8.3 News Feat Dome a MH

Total Page:16

File Type:pdf, Size:1020Kb

8.3 News Feat Dome a MH NATURE|Vol 446|8 March 2007 POLAR RESEARCH NEWS FEATURE POLAR YEAR PROJECTS The fourth International Polar Year (IPY) But there are complications. The Antarctic deeper 4,700 metres of ice, but covers a small is a bit of a misnomer — it’s actually two ice cap acts as an insulator, lying like a blanket area in which the surrounding rock may have years long. From March 2007 to March across the continent and trapping geothermal distorted the ice at the bottom. Farther afield, 2009, a host of scientists will head out heat below it. The thicker the ice, the greater there are other areas in Antarctica likely to hold to both the Arctic and Antarctic for the insulation, and so when the ice gets really very old ice (see map), but they are trapped in targeted research, from marine biology thick its base will frequently become warm mountain ranges where the ice record is much to anthropology. Here’s a look at some of enough to melt, shortening the record. thinner and more squashed. the projects being planned — although Also, the topography of the rock beneath funding for some is still pending. the ice is complex, to say the least. A mountain Disturbing the peace range lies down there (see ‘The hidden moun- Dome A thus remains the prime candidate for Whale movement tains’, overleaf). If the ice at the bottom of the drilling. But too little is known for research- Several hundred beluga whales ice sheet has been forced to move up and over ers to draw an X in the snow and plant their (Delphinapterus leucas) in the Arctic will rocky ridges, it will be folded, muddled and drill. So starting next year, if funding comes be tagged with satellite transmitters and, mixed, making it impossible to date it or to through, the sky over Dome A will be filled in some cases, oceanographic data extract clean information from it. The bottom with the rare noise of low-flying planes, bur- collectors. Understanding the 70 metres of the Dome C core were like this, dened with radar and equipment to measure timing and pattern of beluga making its oldest ice unusable. gravity and magnetic fields. movements in relation to ice Models suggest that the flow of ice away Particularly helpful will be the radar sur- and ocean conditions may from the base of Dome A is small, so older veys, which can pick up changes in density, help efforts to protect the ice should still be preserved at the bottom. crystal structure or dust content in the ice. By whales in the face of climate change. A map of ice ages by modeller Philippe Huy- flying from Dome C to Dome A, the IPICS brechts of the Dutch-speaking Free Univer- team hopes to be able to track ancient layers Ocean microbes sity Brussels in Belgium (see map), confirms along the 1,000-kilometre flight path, thus A Norwegian-led effort to document the that an area near the peak of Dome A — a vast revealing the depth of correlated layers in the biodiversity of microorganisms in the polar swath about the size of Britain — is suitable for ice at Dome A. seas could provide a basis for understanding an old-ice hunt. Given the remoteness of Dome A, the how these creatures help to regulate the K. SCHAFER/CORBIS Apart from Dome A, other candidate planes will need local bases from which to ecosphere. sites for the oldest ice do exist. The Aurora refuel. Ideally, these will be placed around the basin, near Dome C but closer to the coast, dome at slightly lower altitudes, as the height Polar astronomy for example, is about 4,500 metres deep and of the dome makes the air so thin that propel- Because of their extremely cold, dry, stable could potentially hold very old ice. Australia ler planes have trouble taking off and pilots’ air, the polar plateaus provide the best plans to drill a 400-metre test core there in the functioning can be impaired. “Technically, sites on Earth for a range of astronomical 2008–09 season, says Vin Morgan of the Aus- the pilots should be using supplementary oxy- observations. An Australian-led team will tralian Government Antarctic Division near gen,” says Wolff. And in similar circumstances, assess just how good the conditions are for Hobart, Tasmania. But this area is lower and loaded Twin Otter planes have had to use jets astronomy at sites including Dome A on the warmer than Dome A, increasing the chances strapped to their wings to gain enough lift. Antarctic plateau. that its bottom ice has melted substantially. That same season, the Chinese research- The nearby Astrolabe basin has an even ers plan to return, this time carrying French Spider survey German researchers hope to lead a survey of ANTARCTICA’S OLDEST ICE spider biodiversity across the Arctic. Because Height: 4.1 km 0 Anticipated depth of ice core: 3+ km spiders adjust their lifecycles to microclimatic Age back in time: 1 million years+? 