The Nucleus Accumbens: Mechanisms of Addiction Across Drug Classes Reflect the Importance of Glutamate Homeostasis

Total Page:16

File Type:pdf, Size:1020Kb

The Nucleus Accumbens: Mechanisms of Addiction Across Drug Classes Reflect the Importance of Glutamate Homeostasis 1521-0081/68/3/816–871$25.00 http://dx.doi.org/10.1124/pr.116.012484 PHARMACOLOGICAL REVIEWS Pharmacol Rev 68:816–871, July 2016 Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: JEFFREY M. WITKIN The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis M. D. Scofield, J. A. Heinsbroek, C. D. Gipson, Y. M. Kupchik, S. Spencer, A. C. W. Smith, D. Roberts-Wolfe, and P. W. Kalivas Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.) Abstract ...................................................................................818 I. Introduction . ..............................................................................818 II. Modeling Addiction and Relapse in the Laboratory Setting . ...............................819 A. What Are We Trying to Model in Experimental Animals? ...............................819 B. Using Animal Models to Understand Constitutive and Transient Adaptations ...........819 Downloaded from C. Motor Sensitization . ..................................................................819 D. Conditioned Place Preference...........................................................821 E. Self-Administration . ..................................................................822 1. Acquisition . ........................................................................823 2. Maintenance........................................................................823 by guest on September 25, 2021 3. Escalation . ........................................................................824 4. Abstinence. ........................................................................824 5. Relapse.............................................................................825 6. Punishment Models.................................................................825 7. Summary. ........................................................................825 III. Nucleus Accumbens: Composition ..........................................................826 A. Medium Spiny Neurons ................................................................826 B. Interneurons . ........................................................................827 1. Acetylcholine Interneurons..........................................................827 2. Somatostatin–, Neuropeptide Y–, and Neuronal Nitric Oxide Synthase–Expressing Interneurons. ................................................828 C. Glial Cells .............................................................................829 D. Extracellular Matrix . ..................................................................830 IV. Nucleus Accumbens: Connectivity ..........................................................831 A. Nucleus Accumbens Core. ............................................................831 1. Glutamatergic Afferents ............................................................832 2. g-Aminobutyric Acidergic Afferents. ................................................832 3. Dopaminergic Afferents . ............................................................833 4. Nucleus Accumbens Core Efferents. ................................................833 B. Nucleus Accumbens Shell . ............................................................834 1. Glutamatergic Afferents ............................................................834 2. Dopaminergic Afferents . ............................................................835 This work was supported by grants from the National Institute on Drug Abuse [DA003906, DA012513, DA015369, and DA038700 (P.W.K.), KDA040004A and DA007288 (M.D.S.), R00DAO36569 (C.D.G.), F30DA038893 (D.R.-W.), DA0377220 (S.S.), and DA007288 (A.C.W.S.)], the National Center for Advancing Translational Sciences [TL1TR000061 (D.R.-W.)], the National Institute of General Medical Sciences [T32GM008716 (D.R.-W.)], and by the Burroughs Wellcome Fund Postdoctoral Enrichment Fellowship. Address correspondence to: Dr. Michael D. Scofield, Department of Neuroscience, Medical University of South Carolina, 70 President Street, Charleston, SC 29407. E-mail: [email protected] dx.doi.org/10.1124/pr.116.012484. 