General Relativity

Total Page:16

File Type:pdf, Size:1020Kb

General Relativity GENERALRELATIVITY t h i m o p r e i s1 17th April 2020 1 [email protected] CONTENTS 1 differential geomtry 3 1.1 Differentiable manifolds 3 1.2 The tangent space 4 1.2.1 Tangent vectors 6 1.3 Dual vectors and tensor 6 1.3.1 Tensor densities 8 1.4 Metric 11 1.5 Connections and covariant derivatives 13 1.5.1 Note on exponential map/Riemannian normal coordinates - TO DO 18 1.6 Geodesics 20 1.6.1 Equivalent deriavtion of the Geodesic Equation - Weinberg 22 1.6.2 Character of geodesic motion is sustained and proper time is extremal on geodesics 24 1.6.3 Another remark on geodesic equation using the principle of general covariance 26 1.6.4 On the parametrization of the path 27 1.7 An equivalent consideration of parallel transport, geodesics 29 1.7.1 Formal solution to the parallel transport equa- tion 31 1.8 Curvature 33 1.8.1 Torsion and metric connection 34 1.8.2 How to get from the connection coefficients to the connection-the metric connection 34 1.8.3 Conceptional flow of how to add structure on our mathematical constructs 36 1.8.4 The curvature 37 1.8.5 Independent components of the Riemann tensor and intuition for curvature 39 1.8.6 The Ricci tensor 41 1.8.7 The Einstein tensor 43 1.9 The Lie derivative 43 1.9.1 Pull-back and Push-forward 43 1.9.2 Connection between coordinate transformations and diffeomorphism 47 1.9.3 The Lie derivative 48 1.10 Symmetric Spaces 50 1.10.1 Killing vectors 50 1.10.2 Maximally Symmetric Spaces and their Unique- ness 54 iii iv co n t e n t s 1.10.3 Maximally symmetric spaces and their construc- tion 56 1.10.4 Tensors in a Maximally symmetric space 59 1.10.5 Spaces with Maximally Symmetric Subspaces 60 1.10.6 Cosmological Lie Algebra - Equivalent deriva- tion of Robertson-Walker metric via Killing fields 63 1.10.7 Conservation laws from Killing vector fields - More in depth 66 1.10.8 Explicit Killing vectors 67 1.11 Differential forms 68 1.11.1 Detour- de Rham Cohomology – TO EXPAND 70 1.11.2 Hodge star operator 70 1.11.3 Codifferential 72 1.11.4 Conventional differential operators via forms 73 1.12 Integrals 73 1.13 Frame fields in GR and the Tetrad formalism, ”tetrad”=”vierbein”=”frame field” 74 1.13.1 On the tetrad formalism - Weinberg 77 1.14 Cartan’s structure equations 81 1.15 Comparison of gauge theories in particle physics with Riemannian geometry 84 2 general relativity - the theory 87 2.1 Introduction to General Relativity 87 2.1.1 Closer Look at the Equivalence Principle 87 2.1.2 Another look at the equivalence principle by Feyn- man 89 2.1.3 Consequences of principle of equivalence 89 2.1.4 From Newton to Einstein 91 2.2 On our Path towards a curved Spacetime 91 2.3 Newtonian limit: 92 2.4 General Covariance 94 2.4.1 Principle of General Covariance represented by Diffeomorphism Invariance in GR 96 2.4.2 The physical meaning of curvature 99 2.5 Physical laws in external gravitational fields - Thus a metric is given, what are the dynamics 101 2.5.1 Relativistic variational principle 101 2.5.2 Proper time in general coordinates 101 2.5.3 Motion of particles 102 2.5.4 Motion of light 103 2.5.5 Energy-momentum ”conservation” 104 2.5.6 The connection between curvatures and matter 105 2.6 The geodesic deviation equation 106 2.6.1 Equivalent treatment of Geodesic deviation - Car- oll 107 2.7 Einstein’s field