20 conditions, studying them can help scientists Height: 3.8 km track the effects of rising temperatures on Depth of ice core: 3 km 100 Age back in time: 720,000 years terrestrial habitats. 300 3 500 P. HUYBRECHTS, VRIJE UNIV. BRUSSEL VRIJE UNIV. HUYBRECHTS, P. 700 2 900 1,200 present* before of years Thousands *modelled at 98.5% depth J. HAMMEL/STUTTGART UNIV. HAMMEL/STUTTGART J. RESEARCH STATIONS Height: 3.5 km (mentioned in text) Carbon pools Ross Ice Depth of ice core: 3.6 km McMurdo (US); An international effort, led by Sweden, plans Shelf 1 Age back in time: 420,000 years 1 Scott (New Zealand) to assess the quantity and quality of organic 2 Zhongshan (China) matter in high-latitude soils. The work may Height: 3.3 km prove crucial to predicting what could happen Depth of ice core: 3.2 km 3 Halley (UK) to the enormous stock of carbon trapped Age back in time: 800,000 years there if the soils thaw. 127 NATURE|Vol 446|8 March 2007 POLAR RESEARCH NEWS FEATURE Martian mimics CORBY WEST/JPL CORBY The Phoenix spacecraft will land on Mars during the IPY. Scientists hope to compare data from the planet‘s northern polar region with soil measurements from an analogous ‘extreme environment’: the Antarctic Dry Valleys. Antarctic aliens More than 40,000 people visit the Antarctic each year — and they probably bring with them the seeds and spores of non-native species. The IPY will see the first full assessment of the environmental impact of these visitors. Past warming One way to predict what might happen in a warmer climate is to look back in time. The WARMPAST project will use Arctic sediment cores to reconstruct ocean temperatures for the past tens of thousands of years. Icy lakes Scientists from Canada P. WEST/NSF P. School of rock and Russia will pore over LANDSAT The rocks of Antarctica are obscured literally, and sometimes historical data to see how the timing of ice freezing scientifically, by its ice. But drilling efforts are now showing what and breaking up on Arctic we can learn from the hard stuff. Alexandra Witze reports. lakes has changed over the past 50 years. Changes in sea level hen it comes to Antarctica’s his- a new Antarctic record for drilling depth. tory, ice cores get all the glory. The period covered by the core — from UK and other researchers plan to add gauges Large-scale ice-drilling efforts, the present to more than 5 million years ago to monitor the sea level and tides in the Wsuch as Europe’s EPICA and — seems to be quite active. Preliminary analy- waters around Antarctica. Russia’s Vostok cores, capture headlines and sis has revealed thick layers of a greenish rock the lion’s share of people and funding. After interspersed throughout the core. This is an Arctic greening all, these cores contain air bubbles that are hun- indication of open-water conditions, sug- Climate change is likely to alter the dreds of thousands of years old, a frozen time gesting that the Ross shelf retreated and then distribution and type of plants at high capsule from Earth’s icy past. advanced at least 50 times within the past 5 mil- latitudes. Assessing satellite data, and doing But buried beneath the thick layers of ice, the lion years. With this nearly unbroken record, field studies to produce new vegetation maps rocks of Antarctica have far older stories to tell. scientists can explore the history of the shelf in for Russia, Alaska and Canada, will help Trapped within layers of mud and sand are geo- unprecedented detail. scientists predict such changes. logical records stretching back millions of years. “It’s going to be a benchmark that we hope we As Antarctica’s ice teams continue to hunt for the can refer to for years to come,” says Ross Pow- Reindeer herders oldest ice their drills will reach (see page 126), a ell, a geologist at Northern Illinois University in The knowledge and experience of nomadic smaller band of rockhounds is on a similar quest DeKalb. “It may be the geological equivalent of reindeer herders, accumulated over to plug the gaps in the geological record. the Vostok ice-core record.” As project co-leader, generations, will be documented to establish The team now has a core that promises Powell is understandably enthusiastic about how herders living across Norway, Russia and fresh insight into how Antarctica’s ice waxed the core, but then so are other geologists.
