Radio Access Network Dimensioning for 3G UMTS

Total Page:16

File Type:pdf, Size:1020Kb

Radio Access Network Dimensioning for 3G UMTS Communication Networks University of Bremen Prof. Dr. rer. nat. habil. C. Görg Dissertation Radio Access Network Dimensioning for 3G UMTS by Xi Li from Hunan, China First examiner: Prof. Dr. rer. nat. habil. Carmelita Görg Second examiner: Prof. Dr.-Ing. Ralf Lehnert Submitted on: April 16, 2009 Date of exam: May 28, 2009 ACKNOWLEDGEMENT This thesis was written during my research as doctorate candidate at the Communication Networks Group (ComNets) at the University of Bremen within TZI (Center for Computer Science and Information Technology). Throughout the years at ComNets I have always enjoyed the very inspiring, encouraging, deeply rewarding, and exceptionally collegial research atmosphere. To the greatest extent I would like to thank Prof. Dr. rer. nat. habil. Carmelita Görg for her supervising this thesis, for her guidance, and her encouragements. She has given me a lot of great advices and inspiring ideas, not only to my thesis but also other scientific work. She has provided me an open and challenging research environment in the ComNets group where it is a pleasure to conduct research and to take teaching responsibilities. Furthermore, she has given me a lot of opportunities to participate in national and international workshops and conferences, which helped me keep an open mind and view on the ongoing research fields that have inspired me in many ways for my research work. Besides, I am also deeply grateful for the comments and suggestions by Prof. Dr.- Ing. Ralf Lehnert, who has been my Professor during my master study at Dresden University of Technology and who also is the second examiner of this thesis. During the years of my master study, he has given me a lot of great advices and guidance on performing the scientific work as well as at many other technical aspects. I very much appreciate him for taking his valuable time to have discussions with me on my thesis. The discussions with him and his advice were of great help for me. In addition, I would like to thank Dr. Andreas Timm-Giel, who was always very open for discussions and has given me a great amount of valuable suggestions over the past years. I without a doubt greatly benefited from this, both in my research work and personally. His encouragements and advices have been a great support for me. Further thanks go to my colleagues at the institute whom I have not only considered my co-workers but also my friends: especially Wenmin Chen, Chunlei An, Liang Zhao, Yi Chen, Koojana Kuladinithi, Asanga Udugama, Bernd-Ludwig Wenning, and Markus Becker, for sharing many technical and sometimes not-so-technical discussions. Additionally, I also very much thank Thushara Lanka Weerawardane, Yasir Naseer Zaki and Umar Toseef for having numerous technical discussions and exchange of experience and ideas on the dimensioning of different UMTS networks. Finally, I would like to thank my family, especially my mum for encouraging and supporting me all the time. Special thanks to Claas for his continual support, his patience and understanding throughout the past years. Bremen, April 2009 Xi Li ABSTRACT This thesis studies the dimensioning for UMTS Radio Access Networks. In this thesis, dimensioning is investigated with specific focus on the transport network of the Iub interface, which connects the Node B with the RNC. This interface is considered as one of the most important economic factors for the UMTS network dimensioning. In order to cover large urban and rural areas, a large number of Node Bs are required and thus the transport resources for the Iub interface become considerably costly. The ultimate goal of this thesis is to investigate important aspects related to the UMTS radio access network dimensioning, and to propose novel analytical methods to provide suitable estimations on the required transport capacity for the UMTS radio access network in order to achieve maximum utilization of the transport resources. In order to provide a comprehensive investigation on the dimensioning of the Iub interface, various traffic types, different evolutions of UMTS radio access networks as well as different transport solutions, QoS mechanisms and network topologies are studied in this thesis. In the framework of this thesis, UMTS Rel99 is considered as the basic UMTS network. Furthermore, evolved UMTS networks such as HSDPA and HSUPA, and the evolved transport from ATM to IP are investigated. For each evolution of the UMTS radio access network, its specific protocol stacks, important features, its specific traffic- and resource control functions and their impacts on the Iub dimensioning are studied. For the dimensioning process, two basic types of traffic are distinguished, elastic and circuit-switched traffic. They are associated with non real time data applications and delay-sensitive