equations 109 co n t e n t s v 2.7.1 A not successful attempt via Poisson’s equation 109 2.7.2 Heuristic Derivation 110 2.7.3 On the Meaning of the Field Equations 112 2.8 On the action principle - Weinberg 114 2.8.1 General definition of the Energy-Momentum-tensor by Weinberg 114 2.8.2 General Covariance and Energy-Momentum Con- servation - Weinberg 115 2.9 Derivation of Einstein’s Field Equations from Least Ac- tion Principle 118 2.9.1 The full Einstein field equations 123 2.9.2 Coordinate Conditions - A note on gauge free- dom in Einstein’s field equations -Weinberg 125 2.10 The energy-momentum tensor 128 2.10.1 Energy,Momentum, and Angular Momentum of Gravitation - Weinberg 128 2.10.2 The matter sector 132 2.10.3 The action for classical particles in a gravitational field 133 2.11 Modifications of the field equations - TO EXPAND 135 2.12 Initial Value Problem in GR 136 2.13 Existence of Solutions to the field equations 138 2.13.1 Hawking-Penrose Singularity Theorems: TO DO 140 3 applications of general relativity 143 3.1 Weak Gravitational Fields 143 3.2 Gauge transformations in general relativity 143 3.2.1 Firstly, remark on the difference to diffeomorph- ism invariance, aka general covariance 143 3.2.2 On General Covariance and gauge symmetry by Weinberg 144 3.2.3 Finding the gauge class 146 3.2.4 Linearised theory of gravity 149 3.2.5 Nearly Newtonian gravity 151 3.3 Gravitational Waves - The propagation of the metric per- turbations 156 3.4 The Schwarzschild solution 158 3.4.1 Stationary and static space-times 158 3.4.2 The Schwarzschild solution 158 3.4.3 Solution of the field equations 160 3.4.4 Birkhoff’s theorem 162 3.5 Physics in the Schwarzschild Space-Time 165 3.5.1 A note on the Killing vectors of a Schwarzschild Space-Time 165 3.5.2 Orbits in the Schwarzschild Space-Time 166 3.5.3 Perihelion shift 169 3.5.4 Light deflection 170 vi co n t e n t s 3.5.5 Redshift in Schwarzschild Spacetime 172 3.6 Black Holes 173 3.6.1 Schwarzschild Black Holes 173 3.6.2 Charged, Rotating Black Holes 184 3.6.3 Entropy and Temperature of a Black Hole 197 3.7 Cosmology 199 4 co s m o lo gy 201 4.1 Homogeneous and Isotropic Cosmology - GR perspect- ive 201 4.1.1 Spherically-symmetric space-times 201 4.1.2 Homogeneous and Isotropic Space-times 203 4.1.3 Friedmann’s equations 208 4.1.4 On Cosmology by Weinberg 212 4.1.5 Notes on Cosmology from GR lecture, to include into Cosmology write-up 213 4.1.6 Comoving Coordinates Weinberg 215 4.1.7 Cosmological redshift- TO DO 215 4.2 Friedmann models - A physical approach – streamline with the above 216 4.2.1 Symmetry assumptions and consequences 216 4.2.2 Friedmann equations 217 4.2.3 Parameters 219 4.2.4 Redshift (cosmological) 222 4.2.5 Age and Expansion of the Universe 223 4.2.6 Distance measures 225 4.2.7 Horizons 229 4.3 Age of the Universe and the cosmic expansion 231 4.3.1 Nuclear cosmo-chronology 231 4.3.2 Stellar ages 231 4.3.3 Cooling of white dwarfs 231 4.3.4 The Hubble constant 231 4.3.5 Supernovae of type Ia 231 4.4 Thermal evolution of the universe 231 4.4.1 Assumptions and quantum statistics 231 4.4.2 Recombination and Nucleosynthesis 237 4.5 Cosmological Inflation 246 4.5.1 The horizon and flatness problem 246 4.5.2 The idea of inflation 248 4.5.3 Dark Energy 255 4.6 Evolution of cosmic structures 256 4.6.1 Linear perturbation theory 256 4.6.2 Linear growth factor, perturbations