816 The Nucleus Accumbens: Mechanisms of Addiction 817 3. Other Afferents . ..................................................................835 4. Efferents of the Nucleus Accumbens Shell . ..........................................835 V. Drug-Induced Plasticity . ..................................................................835 A. Long-Term Synaptic Plasticity..........................................................836 1. Long-Term Depression . ............................................................836 a. Metabotropic glutamate receptor 2/3–dependent long-term depression ............836 b. Endocannabinoid-dependent long-term depression . ...............................837 c. N-methyl-D-aspartic acid–dependent long-term depression ........................838 d. Dopamine and long-term depression . ..........................................839 e. Opioids and long-term depression ................................................839 2. Long-Term Potentiation. ............................................................839 a. N-methyl-D-aspartic–dependent long-term potentiation . .........................839 b. Calcium-permeable a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors . ..................................................................840 c. Silent synapses..................................................................841 3. Afferent– and Medium Spiny Neuron–Specific Synaptic Plasticity. ...................841 a. Afferent-specific synaptic plasticity...............................................841 i. Prefrontal Cortext to the Nucleus Accumbens . ...............................841 ii. Basolateral Amygdala to the Nucleus Accumbens..............................842 iii. Ventral Hippocampus to the Nucleus Accumbens ..............................842 b. Dopamine receptor 1 medium spiny neuron– and dopamine receptor 2 medium spiny neuron–specific changes . ................................................842 B. Short-Term Synaptic Plasticity . ......................................................842 C. Morphologic Plasticity..................................................................843 D. Functional Relevance of Spine Dynamics ...............................................843 VI. Pharmacological Inhibition of Drug Seeking ................................................845 A. a-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptors .......................846 B. N-Methyl-D-Aspartate Receptors. ......................................................846 C. Group I Metabotropic Glutamate Receptors (Metabotropic Glutamate Receptors 1 and 5) . ..................................................................847 D. Group II Metabotropic Glutamate Receptors (Metabotropic Glutamate Receptors 2 and 3) . ..................................................................849 E. Group III Metabotropic Glutamate Receptors (Metabotropic Glutamate Receptor 7)......850 F. Glial Glutamate Release and Uptake . ................................................852 ABBREVIATIONS: ACh, acetylcholine; AGS, activator of G protein; AMN082, N,N9-dibenzhydrylethane-1,2-diamine dihydrochloride; AMPA, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; AMPAR, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; AP5, (2R)-amino-5-phosphonovaleric acid; AZD8529, trifluoromethoxy)phenyl]methyl]-3H-isoindol-1-one; BAC, bacterial artificial chromosome; BLA, basolateral amygdala; CAM, cell adhesion molecule; CaMKII, calmodulin-dependent protein kinase II; CB, cannabinoid; CI, Ca2+ impermeable; CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione; CP, Ca2+ permeable; CPP, conditioned place preference; CR, conditioned response; CREB, cAMP response element binding protein; CS, conditioned stimulus; DNQX, 6,7-dinitroquinoxaline-2,3-dione; DREADD, designer receptor exclusively activated by designer drugs; eCB, endogenous cannabinoid; ECM, extracellular matrix; EPSC, excitatory postsynaptic current; ERK, extracellular signal–regulated kinase; FR, fixed ratio; GLT, glutamate transporter; GluR, glutamate receptor; HSV, herpes simplex virus; IEG, immediate early gene; ILC, infralimbic cortex; JNJ-16259685, 3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone; LTD, long-term depression; LTP, long-term potentiation; LY293558, (3S,4aR,6R,8aR)-6-[2-(1H-tetrazol-5-yl)ethyl]decahydroisoquinoline-3- carboxylic acid; LY341495, 2-[(1S,2S)-2-carboxycyclopropyl]-3-(9H-xanthen-9-yl)-D-alanine; LY379268, (1S,2R,5R,6R)-2-amino-4-oxabicyclo[3.1.0]- hexane-2,6-dicarboxylic acid; LY404039, (2)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid; mAChR, muscarinic acetylcholine receptor; mEPSC, miniature excitatory postsynaptic current; MFZ 10-7, 3-fluoro-5-[2-(6-methyl-2-pyridinyl)ethynyl]benzonitrile hydrochloride; mGluR, metabotropic glutamate receptor; MK-801, [5R,10S]-[+]-5-methyl-10,11- dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine; MMP, matrix metalloproteinase; MMPIP, 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one;
Recommended publications
  • A Guide to Glutamate Receptors