Recommended publications
  • China's Expanding Antarctic Interests
    CHINA’S EXPANDING ANTARCTIC INTERESTS: IMPLICATIONS FOR NEW ZEALAND Professor Anne-Marie Brady1 | University of Canterbury | [email protected] Policy brief no. 2 | June 3, 2017 Presented at the conference: ‘Small States and the Changing Global Order: New Zealand Faces the Future’ at University of Canterbury, Christchurch, New Zealand, 3-4 June 2017 China is rapidly expanding its activities in Antarctica and some of its behaviour appears to breach the terms of the Antarctic Treaty. New Zealand must rethink its assessment of risk in Antarctica and devise a strategy to protect its interests there. Key findings • Some of China's interests and activities in Antarctica, which include undeclared military activities and mineral exploration, may be at odds with New Zealand strategic interests and they potentially breach international law. • China is rapidly expanding its presence in a triangle-shaped area it calls the "East Antarctic Sector" and has stated in policy documents that it reserves the right to make a claim in Antarctica. • New Zealand must rethink its assessment of risk in Antarctica and devise a strategy to protect its interests there. Executive summary China has rapidly expanded its activities in Antarctica and the Southern Ocean in recent years. The 2016 White Paper on Defence defines China as a "key strategic partner" for New Zealand.2 New Zealand has strong and expanding relations with China; while our top trading partners also have China as their major market. New Zealand benefits hugely from the economic opportunities associated with China's economic growth. At the same time, China's economic growth has funded a dramatic expansion in military capabilities and is challenging the longstanding strategic order in Northeast Asia and the Indo-Asia-Pacific.
    [Show full text]
  • Site Testing Dome A, Antarctica
    Site testing Dome A, Antarctica J.S. Lawrencea*, M.C.B. Ashleya, M.G. Burtona, X. Cuib, J.R. Everetta, B.T. Indermuehlea, S.L. Kenyona, D. Luong-Vana, A.M. Moorec, J.W.V. Storeya, A. Tokovinind, T. Travouillonc, C. Pennypackere, L. Wange, D. Yorkf aSchool of Physics, University of New South Wales, Australia bNanjing Institute of Astronomical Optics and Technology, China cCalifornia Institute of Technology, USA dCerro-Tololo Inter-American Observatories, Chile eLawrence Berkeley Lab, University of California/Berkeley, USA fUniversity of Chicago, USA ABSTRACT Recent data have shown that Dome C, on the Antarctic plateau, is an exceptional site for astronomy, with atmospheric conditions superior to those at any existing mid-latitude site. Dome C, however, may not be the best site on the Antarctic plateau for every kind of astronomy. The highest point of the plateau is Dome A, some 800 m higher than Dome C. It should experience colder atmospheric temperatures, lower wind speeds, and a turbulent boundary layer that is confined closer to the ground. The Dome A site was first visited in January 2005 via an overland traverse, conducted by the Polar Research Institute of China. The PRIC plans to return to the site to establish a permanently manned station within the next decade. The University of New South Wales, in collaboration with a number of international institutions, is currently developing a remote automated site testing observatory for deployment to Dome A in the 2007/8 austral summer as part of the International Polar Year. This self-powered observatory will be equipped with a suite of site testing instruments measuring turbulence, optical and infrared sky background, and sub-millimetre transparency.
    [Show full text]
  • Where Is the Best Site on Earth? Domes A, B, C, and F, And
    Where is the best site on Earth? Saunders et al. 2009, PASP, 121, 976-992 Where is the best site on Earth? Domes A, B, C and F, and Ridges A and B Will Saunders1;2, Jon S. Lawrence1;2;3, John W.V. Storey1, Michael C.B. Ashley1 1School of Physics, University of New South Wales 2Anglo-Australian Observatory 3Macquarie University, New South Wales [email protected] Seiji Kato, Patrick Minnis, David M. Winker NASA Langley Research Center Guiping Liu Space Sciences Lab, University of California Berkeley Craig Kulesa Department of Astronomy and Steward Observatory, University of Arizona Saunders et al. 2009, PASP, 121 976992 Received 2009 May 26; accepted 2009 July 13; published 2009 August 20 ABSTRACT The Antarctic plateau contains the best sites on earth for many forms of astronomy, but none of the existing bases was selected with astronomy as the primary motivation. In this paper, we try to systematically compare the merits of potential observatory sites. We include South Pole, Domes A, C and F, and also Ridge B (running NE from Dome A), and what we call `Ridge A' (running SW from Dome A). Our analysis combines satellite data, published results and atmospheric models, to compare the boundary layer, weather, aurorae, airglow, precipitable water vapour, thermal sky emission, surface temperature, and the free atmosphere, at each site. We ¯nd that all Antarctic sites are likely to be compromised for optical work by airglow and aurorae. Of the sites with existing bases, Dome A is easily the best overall; but we ¯nd that Ridge A o®ers an even better site.