within and outside the horizon 258 4.6.3 Velocity perturbations and Zel’dovich approxim- ation 258 4.6.4 Nonlinear evolution and power spectra 258 co n t e n t s vii 4.6.5 The Cosmic Microwave Background 258 4.7 Gravitational Lensing 260 4.7.1 Gravitational Lensing Equation from GR 260 4.7.2 Thin gravitational lenses 260 4.7.3 Correlation functions (no thin lens approxima- tion) 260 4.8 Theoretical Astrophysics 260 4.9 Two examples of Relativistic Astrophysics 261 4.9.1 Gravitational Lensing - TO COMPLETE FROM SCRIPT 261 4.10 Tolman-Oppenheimer-Volkoff solution 265 5 generalrelativityasaquantumfieldtheory 271 5.1 Conceptional differences- TO DO 271 5.2 On physical theories, remarks by Feynman 271 5.3 How Feynman derived GR from a field theoretical ap- proach 272 5.3.1 The action for matter fields in a gravitational field 276 5.3.2 Final formulation of Gravity on path to quantum gravity 277 6 possible exam problems 279 7 important equations of gr - to do 281 7.1 Differential Geomtetry 281 7.2 Statements from problem sheets 281 7.3 Statements to incorporate 282 LISTOFFIGURES Figure 1.1 28 Figure 1.2 30 Figure 1.3 32 Figure 1.4 37 Figure 1.5 I.e. cylinder is not curved since it can be glued to- gether by flat spaces. 41 Figure 1.6 E.g. integral curves on the two-sphere, defining the rotations by a given angle. The tangent vectors infin- itesimmaly generate the rotation. Compare treatment in 1.2.1. 44 Figure 1.7 64 Figure 1.8 65 Figure 2.1 113 Figure 2.2 113 Figure 2.3 139 Figure 2.4 140 Figure 3.1 147 Figure 3.2 147 Figure 3.3 Foliation of the static spacetime along the fiducial time direction given by global Killing vector field.
Recommended publications
  • Schwarzschild's Solution And
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server RECONSIDERING SCHWARZSCHILD'S ORIGINAL SOLUTION SALVATORE ANTOCI AND DIERCK EKKEHARD LIEBSCHER Abstract. We analyse the Schwarzschild solution in the context of the historical development of its present use, and explain the invariant definition of the Schwarzschild’s radius as a singular surface, that can be applied to the Kerr-Newman solution too. 1. Introduction: Schwarzschild's solution and the \Schwarzschild" solution Nowadays simply talking about Schwarzschild’s solution requires a pre- liminary reassessment of the historical record as conditio sine qua non for avoiding any misunderstanding. In fact, the present-day reader must be firstly made aware of this seemingly peculiar circumstance: Schwarzschild’s spherically symmetric, static solution [1] to the field equations of the ver- sion of the theory proposed by Einstein [2] at the beginning of November 1915 is different from the “Schwarzschild” solution that is quoted in all the textbooks and in all the research papers. The latter, that will be here al- ways mentioned with quotation marks, was found by Droste, Hilbert and Weyl, who worked instead [3], [4], [5] by starting from the last version [6] of Einstein’s theory.1 As far as the vacuum is concerned, the two versions have identical field equations; they differ only because of the supplementary condition (1.1) det (g )= 1 ik − that, in the theory of November 11th, limited the covariance to the group of unimodular coordinate transformations. Due to this fortuitous circum- stance, Schwarzschild could not simplify his calculations by the choice of the radial coordinate made e.g.