real time services, which are identified as the two main traffic classes served in the current UMTS networks. The fundamental property of elastic traffic is its rate adaptability, which is caused by the feedback mechanism of TCP. In this thesis, the theory of processor sharing is applied to the dimensioning of the Iub interface for elastic traffic for satisfying its desired end-to-end application QoS. To consider the specific UMTS functions and network structures, the basic processor sharing model has been significantly extended in this thesis to dimension the radio access networks under various scenarios of traffic, QoS framework, resource control functions, different transport technologies and network structures. In case of circuit- switched traffic, which needs to meet a guaranteed blocking probability, the classical Erlang models are applied. In addition, a number of queuing models are proposed in this thesis to dimension the Iub link for guaranteeing a required transport network QoS. For validating the developed analytical models as well as for performance evaluation, several simulation models were developed in this thesis to model different UMTS radio access networks. By performing extensive simulations and analysis of the simulation results, important dimensioning rules are derived and the proposed analytical dimensioning models are demonstrated. Through validating with simulation results, it is demonstrated that the proposed analytical models in this thesis are able to capture relevant characteristics and provide accurate dimensioning results, and thus can be applied for UMTS radio access network dimensioning. At the end, a dimensioning tool is developped in this thesis, containing all developed analytical models. This tool can perform dimensioning for various traffic scenarios, transport solutions, QoS mechanisms and network topologies for different UMTS radio access networks. Overall, the investigations and the analytical dimensioning models presented in this 6 Abstract thesis can help network service providers to optimize their network infrastructure to reduce costs while still being able to provide the desired quality of service. KURZFASSUNG In dieser Doktorarbeit wird die Dimensionierung von UMTS-Mobilfunknetzen, insbesondere die Dimensionierung des Transportnetzes der Iub-Schnittstelle, welche den Node B mit dem RNC verbindet, untersucht. Diese Schnittstelle wird als einer der wichtigsten ökonomischen Faktoren bei der Dimensionierung von UMTS-Netzen betrachtet. Da UMTS-Netze verwendet werden, um große Flächen in ländlichen Gegenden abzudecken, ist dieses Transportnetz sehr kostenintensiv. Der Hauptbeitrag dieser Arbeit besteht in einer ausführlichen Analyse der wesentlichen Faktoren, die die Dimensionierung der Iub-Schnittstelle maßgeblich beeinflussen können, und deren jeweiligen Auswirkungen. Basierend auf diesen Faktoren werden neuartige, analytische Verfahren zur geeignetzen Approximation der benötigten Übertragungskapazität der Iub-Schnittstelle bei maximaler Auslastung des Transportnetzes entwickelt. Um eine umfassende Untersuchung der Dimensionierung der Iub-Schnittstelle zu realisieren, werden in dieser Arbeit verschiedene Datenübertragungs-Szenarien, Evolutionsstufen der UMTS-Mobilfunknetze, Übertragungslösungen, QoS- Mechanismen und Netztopologien untersucht. Im Rahmen dieser Doktorarbeit wird UMTS Rel99 als Basis-UMTS-Netz betrachtet. Darüber hinaus werden die Evolutionsstufen HSDPA und HSUPA auf der Netzseite und die Evolution von ATM zu IP-basierenden Transportnetzen untersucht. Für jede Evolutionsstufe des UMTS- Mobilfunknetzes werden deren spezifische Protokolle, spezielle Eigenschaften, die spezifischen Verkehrs- und Ressourcen-Kontrollfunktionen sowie deren Einfluss auf die Iub-Dimensionierung analysiert. Für den Dimensionierungsprozess werden zwei Arten von Datenströmen unterschieden: elastische und leitungsvermittelte. Diese werden mit Anwendungen mit nicht-Echtzeit Datenströmen sowie mit verzögerungssensitiven Echtzeit-Anwendungen verbunden, welche als die zwei meistgenutzten Verkehrsklassen in momentanen UMTS-Netzen identifiziert wurden. Die wesentliche Eigenschaft von elastischen Datenströmen ist ihre durch Rückmeldungen aus dem TCP-Protokoll verursachte Raten- Anpassung. In dieser Arbeit wird die Theorie des „Processor Sharing“ für die Dimensionierung der Iub-Schnittstelle für elastische Datenströme angewendet, um die gewünschte Ende-zu-Ende Anwendungs-QoS zu erfüllen. Um die spezifischen UMTS- Funktionen und Netzstrukturen abbilden zu können, wurde das normale „Processor Sharing“ in dieser Arbeit stark erweitert, um die Mobilfunknetze mit verschiedenen Datenübertragungs-Szenarien, Netztopologien, QoS-Mechanismen, Ressourcen- Kontrollfunktionen und verschiedenen
Recommended publications
  • 3G/UMTS an Evolutionary Path to Next Generation Networks