    [Show full text]
  • Download Factsheet
    Antarctic Factsheet Geographical Statistics May 2005 AREA % of total Antarctica - including ice shelves and islands 13,829,430km2 100.00% (Around 58 times the size of the UK, or 1.4 times the size of the USA) Antarctica - excluding ice shelves and islands 12,272,800km2 88.74% Area ice free 44,890km2 0.32% Ross Ice Shelf 510,680km2 3.69% Ronne-Filchner Ice Shelf 439,920km2 3.18% LENGTH Antarctic Peninsula 1,339km Transantarctic Mountains 3,300km Coastline* TOTAL 45,317km 100.00% * Note: coastlines are fractal in nature, so any Ice shelves 18,877km 42.00% measurement of them is dependant upon the scale at which the data is collected. Coastline Rock 5,468km 12.00% lengths here are calculated from the most Ice coastline 20,972km 46.00% detailed information available. HEIGHT Mean height of Antarctica - including ice shelves 1,958m Mean height of Antarctica - excluding ice shelves 2,194m Modal height excluding ice shelves 3,090m Highest Mountains 1. Mt Vinson (Ellsworth Mts.) 4,892m 2. Mt Tyree (Ellsworth Mts.) 4,852m 3. Mt Shinn (Ellsworth Mts.) 4,661m 4. Mt Craddock (Ellsworth Mts.) 4,650m 5. Mt Gardner (Ellsworth Mts.) 4,587m 6. Mt Kirkpatrick (Queen Alexandra Range) 4,528m 7. Mt Elizabeth (Queen Alexandra Range) 4,480m 8. Mt Epperly (Ellsworth Mts) 4,359m 9. Mt Markham (Queen Elizabeth Range) 4,350m 10. Mt Bell (Queen Alexandra Range) 4,303m (In many case these heights are based on survey of variable accuracy) Nunatak on the Antarctic Peninsula 1/4 www.antarctica.ac.uk Antarctic Factsheet Geographical Statistics May 2005 Other Notable Mountains 1.
    [Show full text]
  • Where Is the Best Site on Earth? Domes A, B, C and F, and Ridges a and B
    Where is the best site on Earth? Domes A, B, C and F, and Ridges A and B Will Saunders' 2 , Jon S. Lawrence' 2 3 , John W.V. Storey', Michael C.B. Ashley' 1School of Physics, University of New South Wales 2Anglo-Australian Observatory 3Macquarie University, New South Wales [email protected] Seiji Kato, Patrick Minnis, David M. Winker NASA Langley Research Center Guiping Liu Space Sciences Lab, University of California Berkeley Craig Kulesa Department of Astronomy and Steward Observatory, University of Arizona ABSTRACT The Antarctic plateau contains the best sites on earth for many forms of astronomy, but none of the existing bases were selected with astronomy as the primary motivation. In this paper, we try to systematically compare the merits of potential observatory sites. We include South Pole, Domes A, C and F, and also Ridge B (running NE from Dome A), and what we call ‘Ridge A’ (running SW from Dome A). Our analysis combines satellite data, published results and atmospheric models, to compare the boundary layer, weather, free atmosphere, sky brightness, pecipitable water vapour, and surface temperature at each site. We find that all Antarctic sites are likely compromised for optical work by airglow and aurorae. Of the sites with existing bases, Dome A is the best overall; but we find that Ridge A offers an even better site. We also find that Dome F is a remarkably good site. Dome C is less good as a thermal infrared or terahertz site, but would be able to take advantage of a predicted ‘OH hole’ over Antarctica during Spring.