    [Show full text]
  • General Relativity As Taught in 1979, 1983 By
    General Relativity As taught in 1979, 1983 by Joel A. Shapiro November 19, 2015 2. Last Latexed: November 19, 2015 at 11:03 Joel A. Shapiro c Joel A. Shapiro, 1979, 2012 Contents 0.1 Introduction............................ 4 0.2 SpecialRelativity ......................... 7 0.3 Electromagnetism. 13 0.4 Stress-EnergyTensor . 18 0.5 Equivalence Principle . 23 0.6 Manifolds ............................. 28 0.7 IntegrationofForms . 41 0.8 Vierbeins,Connections . 44 0.9 ParallelTransport. 50 0.10 ElectromagnetisminFlatSpace . 56 0.11 GeodesicDeviation . 61 0.12 EquationsDeterminingGeometry . 67 0.13 Deriving the Gravitational Field Equations . .. 68 0.14 HarmonicCoordinates . 71 0.14.1 ThelinearizedTheory . 71 0.15 TheBendingofLight. 77 0.16 PerfectFluids ........................... 84 0.17 Particle Orbits in Schwarzschild Metric . 88 0.18 AnIsotropicUniverse. 93 0.19 MoreontheSchwarzschild Geometry . 102 0.20 BlackHoleswithChargeandSpin. 110 0.21 Equivalence Principle, Fermions, and Fancy Formalism . .115 0.22 QuantizedFieldTheory . .121 3 4. Last Latexed: November 19, 2015 at 11:03 Joel A. Shapiro Note: This is being typed piecemeal in 2012 from handwritten notes in a red looseleaf marked 617 (1983) but may have originated in 1979 0.1 Introduction I am, myself, an elementary particle physicist, and my interest in general relativity has come from the growth of a field of quantum gravity. Because the gravitational inderactions of reasonably small objects are so weak, quantum gravity is a field almost entirely divorced from contact with reality in the form of direct confrontation with experiment. There are three areas of contact 1. In relativistic quantum mechanics, one usually formulates the physical quantities in terms of fields. A field is a physical degree of freedom, or variable, definded at each point of space and time.
    [Show full text]
  • Variational Problem and Bigravity Nature of Modified Teleparallel Theories
    Variational Problem and Bigravity Nature of Modified Teleparallel Theories Martin Krˇsˇs´ak∗ Institute of Physics, University of Tartu, W. Ostwaldi 1, Tartu 50411, Estonia August 15, 2017 Abstract We consider the variational principle in the covariant formulation of modified telepar- allel theories with second order field equations. We vary the action with respect to the spin connection and obtain a consistency condition relating the spin connection with the tetrad. We argue that since the spin connection can be calculated using an additional reference tetrad, modified teleparallel theories can be interpreted as effectively bigravity theories. We conclude with discussion about the relation of our results and those obtained in the usual, non-covariant, formulation of teleparallel theories and present the solution to the problem of choosing the tetrad in f(T ) gravity theories. 1 Introduction Teleparallel gravity is an alternative formulation of general relativity that can be traced back to Einstein’s attempt to formulate the unified field theory [1–9]. Over the last decade, various modifications of teleparallel gravity became a popular tool to address the problem of the accelerated expansion of the Universe without invoking the dark sector [10–38]. The attractiveness of modifying teleparallel gravity–rather than the usual general relativity–lies in the fact that we obtain an entirely new class of modified gravity theories, which have second arXiv:1705.01072v3 [gr-qc] 13 Aug 2017 order field equations. See [39] for the extensive review. A well-known shortcoming of the original formulation of teleparallel theories is the prob- lem of local Lorentz symmetry violation [40, 41].