    A guide to glutamate receptors 1 Contents Glutamate receptors . 4 Ionotropic glutamate receptors . 4 - Structure ........................................................................................................... 4 - Function ............................................................................................................ 5 - AMPA receptors ................................................................................................. 6 - NMDA receptors ................................................................................................. 6 - Kainate receptors ............................................................................................... 6 Metabotropic glutamate receptors . 8 - Structure ........................................................................................................... 8 - Function ............................................................................................................ 9 - Group I: mGlu1 and mGlu5. .9 - Group II: mGlu2 and mGlu3 ................................................................................. 10 - Group III: mGlu4, mGlu6, mGlu7 and mGlu8 ............................................................ 10 Protocols and webinars . 11 - Protocols ......................................................................................................... 11 - Webinars ......................................................................................................... 12 References and further reading . 13 Excitatory synapse pathway
    [Show full text]
  • Selective Blockade of the Metabotropic Glutamate Receptor Mglur5 Protects Mouse Livers in in Vitro and Ex Vivo Models of Ischemia Reperfusion Injury
    International Journal of Molecular Sciences Article Selective Blockade of the Metabotropic Glutamate Receptor mGluR5 Protects Mouse Livers in In Vitro and Ex Vivo Models of Ischemia Reperfusion Injury Andrea Ferrigno 1,* ID , Clarissa Berardo 1, Laura Giuseppina Di Pasqua 1, Veronica Siciliano 1, Plinio Richelmi 1, Ferdinando Nicoletti 2,3 and Mariapia Vairetti 1 ID 1 Department of Internal Medicine and Therapeutics, Cellular and Molecular Pharmacology and Toxicology Unit, University of Pavia, 27100 Pavia, Italy; [email protected] (C.B.); [email protected] (L.G.D.P.); [email protected] (V.S.); [email protected] (P.R.); [email protected] (M.V.) 2 Department of Physiology and Pharmacology, Sapienza University, 00185 Roma, Italy; [email protected] 3 I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected]; Tel.: +39-0382-986451 Received: 20 November 2017; Accepted: 22 January 2018; Published: 23 January 2018 Abstract: 2-Methyl-6-(phenylethynyl)pyridine (MPEP), a negative allosteric modulator of the metabotropic glutamate receptor (mGluR) 5, protects hepatocytes from ischemic injury. In astrocytes and microglia, MPEP depletes ATP. These findings seem to be self-contradictory, since ATP depletion is a fundamental stressor in ischemia. This study attempted to reconstruct the mechanism of MPEP-mediated ATP depletion and the consequences of ATP depletion on protection against ischemic injury. We compared the effects of MPEP and other mGluR5 negative modulators on ATP concentration when measured in rat hepatocytes and acellular solutions. We also evaluated the effects of mGluR5 blockade on viability in rat hepatocytes exposed to hypoxia. Furthermore, we studied the effects of MPEP treatment on mouse livers subjected to cold ischemia and warm ischemia reperfusion.
    [Show full text]
  • Metabotropic Glutamate Receptors
    mGluR Metabotropic glutamate receptors mGluR (metabotropic glutamate receptor) is a type of glutamate receptor that are active through an indirect metabotropic process. They are members of thegroup C family of G-protein-coupled receptors, or GPCRs. Like all glutamate receptors, mGluRs bind with glutamate, an amino acid that functions as an excitatoryneurotransmitter. The mGluRs perform a variety of functions in the central and peripheral nervous systems: mGluRs are involved in learning, memory, anxiety, and the perception of pain. mGluRs are found in pre- and postsynaptic neurons in synapses of the hippocampus, cerebellum, and the cerebral cortex, as well as other parts of the brain and in peripheral tissues. Eight different types of mGluRs, labeled mGluR1 to mGluR8, are divided into groups I, II, and III. Receptor types are grouped based on receptor structure and physiological activity. www.MedChemExpress.com 1 mGluR Agonists, Antagonists, Inhibitors, Modulators & Activators (-)-Camphoric acid (1R,2S)-VU0155041 Cat. No.: HY-122808 Cat. No.: HY-14417A (-)-Camphoric acid is the less active enantiomer (1R,2S)-VU0155041, Cis regioisomer of VU0155041, is of Camphoric acid. Camphoric acid stimulates a partial mGluR4 agonist with an EC50 of 2.35 osteoblast differentiation and induces μM. glutamate receptor expression. Camphoric acid also significantly induced the activation of NF-κB and AP-1. Purity: ≥98.0% Purity: ≥98.0% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10 mM × 1 mL, 100 mg Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg (2R,4R)-APDC (R)-ADX-47273 Cat. No.: HY-102091 Cat. No.: HY-13058B (2R,4R)-APDC is a selective group II metabotropic (R)-ADX-47273 is a potent mGluR5 positive glutamate receptors (mGluRs) agonist.
