. Alternatively, the point representing z can also be given by its distance from the origin (jzj, the modulus of z) and an angle (arg z, the argument of z). The phase portrait of a complex function f (appearing in the picture on the left) arises when all points z of the domain of f are colored according to the argument (or “phase”) of the value w = f (z).
    [Show full text]
  • Nevanlinna Theory of the Askey-Wilson Divided Difference
    NEVANLINNA THEORY OF THE ASKEY-WILSON DIVIDED DIFFERENCE OPERATOR YIK-MAN CHIANG AND SHAO-JI FENG Abstract. This paper establishes a version of Nevanlinna theory based on Askey-Wilson divided difference operator for meromorphic functions of finite logarithmic order in the complex plane C. A second main theorem that we have derived allows us to define an Askey-Wilson type Nevanlinna deficiency which gives a new interpretation that one should regard many important infinite products arising from the study of basic hypergeometric series as zero/pole- scarce. That is, their zeros/poles are indeed deficient in the sense of difference Nevanlinna theory. A natural consequence is a version of Askey-Wilosn type Picard theorem. We also give an alternative and self-contained characterisation of the kernel functions of the Askey-Wilson operator. In addition we have established a version of unicity theorem in the sense of Askey-Wilson. This paper concludes with an application to difference equations generalising the Askey-Wilson second-order divided difference equation. Contents 1. Introduction 2 2. Askey-Wilson operator and Nevanlinna characteristic 6 3. Askey-Wilson type Nevanlinna theory – Part I: Preliminaries 8 4. Logarithmic difference estimates and proofs of Theorem 3.2 and 3.1 10 5. Askey-Wilson type counting functions and proof of Theorem 3.3 22 6. ProofoftheSecondMaintheorem3.5 25 7. Askey-Wilson type Second Main theorem – Part II: Truncations 27 8. Askey-Wilson-Type Nevanlinna Defect Relation 29 9. Askey-Wilson type Nevanlinna deficient values 31 arXiv:1502.02238v4 [math.CV] 3 Feb 2018 10. The Askey-Wilson kernel and theta functions 33 11.
    [Show full text]
  • EMS Newsletter September 2012 1 EMS Agenda EMS Executive Committee EMS Agenda
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Editorial Obituary Feature Interview 6ecm Marco Brunella Alan Turing’s Centenary Endre Szemerédi p. 4 p. 29 p. 32 p. 39 September 2012 Issue 85 ISSN 1027-488X S E European M M Mathematical E S Society Applied Mathematics Journals from Cambridge journals.cambridge.org/pem journals.cambridge.org/ejm journals.cambridge.org/psp journals.cambridge.org/flm journals.cambridge.org/anz journals.cambridge.org/pes journals.cambridge.org/prm journals.cambridge.org/anu journals.cambridge.org/mtk Receive a free trial to the latest issue of each of our mathematics journals at journals.cambridge.org/maths Cambridge Press Applied Maths Advert_AW.indd 1 30/07/2012 12:11 Contents Editorial Team Editors-in-Chief Jorge Buescu (2009–2012) European (Book Reviews) Vicente Muñoz (2005–2012) Dep. Matemática, Faculdade Facultad de Matematicas de Ciências, Edifício C6, Universidad Complutense Piso 2 Campo Grande Mathematical de Madrid 1749-006 Lisboa, Portugal e-mail: [email protected] Plaza de Ciencias 3, 28040 Madrid, Spain Eva-Maria Feichtner e-mail: [email protected] (2012–2015) Society Department of Mathematics Lucia Di Vizio (2012–2016) Université de Versailles- University of Bremen St Quentin 28359 Bremen, Germany e-mail: [email protected] Laboratoire de Mathématiques Newsletter No. 85, September 2012 45 avenue des États-Unis Eva Miranda (2010–2013) 78035 Versailles cedex, France Departament de Matemàtica e-mail: [email protected] Aplicada I EMS Agenda .......................................................................................................................................................... 2 EPSEB, Edifici P Editorial – S. Jackowski ........................................................................................................................... 3 Associate Editors Universitat Politècnica de Catalunya Opening Ceremony of the 6ECM – M.
    [Show full text]
  • Roth's Orthogonal Function Method in Discrepancy Theory and Some
    Roth’s Orthogonal Function Method in Discrepancy Theory and Some New Connections Dmitriy Bilyk Abstract In this survey we give a comprehensive, but gentle introduction to the cir- cle of questions surrounding the classical problems of discrepancy theory, unified by the same approach originated in the work of Klaus Roth [85] and based on mul- tiparameter Haar (or other orthogonal) function expansions. Traditionally, the most important estimates of the discrepancy function were obtained using variations of this method. However, despite a large amount of work in this direction, the most im- portant questions in the subject remain wide open, even at the level of conjectures. The area, as well as the method, has enjoyed an outburst of activity due to the recent breakthrough improvement of the higher-dimensional discrepancy bounds and the revealed important connections between this subject and harmonic analysis, proba- bility (small deviation of the Brownian motion), and approximation theory (metric entropy of spaces with mixed smoothness). Without assuming any prior knowledge of the subject, we present the history and different manifestations of the method, its applications to related problems in various fields, and a detailed and intuitive outline of the latest higher-dimensional discrepancy estimate. 1 Introduction The subject and the structure of the present chapter is slightly unconventional. In- stead of building the exposition around the results from one area, united by a com- mon topic, we concentrate on problems from different fields which all share a com- mon method. The starting point of our discussion is one of the earliest results in discrepancy theory, Roth’s 1954 L2 bound of the discrepancy function in dimensions d ≥ 2 [85], as well as the tool employed to obtain this bound, which later evolved into a pow- Dmitriy Bilyk Department of Mathematics, University of South Carolina, Columbia, SC 29208 USA e-mail: [email protected] 1 2 Dmitriy Bilyk erful orthogonal function method in discrepancy theory.