    [Show full text]
  • 8.962 General Relativity, Spring 2017 Massachusetts Institute of Technology Department of Physics
    8.962 General Relativity, Spring 2017 Massachusetts Institute of Technology Department of Physics Lectures by: Alan Guth Notes by: Andrew P. Turner May 26, 2017 1 Lecture 1 (Feb. 8, 2017) 1.1 Why general relativity? Why should we be interested in general relativity? (a) General relativity is the uniquely greatest triumph of analytic reasoning in all of science. Simultaneity is not well-defined in special relativity, and so Newton's laws of gravity become Ill-defined. Using only special relativity and the fact that Newton's theory of gravity works terrestrially, Einstein was able to produce what we now know as general relativity. (b) Understanding gravity has now become an important part of most considerations in funda- mental physics. Historically, it was easy to leave gravity out phenomenologically, because it is a factor of 1038 weaker than the other forces. If one tries to build a quantum field theory from general relativity, it fails to be renormalizable, unlike the quantum field theories for the other fundamental forces. Nowadays, gravity has become an integral part of attempts to extend the standard model. Gravity is also important in the field of cosmology, which became more prominent after the discovery of the cosmic microwave background, progress on calculations of big bang nucleosynthesis, and the introduction of inflationary cosmology. 1.2 Review of Special Relativity The basic assumption of special relativity is as follows: All laws of physics, including the statement that light travels at speed c, hold in any inertial coordinate system. Fur- thermore, any coordinate system that is moving at fixed velocity with respect to an inertial coordinate system is also inertial.
    [Show full text]
  • Texts and Monographs in Physics W. Beiglbock J.L. Birman R.P. Geroch
    Texts and Monographs in Physics W. Beiglbock J.L. Birman R.P. Geroch E.H. Lieb T. Regge W. Thirring Series Editors Nail R.Sibgatullin Oscillations and Waves in Strong Gravitational and Electromagnetic Fields With 26 Figures Spri nger-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Professor Dr. Nail R. Sibgatullin Faculty of Mechanics and Mathematics, Moscow State University SU-119899 Moscow, USSR Translator: Dr. Nathaniel M. Queen Department of Mathematics, The University of Birmingham P.O. Box 363, Birmingham B15 2IT, United Kingdom Editors Wolf Beiglb6ck Elliott H. Lieb Institut fiir Angewandte Mathematik Department of Physics Universitiit Heidelberg Joseph Henry Laboratories 1m Neuenheimer Feld 294 Princeton University D-6900 Heidelberg 1 Princeton,NJ08540, USA Fed. Rep. of Germany Joseph L. Birman Tullio Regge Department of Physics, The City College Istituto di Fisca Teorica of the City University of New York Universita di Torino, C. so M. d'Azeglio, 46 New York, NY 10031, USA 1-10125 Torino, Italy Robert P. Geroch Walter Thirring Enrico Fermi Institute Institut fiirTheoretische Physik University of Chicago der UniversitiitWien, Boltzmanngasse 5 5640 EllisAve. A-1090Wien, Austria Chicago, IL 60637, USA Title of the original Russian edition: Kolebaniya i volny v silnykh gravitatsionnykh i elektromagnitnykh polyakh © Nauka, Moscow 1984 ISBN-13: 978-3-642-83529-2 e-ISBN-13: 978-3-642-83527-8 DOl: 10.1007/978-3-642-83527-8 Library of Congress Cataloging·in·Publication Data. Sib~atullin, N. R. (Nail' Rakhimovich) [KolebaniG i volny v sil 'nykh gravitatsionnykh i elektromagnitnykh pohakh. English 1Oscillations and waves in strong gra­ vitational and electromagnetic fields / Nail R.
    [Show full text]
  • Manifest Covariant Hamiltonian Theory of General Relativity
    Applied Physics Research; Vol. 8, No. 2; 2016 ISSN 1916-9639 E-ISSN 1916-9647 Published by Canadian Center of Science and Education Manifest Covariant Hamiltonian Theory of General Relativity Claudio Cremaschini1 & Massimo Tessarotto1;2 1 Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezrucovoˇ nam.13,´ CZ- 74601 Opava, Czech Republic 2 Department of Mathematics and Geosciences, University of Trieste, Via Valerio 12, 34127 Trieste, Italy Correspondence: Claudio Cremaschini, Institute of Physics, Faculty of Philosophy and Science, Silesian Univer- sity in Opava, Bezrucovoˇ nam.13,´ CZ-74601 Opava, Czech Republic. E-mail: [email protected] Received: January 15, 2016 Accepted: March 4, 2016 Online Published: March 16, 2016 doi:10.5539/apr.v8n2p60 URL: http://dx.doi.org/10.5539/apr.v8n2p60 Abstract The problem of formulating a manifest covariant Hamiltonian theory of General Relativity in the presence of source fields is addressed, by extending the so-called “DeDonder-Weyl” formalism to the treatment of classical fields in curved space-time. The theory is based on a synchronous variational principle for the Einstein equation, formulated in terms of superabundant variables. The technique permits one to determine the continuum covariant Hamiltonian structure associated with the Einstein equation. The corresponding continuum Poisson bracket representation is also determined. The theory relies on first-principles, in the sense that the conclusions are reached in the framework of a non-perturbative covariant approach, which allows one to preserve both the 4-scalar nature of Lagrangian and Hamiltonian densities as well as the gauge invariance property of the theory. Keywords: General Relativity, Einstein equation, DeDonder-Weyl formalism, Synchronous variational principle, Covariant Hamiltonian theory, Poisson bracket representation 1.