    [Show full text]
  • Site Testing for Submillimetre Astronomy at Dome C, Antarctica
    A&A 535, A112 (2011) Astronomy DOI: 10.1051/0004-6361/201117345 & c ESO 2011 Astrophysics Site testing for submillimetre astronomy at Dome C, Antarctica P. Tremblin1, V. Minier1, N. Schneider1, G. Al. Durand1,M.C.B.Ashley2,J.S.Lawrence2, D. M. Luong-Van2, J. W. V. Storey2,G.An.Durand3,Y.Reinert3, C. Veyssiere3,C.Walter3,P.Ade4,P.G.Calisse4, Z. Challita5,6, E. Fossat6,L.Sabbatini5,7, A. Pellegrini8, P. Ricaud9, and J. Urban10 1 Laboratoire AIM Paris-Saclay (CEA/Irfu, Univ. Paris Diderot, CNRS/INSU), Centre d’études de Saclay, 91191 Gif-Sur-Yvette, France e-mail: [pascal.tremblin;vincent.minier]@cea.fr 2 University of New South Wales, 2052 Sydney, Australia 3 Service d’ingénierie des systèmes, CEA/Irfu, Centre d’études de Saclay, 91191 Gif-Sur-Yvette, France 4 School of Physics & Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA, UK 5 Concordia Station, Dome C, Antarctica 6 Laboratoire Fizeau (Obs. Côte d’Azur, Univ. Nice Sophia Antipolis, CNRS/INSU), Parc Valrose, 06108 Nice, France 7 Departement of Physics, University of Roma Tre, Italy 8 Programma Nazionale Ricerche in Antartide, ENEA, Rome Italy 9 Laboratoire d’Aérologie, UMR 5560 CNRS, Université Paul-Sabatier, 31400 Toulouse, France 10 Chalmers University of Technology, Department of Earth and Space Sciences, 41296 Göteborg, Sweden Received 25 May 2011 / Accepted 17 October 2011 ABSTRACT Aims. Over the past few years a major effort has been put into the exploration of potential sites for the deployment of submillimetre astronomical facilities. Amongst the most important sites are Dome C and Dome A on the Antarctic Plateau, and the Chajnantor area in Chile.
    [Show full text]
  • YOPP-SH2 Report Final2.Pdf
    WORLD METEOROLOGICAL ORGANIZATION WWRP POLAR PREDICTION PROJECT (WWRP-PPP) YEAR OF POLAR PREDICTION IN THE SOUTHERN HEMISPHERE PLANNING MEETING 2 (YOPP-SH2) 28–29 JUNE 2017 NATIONAL CENTER FOR ATMOSPHERIC RESEARCH (NCAR) NCAR FOOTHILLS LABORATORY 3450 MITCHELL LANE, BOULDER, COLORADO, USA, 80301 Group Photo by Kris Marwitz, NCAR (back row, from left) Naohiko Hirasawa, Kirstin Werner, Lei Han, Kevin Speer, Katsuro Katsumata, Alexander Klepikov, Benjamin Schroeter, Katherine Leonard, Jean-Baptiste Madeleine, Holger Schmithüsen, Karl Newyear, Jordan Powers, Stefano Dolci, Peter Milne, David Mikolajczyk, Deniz Bozkurt, Kyohei Yamada, Eric Bazile, John Fyfe. (middle row, from left) Joellen Russel, David Bromwich, Qizhen Sun, Alvaro Scardilli, Penny Rowe, Aedin Wright, Julien Beaumet, Diana Francis, Matthew Lazzara, Irina Gorodetskaya, Annick Terpstra, Scott Carpentier. (front row, from left) Lynne Talley, Jorge Carrasco, Patrick Heimbach, Mathew Mazzloff, Alexandra Jahn, François Massonnet, Robin Robertson, Sharon Stammerjohn, Inga Smith. YOPP-SH2 28/29 June 2017 Final Report Page 1/44 1. OPENING The second planning meeting for the Year of Polar Prediction (YOPP) in the Southern Hemisphere (YOPP-SH) subcommittee was held from 28–29 June 2017 at the National Center for Atmospheric Research in Boulder, Colorado, USA. David Bromwich, member of the Polar Prediction Project Steering Group (PPP-SG), opened this second meeting (YOPP-SH2). He welcomed participants and explained the two key goals of the meeting. One of these was to compile information on the national activities that will contribute to YOPP-SH (during the June 28th afternoon session). Bromwich pointed out the benefits that all nations will have from a joint effort to improve forecasts in the Southern Hemisphere, in particular with regards to logistics needed to carry out research in and around Antarctica.