    3G/UMTS An evolutionary path to Next Generation Networks ITU/BDT Regional Seminar on Fixed Mobile Convergence and Guidelines on the smooth transition of existing mobile networks to IMT-2000 for Developing Countries for Africa Jean-Pierre Bienaimé …………………………………………………………………………… Chairman, UMTS Forum www.umts-forum.org ITU/BDT Regional Seminar Nairobi 9-12 May 2005 Summary • What is the UMTS Forum? • What is the global status of 3G/UMTS launches? • What terminals, services and tariffs are available? • 3G/UMTS evolution from launch through to Release 6 • A look to the future • Viewpoint on spectrum • Lessons learned in Europe ITU/BDT Regional Seminar Nairobi 9-12 May 2005 1 About The UMTS Forum Who are we? An international, cross-sector industry body comprising operators, manufacturers, regulators, application developers, research organisations and IT industry players. Our mission… To promote a common vision of the development of 3G/UMTS and of its evolutions, and to ensure its worldwide commercial success. Our publications Since 1997, more than 40 reports on Spectrum & Regulation, 3G/UMTS vision, Customer behaviour, Market evolution & Forecasts, Technical studies & Implementation. Recent issues: Strategic Considerations for IMS – the 3G Evolution, Coverage Extension Bands for UMTS/IMT-2000 in the bands between 470-600 MHz, Magic Mobile Future 2010-2020… ITU/BDT Regional Seminar Nairobi 9-12 May 2005 UMTS Forum Key Areas of Activity in 2005 Spectrum & Regulation Studies and contributions on harmonisation of global spectrum and additional
    [Show full text]
  • Difference Between GSM, GPRS, EDGE, 3G, WCDMA, HSDPA and 4G
    Difference between GSM, GPRS, EDGE, 3G, WCDMA, HSDPA and 4G It's a very basic and non-technical comparison. GSM GSM, stands for Global Systems for Mobile Communications, is basic standard bearer of 2G technologies. It is mainly used in mobile communication. Short Messaging System (SMS) was introduced into GSM networks along with capability to download content from various service providers. The content could ring tone, logos and picture messages. It can support Voice telephony and data however the data rate is only 9.6Kb/s, that is very low bit rate for date communication. GPRS GPRS, stands for General Packet Radio Service, is used to give higher data speed over GSM. It is not the replacement of GSM. It is just an extension to the older GSM technology to gain faster speed. Multimedia Messaging System or MMS is the feature of GPRS. It allowed subscribers to send videos, pictures, or sound clips to each other just like text messages. GPRS also provided mobile handset the ability to surf the Internet at dial-up speeds through WAP enabled sites. GPRS offers higher bit rate (Up to 171kb/s) by usage of A packet-linked technology over GSM. EDGE EDGE stands for Enhanced Data Rates for GSM Evolution. This technology, also termed as Enhanced GPRS. This is a technology that uses the same equipment as GSM with only a few minor modifications to provide faster data speeds and is often regarded as a stepping stone towards 3G thus it is called 2.5G. EDGE gives the users the inimitable chance to increase the throughput capacity and the data speed at least 3 to 4 times higher to what GPRS offers.
    [Show full text]
  • Optical Access Network Migration from GPON to XG-PON
    ACCESS 2012 : The Third International Conference on Access Networks Optical Access Network Migration from GPON to XG-PON Bostjan Batagelj, Vesna Erzen, Vitalii Bagan, Yury Ignatov, Maxim Antonenko Jurij Tratnik, Luka Naglic Moscow Institute for Physics and Technology University of Ljubljana Department of Radio-Electronics Faculty of Electrical Engineering and Applied Informatics Ljubljana, Slovenia Moscow, Russia e-mail: [email protected] e-mail: [email protected] e-mail: [email protected] e-mail: [email protected] e-mail: [email protected] e-mail: [email protected] e-mail: [email protected] Abstract—The purpose of this paper is to give an introduction Present Gigabit-capable Passive Optical Network into the new standard base of next-generation Passive Optical (GPON) as a future safe investment new standard for first Network (NG-PON). Study and analysis of future trends in the generation of Ten-Gigabit-Capable Passive Optical development of next-generation fixed broadband optical Networks (XG-PON1) has been published in 2010 by ITU-T network is performed. The main intention of this paper is to [4]. This standard will offer 10 Gbit/s downstream and 2.5 describe migration from Gigabit-capable Passive Optical Gbit/s upstream speed; but, target distance and split ratio did Network (GPON) to Ten-Gigabit-Capable Passive Optical not increase much. Research in this area continues the job to Networks (XG-PON). Paper answers the question of what bring even better P2MP technology. Most of them are today extent active and passive GPON elements need to be replaced known under the term second generation of next-generation and what needs to be added when migrating to XG-PON.