    [Show full text]
  • Einstein and Einstein-Maxwell Fields of Weyl's Type Einsteinova A
    Einstein and Einstein-Maxwell fields of Weyl’s type Einsteinova a Einsteinova-Maxwellova pole Weylova typu Lukáš Richterek Faculty of Natural Sciences Palacký University Olomouc and Faculty of Natural Sciences Masaryk University Brno PhD thesis May 2000 Submitted theses were completed within the framework of the external postgraduate study at the Department of General Physics, Faculty of Natural Sciences, Masaryk Uni- versity Brno. Candidate: Lukáš Richterek Department of Theoretical Physics Faculty of Natural Sciences Palacký University Svobody 26, Olomouc, CZ-771 46 [email protected] Supervisor: Prof. RNDr. Jan Novotný, CSc. Department of General Physics Faculty of Natural Sciences Masaryk University Kotlářská 2, Brno, CZ-611 37 [email protected] Advisor: Prof. RNDr. Jan Horský, DrSc. Department of Theoretical Physics and Astrophysics Faculty of Natural Sciences Masaryk University Kotlářská 2, Brno, CZ-611 37 [email protected] Examining comission: Abstract The problems solved in this thesis can be divided into two spheres. The first one represents the generation of new Einstein-Maxwell fields, the second one their physical interpretation. The solution of non-linear, self-consistent Einstein-Maxwell equations is an enormously complicated task and was explicitly carried out only in the simplest cases. On the other hand, many exact solutions were discovered by means of special generation techniques that enable us to construct new Einstein-Maxwell fields from those already known or even from the vacuum spacetimes which do not contain any electromagnetic field. A brief review of those techniques together with a summary of necessary mathematical apparatus is given in chapter 1. It is to stress that such techniques are enormously useful, because the more exact solutions will be known and explored, the better we will be able to understand the mathematical and physical background of the theory.
    [Show full text]
  • The Quantum Regularization of Singular Black-Hole Solutions in Covariant Quantum Gravity
    entropy Article The Quantum Regularization of Singular Black-Hole Solutions in Covariant Quantum Gravity Massimo Tessarotto 1,2,* and Claudio Cremaschini 2 1 Department of Mathematics and Geosciences, University of Trieste, Via Valerio 12, 34127 Trieste, Italy 2 Research Center for Theoretical Physics and Astrophysics, Institute of Physics, Silesian University in Opava, Bezruˇcovonám.13, CZ-74601 Opava, Czech Republic; [email protected] * Correspondence: [email protected] Abstract: An excruciating issue that arises in mathematical, theoretical and astro-physics concerns the possibility of regularizing classical singular black hole solutions of general relativity by means of quantum theory. The problem is posed here in the context of a manifestly covariant approach to quantum gravity. Provided a non-vanishing quantum cosmological constant is present, here it is proved how a regular background space-time metric tensor can be obtained starting from a singular one. This is obtained by constructing suitable scale-transformed and conformal solutions for the metric tensor in which the conformal scale form factor is determined uniquely by the quantum Hamilton equations underlying the quantum gravitational field dynamics. Keywords: quantum gravity; space-time singular solutions; quantum regularization 1. Introduction Citation: Tessarotto, M.; The discovery of the characteristic central singularity that may characterize black holes Cremaschini, C. The Quantum (BH) is due to the genius of Karl Schwarzschild who in 1916 pointed out his famous exact Regularization of Singular Black-Hole solution [1] of Albert Einstein’s namesake field equations, soon brilliantly followed by Hans Solutions in Covariant Quantum Reissner [2] and Gunnar Nordstrôm [3] who generalized it to the case of a charged BH, Gravity.