    [Show full text]
  • The G Protein-Coupled Glutamate Receptors As Novel Molecular Targets in Schizophrenia Treatment— a Narrative Review
    Journal of Clinical Medicine Review The G Protein-Coupled Glutamate Receptors as Novel Molecular Targets in Schizophrenia Treatment— A Narrative Review Waldemar Kryszkowski 1 and Tomasz Boczek 2,* 1 General Psychiatric Ward, Babinski Memorial Hospital in Lodz, 91229 Lodz, Poland; [email protected] 2 Department of Molecular Neurochemistry, Medical University of Lodz, 92215 Lodz, Poland * Correspondence: [email protected] Abstract: Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology. Citation: Kryszkowski, W.; Boczek, T. The G Protein-Coupled Glutamate Keywords: schizophrenia; metabotropic glutamate receptors; positive allosteric modulators; negative Receptors as Novel Molecular Targets allosteric modulators; drug development; animal models of schizophrenia; clinical trials in Schizophrenia Treatment—A Narrative Review. J. Clin. Med. 2021, 10, 1475. https://doi.org/10.3390/ jcm10071475 1. Introduction Academic Editors: Andreas Reif, Schizophrenia is a common debilitating disease affecting about 0.3–1% of the human Blazej Misiak and Jerzy Samochowiec population worldwide [1].
    [Show full text]
  • Dynamic L-Glutamate Signaling in the Prefrontal Cortex and the Effects of Methylphenidate Treatment
    University of Kentucky UKnowledge Theses and Dissertations--Neuroscience Neuroscience 2012 DYNAMIC L-GLUTAMATE SIGNALING IN THE PREFRONTAL CORTEX AND THE EFFECTS OF METHYLPHENIDATE TREATMENT Catherine Elizabeth Mattinson University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Mattinson, Catherine Elizabeth, "DYNAMIC L-GLUTAMATE SIGNALING IN THE PREFRONTAL CORTEX AND THE EFFECTS OF METHYLPHENIDATE TREATMENT" (2012). Theses and Dissertations--Neuroscience. 4. https://uknowledge.uky.edu/neurobio_etds/4 This Doctoral Dissertation is brought to you for free and open access by the Neuroscience at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Neuroscience by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies.
    [Show full text]
  • Whittle-Neuropharm-2013.Pdf
    Neuropharmacology 64 (2013) 414e423 Contents lists available at SciVerse ScienceDirect Neuropharmacology journal homepage: www.elsevier.com/locate/neuropharm Deep brain stimulation, histone deacetylase inhibitors and glutamatergic drugs rescue resistance to fear extinction in a genetic mouse model Nigel Whittle a,*, Claudia Schmuckermair a, Ozge Gunduz Cinar b,d, Markus Hauschild a, Francesco Ferraguti c, Andrew Holmes b,d, Nicolas Singewald a a Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80 e 82/III, A-6020 Innsbruck, Austria b Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD 20852, USA Center for Neuroscience and Regenerative Medicine at the Uniformed Services University of the Health Sciences, Bethesda, MD c Department of Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria d Center for Neuroscience and Regenerative Medicine at the Uniformed Services University of the Health Sciences, Bethesda, MD, USA article info abstract Article history: Anxiety disorders are characterized by persistent, excessive fear. Therapeutic interventions that reverse Received 30 March 2012 deficits in fear extinction represent a tractable approach to treating these disorders. We previously re- Received in revised form ported that 129S1/SvImJ (S1) mice show no extinction learning following normal fear conditioning. We 31 May 2012 now demonstrate that weak fear conditioning does permit fear reduction during massed extinction Accepted 6 June 2012 training in S1 mice, but reveals specificdeficiency in extinction memory consolidation/retrieval. Rescue of this impaired extinction consolidation/retrieval was achieved with D-cycloserine (N-methly-D-aspar- Keywords: tate partial agonist) or MS-275 (histone deacetylase (HDAC) inhibitor), applied after extinction training.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Activation of Group I Metabotropic Glutamate Receptors Potentiates Heteromeric Kainate Receptors