    [Show full text]
  • China's Rise in Antarctica? Author(S): Anne-Marie Brady Source: Asian Survey, Vol
    China's Rise in Antarctica? Author(s): Anne-Marie Brady Source: Asian Survey, Vol. 50, No. 4 (July/August 2010), pp. 759-785 Published by: University of California Press Stable URL: http://www.jstor.org/stable/10.1525/as.2010.50.4.759 . Accessed: 13/03/2015 04:33 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. University of California Press is collaborating with JSTOR to digitize, preserve and extend access to Asian Survey. http://www.jstor.org This content downloaded from 89.206.119.114 on Fri, 13 Mar 2015 04:33:18 AM All use subject to JSTOR Terms and Conditions ANNE-MARIE BRADY China’s Rise in Antarctica? ABSTRACT China has begun a new phase in its Antarctic engagement. Beijing has dramatically increased Chinese scientific activities on the frozen continent and is looking to take on more of a leadership role there. This paper draws connections between China’s expanded Antarctic program and debates on its foreign and domestic policies. KEYWORDS: China’s rise, Antarctica, foreign policy, resource conflict China is entering a new historical phase in its engagement with Ant- arctica. Since 2005, the Chinese government has dramatically increased its expenditure on Antarctic affairs and has stepped up domestic (though less so foreign) publicity on those activities.
    [Show full text]
  • And Better Science in Antarctica Through Increased Logistical Effectiveness
    MORE AND BETTER SCIENCE IN ANTARCTICA THROUGH INCREASED LOGISTICAL EFFECTIVENESS Report of the U.S. Antarctic Program Blue Ribbon Panel Washington, D.C. July 2012 This report of the U.S. Antarctic Program Blue Ribbon Panel, More and Better Science in Antarctica Through Increased Logistical Effectiveness, was completed at the request of the White House Office of Science and Technology Policy and the National Science Foundation. Copies may be obtained from David Friscic at [email protected] (phone: 703-292-8030). An electronic copy of the report may be downloaded from http://www.nsf.gov/od/ opp/usap_special_review/usap_brp/rpt/index.jsp. Cover art by Zina Deretsky. MORE AND BETTER SCIENCE IN AntarctICA THROUGH INCREASED LOGISTICAL EFFECTIVENESS REport OF THE U.S. AntarctIC PROGRAM BLUE RIBBON PANEL AT THE REQUEST OF THE WHITE HOUSE OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND THE NatIONAL SCIENCE FoundatION WASHINGTON, D.C. JULY 2012 U.S. AntarctIC PROGRAM BLUE RIBBON PANEL WASHINGTON, D.C. July 23, 2012 Dr. John P. Holdren Dr. Subra Suresh Assistant to the President for Science and Technology Director & Director, Office of Science and Technology Policy National Science Foundation Executive Office of the President of the United States 4201 Wilson Boulevard Washington, DC 20305 Arlington, VA 22230 Dear Dr. Holdren and Dr. Suresh: The members of the U.S. Antarctic Program Blue Ribbon Panel are pleased to submit herewith our final report entitled More and Better Science in Antarctica through Increased Logistical Effectiveness. Not only is the U.S. logistics system supporting our nation’s activities in Antarctica and the Southern Ocean the essential enabler for our presence and scientific accomplish- ments in that region, it is also the dominant consumer of the funds allocated to those endeavors.
    [Show full text]
  • Astronomy in Antarctica
    The Astronomy and Astrophysics Review (2011) DOI 10.1007/s00159-010-0032-2 REVIEWARTICLE Michael G. Burton Astronomy in Antarctica Received: 3 May 2010 c Springer-Verlag 2010 Abstract Antarctica provides a unique environment for astronomers to practice their trade. The cold, dry and stable air found above the high Antarctic plateau, as well as the pure ice below, offers new opportunities for the conduct of obser- vational astronomy across both the photon and the particle spectrum. The sum- mits of the Antarctic plateau provide the best seeing conditions, the darkest skies and the most transparent atmosphere of any earth-based observing site. Astro- nomical activities are now underway at four plateau sites: the Amundsen-Scott South Pole Station, Concordia Station at Dome C, Kunlun Station at Dome A and Fuji Station at Dome F, in addition to long duration ballooning from the coastal station of McMurdo, at stations run by the USA, France/Italy, China, Japan and the USA, respectively. The astronomy conducted from Antarctica includes op- tical, infrared, terahertz and sub-millimetre astronomy, measurements of cosmic microwave background anisotropies, solar astronomy, as well as high energy as- trophysics involving the measurement of cosmic rays, gamma rays and neutrinos. Antarctica is also the richest source of meteorites on our planet. An extensive range of site testing measurements have been made over the high plateau sites. In this article, we summarise the facets of Antarctica that are driving developments in astronomy there, and review the results of the site testing experiments undertaken to quantify those characteristics of the Antarctic plateau relevant for astronomical observation.