    [Show full text]
  • Calculus Redux
    THE NEWSLETTER OF THE MATHEMATICAL ASSOCIATION OF AMERICA VOLUME 6 NUMBER 2 MARCH-APRIL 1986 Calculus Redux Paul Zorn hould calculus be taught differently? Can it? Common labus to match, little or no feedback on regular assignments, wisdom says "no"-which topics are taught, and when, and worst of all, a rich and powerful subject reduced to Sare dictated by the logic of the subject and by client mechanical drills. departments. The surprising answer from a four-day Sloan Client department's demands are sometimes blamed for Foundation-sponsored conference on calculus instruction, calculus's overcrowded and rigid syllabus. The conference's chaired by Ronald Douglas, SUNY at Stony Brook, is that first surprise was a general agreement that there is room for significant change is possible, desirable, and necessary. change. What is needed, for further mathematics as well as Meeting at Tulane University in New Orleans in January, a for client disciplines, is a deep and sure understanding of diverse and sometimes contentious group of twenty-five fac­ the central ideas and uses of calculus. Mac Van Valkenberg, ulty, university and foundation administrators, and scientists Dean of Engineering at the University of Illinois, James Ste­ from client departments, put aside their differences to call venson, a physicist from Georgia Tech, and Robert van der for a leaner, livelier, more contemporary course, more sharply Vaart, in biomathematics at North Carolina State, all stressed focused on calculus's central ideas and on its role as the that while their departments want to be consulted, they are language of science. less concerned that all the standard topics be covered than That calculus instruction was found to be ailing came as that students learn to use concepts to attack problems in a no surprise.
    [Show full text]
  • NEWSLETTER No
    NEWSLETTER No. 453 December 2015 JOINT ANNIVERSARY WEEKEND Report Pavel Exner, President of the European Mathematical Society and Terry Lyons, President of the London Mathematical Society he weekend 18 to 20 September 2015 saw lain Memorial Clock-tower (or ‘Old Joe’, T mathematicians from around the world the world’s tallest free-standing clock-tow- congregate at the University of Birming- er), participants divided between parallel ham, UK, for a conference in celebration of sessions on the themes of Algebra, Com- two birthdays: the 150th of the venerable binatorics, and Analysis, and reunited for London Mathematical Society (LMS), and plenary talks from some of mathematics’ the 25th of the relatively youthful European current leading lights. Mathematical Society. After warm greetings from Terry Lyons and Under the watch of the Joseph Chamber- Pavel Exner, the two societies’ respective (Continued on page 3) SOCIETY MEETINGS AND EVENTS • 10–11 December: Joint Meeting with the Edinburgh Mathematical Society, • 26 February: Mary Cartwright Lecture, London Edinburgh page 5 • 21 March: Society Meeting at the BMC, Bristol • 14 December: SW & South Wales Regional Meeting, • 21–25 March: LMS Invited Lectures, Loughborough Southampton page 29 page 22 • 15–16 December: LMS Prospects in Mathematics, • 8 July: Graduate Student Meeting, London Loughborough page 14 • 8 July: Society Meeting, London NEWSLETTER ONLINE: newsletter.lms.ac.uk @LondMathSoc LMS NEWSLETTER http://newsletter.lms.ac.uk Contents No. 453 December 2015 8 33 150th Anniversary Events
    [Show full text]
  • Multiplicities in Hayman's Alternative
    J. Aust. Math. Soc. 78 (2005), 37-57 MULTIPLICITIES IN HAYMAN'S ALTERNATIVE WALTER BERGWEILER and J. K. LANGLEY (Received 3 September 2002; revised 28 August 2003) Communicated by P. C. Fenton Abstract In 1959 Hayman proved an inequality from which it follows that if/ is transcendental and meromorphic in the plane then either/ takes every finite complex value infinitely often or each derivative /(k), k > 1, takes every finite non-zero value infinitely often. We investigate the extent to which these values may be ramified, and we establish a generalization of Hayman's inequality in which multiplicities are not taken into account. 2000 Mathematics subject classification: primary 3OD35. 1. Introduction Our starting point is the following result of Hayman [8, 9]. THEOREM 1.1. Let k e H and let a, b e C, b ^ 0. Let f be nonconstant and meromorphic in the plane. Then at least one of f — a and f(Ar) — b has at least one zero, and infinitely many iff is transcendental. Hayman's proof of Theorem 1.1 is based on Nevanlinna theory, the result deduced from the following inequality. Here the notation is that of [9], with S(r,f) denoting any term which is o(T(r,f)) as r -> oo, possibly outside a set of finite Lebesgue measure. THEOREM 1.2 ([8, 9]). Let ieN and let f be transcendental and meromorphic in the plane. Then, as r -» oo, (1) r(rJ) © 2005 Australian Mathematical Society 1446-7887/05 $A2.00 + 0.00 Downloaded from https://www.cambridge.org/core.
    [Show full text]