    [Show full text]
  • Equal Access Networks for Real Broadband Access 2773 EAN Wp V4 10/11/03 9:34 Page 2
    2773_EAN_wp_v4 10/11/03 9:34 Page 1 White paper Equal Access Networks for real broadband access 2773_EAN_wp_v4 10/11/03 9:34 Page 2 Contents 02 The importance of real broadband The importance of real broadband Metropolitan economies are important to the national 03 New opportunities for economy. To make a real contribution to national prosperity, service providers cities need to increase levels of economic growth and become 03 Benefits of an Ethernet-based more competitive. They must also improve the way they are infrastructure governed and managed. 04 Cisco’s ETTx solution Connecting real broadband to a city can change the way whole 06 Benefits of intelligent networks areas work, play and learn. That gives municipalities real 08 Infrastructure for Equal opportunities to deliver better service to tax payers, attract Access Networks more businesses to the area and improve overall prosperity 09 A complete provisioning and competitiveness. solution Metro Ethernet from Cisco is an ideal foundation for real 09 Supporting efficient broadband. Today, almost all network traffic begins and ends as network operation IP, and Ethernet and the Ethernet RJ-45 connector are seen as the 10 Real broadband – the prospects most important form of access to public networks. The Ethernet for residential subscribers to the x (ETTx) Solution is based on Metro Ethernet technology 11 Real broadband – the prospects and utilises IP to provide intelligent network functions. It represents for business subscribers a unified network infrastructure providing end-to-end delivery 12 Business models for of next-generation voice, video, storage and data services. implementing real broadband Equal Access Networks The availability of dark fibre and the economics of Ethernet in the local loop are radically changing access to metropolitan area 14 TV and video solutions networks.
    [Show full text]
  • Evolution of Access Network Sharing and Its Role in 5G Networks
    applied sciences Review Evolution of Access Network Sharing and Its Role in 5G Networks Nima Afraz * , Frank Slyne , Harleen Gill and Marco Ruffini * CONNECT Centre, Trinity College, The University of Dublin, 2 Dublin, Ireland; [email protected] (F.S.); [email protected] (H.G.) * Correspondence: [email protected] (N.A.); marco.ruffi[email protected] (M.R.) Received: 3 October 2019; Accepted: 18 October 2019; Published: 28 October 2019 Abstract: This paper details the evolution of access network sharing models from legacy DSL to the most recent fibre-based technology and the main challenges faced from technical and business perspectives. We first give an overview of existing access sharing models, that span physical local loop unbundling and virtual unbundled local access. We then describe different types of optical access technologies and highlight how they support network sharing. Next, we examine how the concept of SDN and network virtualization has been pivotal in enabling the idea of “true multi-tenancy”, through the use of programmability, flexible architecture and resource isolation. We give examples of recent developments of cloud central office and OLT virtualization. Finally, we provide an insight into the role that novel business models, such as blockchain and smart contract technology, could play in 5G networks. We discuss how these might evolve, to provide flexibility and dynamic operations that are needed in the data and control planes. Keywords: access networks; network sharing; 5G networks; multi tenancy; optical access; sharing economics 1. Introduction By its nature, a telecommunications network is a shared resource that interconnects multiple nodes. Network sharing is part of a fundamental principle of statistical multiplexing of link capacity.
