Vaccines 2015, 3, 105-136; doi:10.3390/vaccines3010105 OPEN ACCESS vaccines ISSN 2076-393X www.mdpi.com/journal/vaccines Review M2e-Based Universal Influenza A Vaccines Lei Deng 1,2, Ki Joon Cho 1,2, Walter Fiers 1,2 and Xavier Saelens 1,2,* 1 Inflammation Research Center, VIB, Technologiepark 927, B-9052 Ghent, Belgium; E-Mails:
[email protected] (L.D.);
[email protected] (K.C.);
[email protected] (W.F.) 2 Department for Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium * Author to whom correspondence should be addressed; E-Mail:
[email protected]; Tel.: +32-9-331-36-20; Fax: +32-9-221-76-73. Academic Editor: Sarah Gilbert Received: 8 December 2014 / Accepted: 30 January 2015 / Published: 13 February 2015 Abstract: The successful isolation of a human influenza virus in 1933 was soon followed by the first attempts to develop an influenza vaccine. Nowadays, vaccination is still the most effective method to prevent human influenza disease. However, licensed influenza vaccines offer protection against antigenically matching viruses, and the composition of these vaccines needs to be updated nearly every year. Vaccines that target conserved epitopes of influenza viruses would in principle not require such updating and would probably have a considerable positive impact on global human health in case of a pandemic outbreak. The extracellular domain of Matrix 2 (M2e) protein is an evolutionarily conserved region in influenza A viruses and a promising epitope for designing a universal influenza vaccine. Here we review the seminal and recent studies that focused on M2e as a vaccine antigen.