    [Show full text]
  • A Brief History of Ice Core Science Over the Last 50 Yr
    Clim. Past, 9, 2525–2547, 2013 Open Access www.clim-past.net/9/2525/2013/ Climate doi:10.5194/cp-9-2525-2013 © Author(s) 2013. CC Attribution 3.0 License. of the Past A brief history of ice core science over the last 50 yr J. Jouzel1 1Laboratoire des Sciences de Climat et de l’Environnement/Institut Pierre Simon Laplace, CEA-CNRS-UVSQ – UMR8212, CEA Saclay, L’Orme des Merisiers, Bt. 701, 91191 Gif/Yvette, Cedex, France *Invited contribution by J. Jouzel, recipient of the EGS Milutin Milankovic Medal 1997. Correspondence to: J. Jouzel ([email protected]) Received: 30 April 2013 – Published in Clim. Past Discuss.: 3 July 2013 Revised: 24 September 2013 – Accepted: 30 September 2013 – Published: 6 November 2013 Abstract. For about 50 yr, ice cores have provided a about “The history of early polar ice cores” and on many wealth of information about past climatic and environmen- other scientific articles, reports and websites. I was also in- tal changes. Ice cores from Greenland, Antarctica and other terested in looking at how ice core research, which for about glacier-covered regions now encompass a variety of time fifty years has produced such a wealth of information about scales. However, the longer time scales (e.g. at least back past changes in our climate and our environment, is perceived to the Last Glacial period) are covered by deep ice cores, outside our scientific community; one well-documented ex- the number of which is still very limited: seven from Green- ample is given by Spencer Weart, an historian of science, land, with only one providing an undisturbed record of a part who has written a book called “The discovery of global of the last interglacial period, and a dozen from Antarctica, warming” (Weart, 2008, updated in 2013) with a chapter on with the longest record covering the last 800 000 yr.
    [Show full text]
  • Surface Mass Balance Over Dome Argus, Antarctica
    RESEARCH/REVIEW ARTICLE Re-assessment of recent (2008 2013) surface mass balance over Dome Argus, Antarctica Á Minghu Ding,1,2 Cunde Xiao,1,2 Yuande Yang,3 Yetang Wang,4 Chuanjin Li,2 Naiming Yuan,1 Guitao Shi,5 Weijun Sun4 & Jing Ming2 1 Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing 100081, China 2 State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China 3 Chinese Antarctic Center of Surveying and Mapping, Wuhan University, 129 Luoyu Road, Wuhan 430079, China 4 College of Population, Resources and Environment, Shandong Normal University, Jinan 250014, China 5 Polar Research Institute of China, Shanghai 200136, China Keywords Abstract Snow accumulation; Kunlun Station; CHINARE; digital elevation model; deep ice At Dome Argus, East Antarctica, the surface mass balance (SMB) from 2008 core sites; East Antarctic Ice Sheet. to 2013 was evaluated using 49 stakes installed across a 3030 km area. Spatial analysis showed that at least 12 and 20 stakes are needed to obtain reliable Correspondence estimates of SMB at local scales (a few hundred square metres) and regional Cunde Xiao, Institute of Climate System, scales (tens of square kilometres), respectively. The estimated annual mean Chinese Academy of Meteorological SMB was 22.995.9 kg m2 yr1, including a net loss by sublimation of 2.229 Sciences, Beijing 100081, China. E-mail: 0.02 kg m2 yr1 and a mass gain by deposition of 1.3790.01 kg m2 yr1. [email protected] Therefore, ca. 14.3% of precipitation was modified after deposition, which should be considered when interpreting snow or ice core records produced by future drilling projects.
    [Show full text]