    [Show full text]
  • Wi-Fi Roaming Guidelines Version 13.0 14 October 2020
    GSMA Official Document Non-confidential IR.61 Wi-Fi Roaming Guidelines v12.1 (Current) Wi-Fi Roaming Guidelines Version 13.0 14 October 2020 This is a Non-binding Permanent Reference Document of the GSMA Security Classification: Non-confidential Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without the prior written approval of the Association. Copyright Notice Copyright © 2020 GSM Association. Disclaimer The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained in this document may be subject to change without prior notice.. Antitrust Notice The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy. V13.0 Page 1 of 35 GSM Association` Non-confidential Official Document IR.61 - Wi-Fi Roaming Guidelines Table of Contents 1 Introduction 4 1.1 Scope 4 2 Abbreviations and Terminology 4 3 References 11 4 EPC Overview (Informative)
    [Show full text]
  • Network Experience Evolution to 5G
    Network Experience Evolution to 5G Table of Contents Executive Summary ........................................................................................................... 4 Introduction ........................................................................................................................ 5 Definition of Terms ............................................................................................................... 5 Typical MBB Services and Network Experience Requirements in the 5G Era ............. 7 VR ........................................................................................................................................ 8 Video.................................................................................................................................... 9 Voice .................................................................................................................................... 9 Mobile Gaming ................................................................................................................... 10 FWA ................................................................................................................................... 11 Summary ........................................................................................................................... 13 Network Evolution Trends .............................................................................................. 13 5G-oriented LTE Experience Improvement Technologies ..........................................
    [Show full text]
  • 4G to 5G Networks and Standard Releases
    4G to 5G networks and standard releases CoE Training on Traffic engineering and advanced wireless network planning Sami TABBANE 30 September -03 October 2019 Bangkok, Thailand 1 Objectives Provide an overview of various technologies and standards of 4G and future 5G 2 Agenda I. 4G and LTE networks II. LTE Release 10 to 14 III. 5G 3 Agenda I. 4G and LTE networks 4 LTE/SAE 1. 4G motivations 5 Introduction . Geneva, 18 January 2012 – Specifications for next-generation mobile technologies – IMT-Advanced – agreed at the ITU Radiocommunications Assembly in Geneva. ITU determined that "LTELTELTE----AdvancedAdvancedAdvanced" and "WirelessMANWirelessMANWirelessMAN----AdvancedAdvancedAdvanced" should be accorded the official designation of IMTIMT----AdvancedAdvanced : . Wireless MANMAN- ---AdvancedAdvancedAdvanced:::: Mobile WiMax 2, or IEEE 802. 16m; . 3GPPLTE AdvancedAdvanced: LTE Release 10, supporting both paired Frequency Division Duplex (FDD) and unpaired Time Division Duplex (TDD) spectrum. 6 Needs for IMT-Advanced systems Need for higher data rates and greater spectral efficiency Need for a Packet Switched only optimized system Use of licensed frequencies to guarantee quality of services Always-on experience (reduce control plane latency significantly and reduce round trip delay) Need for cheaper infrastructure Simplify architecture of all network elements 7 Impact and requirements on LTE characteristics Architecture (flat) Frequencies (flexibility) Bitrates (higher) Latencies (lower) Cooperation with other technologies (all 3GPP and
    [Show full text]
  • A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna
    International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 685 ISSN 2229-5518 A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna Abstract— Wireless communication is a transfer of data without using wired environment. The distance may be short (Television) or long (radio transmission). The term wireless will be used by cellular telephones, PDA’s etc. In this paper we will concentrate on the evolution of various generations of wireless network. Index Terms— Wireless, Radio Transmission, Mobile Network, Generations, Communication. —————————— —————————— 1 INTRODUCTION (TECHNOLOGY) er frequency of about 160MHz and up as it is transmitted be- tween radio antennas. The technique used for this is FDMA. In IRELESS telephone started with what you might call W terms of overall connection quality, 1G has low capacity, poor 0G if you can remember back that far. Just after the World War voice links, unreliable handoff, and no security since voice 2 mobile telephone service became available. In those days, calls were played back in radio antennas, making these calls you had a mobile operator to set up the calls and there were persuadable to unwanted monitoring by 3rd parties. First Gen- only a Few channels were available. 0G refers to radio tele- eration did maintain a few benefits over second generation. In phones that some had in cars before the advent of mobiles. comparison to 1G's AS (analog signals), 2G’s DS (digital sig- Mobile radio telephone systems preceded modern cellular nals) are very Similar on proximity and location. If a second mobile telephone technology. So they were the foregoer of the generation handset made a call far away from a cell tower, the first generation of cellular telephones, these systems are called DS (digital signal) may not be strong enough to reach the tow- 0G (zero generation) itself, and other basic ancillary data such er.