    1521-0111/83/1/106–121$25.00 http://dx.doi.org/10.1124/mol.112.081802 MOLECULAR PHARMACOLOGY Mol Pharmacol 83:106–121, January 2013 Copyright ª 2013 by The American Society for Pharmacology and Experimental Therapeutics Activation of Group I Metabotropic Glutamate Receptors Potentiates Heteromeric Kainate Receptors Asheebo Rojas, Jonathon Wetherington, Renee Shaw, Geidy Serrano, Sharon Swanger, and Raymond Dingledine Department of Pharmacology, Emory University, Atlanta, Georgia Received August 10, 2012; accepted October 11, 2012 ABSTRACT Kainate receptors (KARs), a family of ionotropic glutamate KARs by mGlu1 activation was attenuated by GDPbS, blocked receptors, are widely expressed in the central nervous system by an inhibitor of phospholipase C or the calcium chelator 1,2- and are critically involved in synaptic transmission. KAR bis(o-aminophenoxy)ethane-N,N,N9,N9-tetraacetic acid (BAPTA), activation is influenced by metabotropic glutamate receptor prolonged by the phosphatase inhibitor okadaic acid, but un- (mGlu) signaling, but the underlying mechanisms are not affected by the tyrosine kinase inhibitor lavendustin A. Protein understood. We undertook studies to examine how mGlu kinase C (PKC) inhibition reduced the potentiation by mGlu1 of modulation affects activation of KARs. Confocal immunohisto- GluK2/GluK5, and conversely, direct activation of PKC by chemistry of rat hippocampus and cultured rat cortex revealed phorbol 12-myristate,13-acetate potentiated GluK2/GluK5. Using colocalization of the high-affinity KAR subunits with group I site-directed mutagenesis, we identified three serines (Ser833, mGlu receptors. In hippocampal and cortical cultures, the Ser836, and Ser840) within the membrane proximal region of the calcium signal caused by activation of native KARs was po- GluK5 C-terminal domain that, in combination, are required for tentiated by activation of group I mGlu receptors.
    [Show full text]
  • 1 Activation of the Same Mglur5 Receptors in the Amygdala Causes Divergent Effects 2 on Specific Versus Indiscriminate Fear 3
    1 Activation of the same mGluR5 receptors in the amygdala causes divergent effects 2 on specific versus indiscriminate fear 3 4 Mohammed Mostafizur Rahman1,2,#, Sonal Kedia1,#, Giselle Fernandes1#, Sumantra 5 Chattarji1,2,3* 6 7 1National Centre for Biological Sciences, Tata Institute of Fundamental Research, 8 Bangalore 560065, India 9 10 2Centre for Brain Development and Repair, Institute for Stem Cell Biology and 11 Regenerative Medicine, Bangalore 560065, India 12 13 3Centre for Integrative Physiology, Deanery of Biomedical Sciences, University of 14 Edinburgh, Hugh Robson Building, George Square, Edinburgh EH89XD, UK 15 16 17 * Corresponding Author: Prof. Sumantra Chattarji 18 Centre for Brain Development and Repair, Institute for 19 Stem Cell Biology and Regenerative Medicine and 20 National Centre for Biological Sciences 21 Bangalore 560065, INDIA 22 E-Mail: [email protected] 23 # Equal contribution 24 1 25 Abstract 26 27 Although mGluR5-antagonists prevent fear and anxiety, little is known about how the 28 same receptor in the amygdala gives rise to both. Combining in vitro and in vivo 29 activation of mGluR5 in rats, we identify specific changes in intrinsic excitability and 30 synaptic plasticity in basolateral amygdala neurons that give rise to temporally distinct 31 and mutually exclusive effects on fear-related behaviors. The immediate impact of 32 mGluR5 activation is to produce anxiety manifested as indiscriminate fear of both tone 33 and context. Surprisingly, this state does not interfere with the proper encoding of tone- 34 shock associations that eventually lead to enhanced cue-specific fear. These results 35 provide a new framework for dissecting the functional impact of amygdalar mGluR- 36 plasticity on fear versus anxiety in health and disease.