    [Show full text]
  • Network 2020: Mission Critical Communications NETWORK 2020 MISSION CRITICAL COMMUNICATIONS
    Network 2020: Mission Critical Communications NETWORK 2020 MISSION CRITICAL COMMUNICATIONS About the GSMA Network 2020 The GSMA represents the interests of mobile operators The GSMA’s Network 2020 Programme is designed to help worldwide, uniting nearly 800 operators with almost 300 operators and the wider mobile industry to deliver all-IP companies in the broader mobile ecosystem, including handset networks so that everyone benefits regardless of where their and device makers, software companies, equipment providers starting point might be on the journey. and internet companies, as well as organisations in adjacent industry sectors. The GSMA also produces industry-leading The programme has three key work-streams focused on: The events such as Mobile World Congress, Mobile World Congress development and deployment of IP services, The evolution of the Shanghai, Mobile World Congress Americas and the Mobile 360 4G networks in widespread use today The 5G Journey, developing Series of conferences. the next generation of mobile technologies and service. For more information, please visit the GSMA corporate website For more information, please visit the Network 2020 website at www.gsma.com. Follow the GSMA on Twitter: @GSMA. at: www.gsma.com/network2020 Follow the Network 2020 on Twitter: #Network2020. With thanks to contributors: DISH Network Corporation EE Limited Ericsson Gemalto NV Huawei Technologies Co Ltd KDDI Corporation KT Corporation NEC Corporation Nokia Orange Qualcomm Incorporated SK Telecom Co., Ltd. Telecom Italia SpA TeliaSonera
    [Show full text]
  • HD Voice Annex C Minimum Requirements with GSM/UMTS/LTE
    GSM Association Non-Confidential Minimum Technical Requirements for use of the HD Voice Logo with GSM/UMTS/LTE issued by GSMA Minimum Technical Requirements for use of the HD Voice Logo with GSM/UMTS/LTE issued by GSMA Version 1.1 22nd March 2013 Security Classification – NON CONFIDENTIAL GSMA MATERIAL Copyright Notice Copyright © 2013 GSM Association. Antitrust Notice The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy. Version 1.1 Page 1 of 18 GSM Association Non-Confidential Minimum Technical Requirements for use of the HD Voice Logo with GSM/UMTS/LTE issued by GSMA Table of Contents INTRODUCTION ..................................................................................................................... 3 ANNEX C: MINIMUM REQUIREMENTS FOR MOBILE NETWORKS AND TERMINALS FOR THE USAGE OF THE ‘HD VOICE’ LOGO WITH GSM/UMTS/LTE............................................................................................................... 3 DOCUMENT MANAGEMENT ............................................................................................... 18 Document History .................................................................................................................. 18 Other Information ................................................................................................................... 18 Version 1.1 Page 2 of 18 GSM Association Non-Confidential Minimum Technical Requirements for use of the HD Voice Logo with GSM/UMTS/LTE issued by GSMA INTRODUCTION
    [Show full text]
  • AT&T 3G Sunset
    Product Change Notification AT&T 3G Sunset - Impacts on 4G Devices LTE Category 1, Category 3 and Select Category 4 Models Date: March 9, 2021 I. Product Change Notification Number (PCN) PCN 03092021-02 II. Overview The purpose of this PCN is to avoid service interruption for certain MultiTech 4G products impacted by the impending AT&T 3G network sunset. 4G/LTE Category 1, 3 and 4 devices in the U.S. may no longer attach to the AT&T network after their 3G network sunset, scheduled for late February 2022. Voice-capable cellular modules integrated into several MultiTech products are configured for voice-centric signaling by default. These devices are likely to arrive at a No Service condition after 3G sunset -- even for data-only applications. This is a result of the module requiring a voice signal to connect to networks configured to leverage a combined attach (3G and LTE) for LTE device registration. The MultiTech products detailed in this PCN will be impacted by the 3G sunset. A software configuration change in the cellular module in these products is required in order to avoid a No Service condition. The only exception is for products with cellular modules supporting the IMS service Voice over LTE (VoLTE) and an accompanying VoLTE subscription from your service provider. MultiTech will immediately implement a software configuration change in our manufacturing process to include the required AT command to set a new permanent module default for its User Equipment (“UE”) settings. Note: future module firmware updates may impact this setting. Current default: CEMODE=1 (Voice centric) New default: CEMODE=2 (Data centric) For devices already deployed in the field, you must implement the above mentioned software- configuration change in each device to ensure continued service following the 3G sunset.
    [Show full text]