    [Show full text]
  • Identification and Analysis of Hepatitis C Virus NS3 Helicase Inhibitors Using Nucleic Acid Binding Assays Sourav Mukherjee1, Alicia M
    Published online 27 June 2012 Nucleic Acids Research, 2012, Vol. 40, No. 17 8607–8621 doi:10.1093/nar/gks623 Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays Sourav Mukherjee1, Alicia M. Hanson1, William R. Shadrick1, Jean Ndjomou1, Noreena L. Sweeney1, John J. Hernandez1, Diana Bartczak1, Kelin Li2, Kevin J. Frankowski2, Julie A. Heck3, Leggy A. Arnold1, Frank J. Schoenen2 and David N. Frick1,* 1Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, 2University of Kansas Specialized Chemistry Center, University of Kansas, 2034 Becker Dr., Lawrence, KS 66047 and 3Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA Received March 26, 2012; Revised May 30, 2012; Accepted June 4, 2012 Downloaded from ABSTRACT INTRODUCTION Typical assays used to discover and analyze small All cells and viruses need helicases to read, replicate and molecules that inhibit the hepatitis C virus (HCV) repair their genomes. Cellular organisms encode NS3 helicase yield few hits and are often con- numerous specialized helicases that unwind DNA, RNA http://nar.oxfordjournals.org/ founded by compound interference. Oligonucleotide or displace nucleic acid binding proteins in reactions binding assays are examined here as an alternative. fuelled by ATP hydrolysis. Small molecules that inhibit After comparing fluorescence polarization (FP), helicases would therefore be valuable as molecular homogeneous time-resolved fluorescence (HTRFÕ; probes to understand the biological role of a particular Cisbio) and AlphaScreenÕ (Perkin Elmer) assays, helicase, or as antibiotic or antiviral drugs (1,2). For an FP-based assay was chosen to screen Sigma’s example, several compounds that inhibit a helicase Library of Pharmacologically Active Compounds encoded by herpes simplex virus (HSV) are potent drugs in animal models (3,4).
    [Show full text]
  • Review Article Development of PET and SPECT Probes for Glutamate Receptors
    Hindawi Publishing Corporation e Scientific World Journal Volume 2015, Article ID 716514, 19 pages http://dx.doi.org/10.1155/2015/716514 Review Article Development of PET and SPECT Probes for Glutamate Receptors Takeshi Fuchigami, Morio Nakayama, and Sakura Yoshida Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan Correspondence should be addressed to Takeshi Fuchigami; [email protected] Received 28 June 2014; Accepted 29 August 2014 Academic Editor: Masahiro Ono Copyright © 2015 Takeshi Fuchigami et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. l-Glutamate and its receptors (GluRs) play a key role in excitatory neurotransmission within the mammalian central nervous system (CNS). Impaired regulation of GluRs has also been implicated in various neurological disorders. GluRs are classified into two major groups: ionotropic GluRs (iGluRs), which are ligand-gated ion channels, and metabotropic GluRs (mGluRs), which are coupled to heterotrimeric guanosine nucleotide binding proteins (G-proteins). Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of GluRs could provide a novel view of CNS function and of a range of brain disorders, potentially leading to the development of new drug therapies. Although no satisfactory imaging agents have yet been developed for iGluRs, several PET ligands for mGluRs have been successfully employed in clinical studies. This paper reviews current progress towards the development of PET and SPECT probes for GluRs. 1.
    [Show full text]
  • Ultra-Micronized Palmitoylethanolamide Rescues The
    Neurobiology of Disease 121 (2019) 106–119 Contents lists available at ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi Ultra-micronized palmitoylethanolamide rescues the cognitive decline- associated loss of neural plasticity in the neuropathic mouse entorhinal T cortex-dentate gyrus pathway Serena Boccellaa,1, Claudia Cristianob,1, Rosaria Romanoa, Monica Iannottaa, Carmela Belardoa, Antonio Farinaa, Francesca Guidaa, Fabiana Piscitellic, Enza Palazzoa, Mariacristina Mazzitellid, Roberta Imperatoree, Lea Tunisic, Vito de Novellisa, Luigia Cristinoc, Vincenzo Di Marzoc, ⁎ Antonio Calignanob, Sabatino Maionea, Livio Luongoa, a Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy b Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy c Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy d Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX e Department of Science and Technology, University of Sannio, Benevento, Italy ARTICLE INFO ABSTRACT Keywords: Chronic pain is associated with cognitive deficits. Palmitoylethanolamide (PEA) has been shown to ameliorate Spared nerve injury pain and pain-related cognitive impairments by restoring glutamatergic synapses functioning in the spared nerve pamitoylethanolamide injury (SNI) of the sciatic nerve in mice. SNI reduced mechanical and thermal threshold, spatial memory and LTP long term potentiation at the lateral entorhinal cortex (LEC)-dentate gyrus (DG) pathway. It decreased also postsynaptic density, vo- PPARα lume and dendrite arborization of DG and increased the expression of metabotropic glutamate receptor 1 and 7 cognitive performance (mGluR1 and mGluR7), of the GluR1, GluR1s845 and GluR1s831 subunits of AMPA receptor and the levels of synaptogenesis glutamate in the DG.
    [Show full text]