    [Show full text]
  • Dissertation
    Eccentric binaries of compact objects in strong-field gravity Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Physikalisch-Astronomischen Fakult¨at der Friedrich-Schiller-Universit¨atJena von Dipl.-Phys. Roman Gold geboren am 10.07.1981 in Bad Soden (am Taunus) Gutachter: 1. Prof. Bernd Br¨ugmann,FSU Jena 2. Prof. Luis Lehner, Perimeter Institute Waterloo 3. Prof. Deirdre Shoemaker, Georgia Tech Atlanta Tag der Disputation: 27. September 2011 Exzentrische Bin¨arsystemekompakter Objekte im starken Gravitationsfeld Zusammenfassung In dieser Arbeit untersuchen wir die Dynamik exzentrischer Bin¨arsystemekompakter Objekte und die resultierende Gravitationswellenstrahlung im nicht-linearen Regime der Allgemeinen Relativit¨atstheorie. Hierzu l¨osenwir die Einsteinschen Feldgleich- ungen numerisch in einer 3+1 Zerlegung mit der bewegten-Punktur Methode. Wir konzentrieren uns hierbei auf spezielle Orbits, die im Zusammenhang mit nicht-stabilen Kreisbahnen entstehen, und einen rein relativistischen Effekt des Zwei- k¨orperproblems der Allgemeinen Relativit¨atstheoriedarstellen. Diese werden bes- timmt durch schnelle, quasi-zirkul¨areUml¨aufebei kleinen Abst¨anden,gefolgt von langsamen radialen Bewegung auf quasi-elliptischen Trajektorien. Auf Grund der besonderen Gestalt dieser Bahnen werden sie als "Zoom-Whirl-Orbits" bezeichnet. Wir analysieren, wie sich diese besondere Dynamik in der emittierten Gravitation- swellenstrahlung ¨außert,und inwieweit sich aus Beobachtungen dieser Strahlung auf die Eigenschaften der Orbits schließen l¨asst. Im ersten Teil betrachten wir Bin¨arsystemeSchwarzer L¨ocher. Wir f¨uhreneine umfassende Parameterstudie durch, indem wir die Anfangsexzentrizit¨atvariieren, und die entstehende Gravitationswellenform berechnen und charakterisieren. Hier befassen wir uns insbesondere mit Aspekten, die nur mit Hilfe nicht-st¨orungstheoret- ischer Methoden analysiert werden k¨onnen,und f¨urdie astrophysikalische Relevanz dieser Orbits entscheidend sind.
    [Show full text]
  • Icranet Scientific Report 2009
    Exact Solutions of Einstein and Einstein { Maxwell Equations Contents 1. Topics 13 2. Participants 15 2.1. ICRANet participants . 15 2.2. Past collaborators . 15 2.3. Students . 15 3. Brief description of the ISM and IEM 17 3.1. Foreword . 17 3.1.1. Vacuum and electrovacuum fields with two - dimen- sional Abelian isometry group . 18 3.2. Inverse scattering approach to solution of vacuum Einstein equa- tions (“Lambda-solitons” and the Riemann - Hilbert problem) 20 3.2.1. Vacuum solitons on arbitrary background . 21 3.2.2. Formulation of the Riemann-Hilbert problem and its solution . 22 3.3. Monodromy transform approach to solution of Einstein-Maxwell equations (“Omega-solitons” and the integral equation method) 25 3.3.1. Elecrovacuum solitons on arbitrary background . 26 3.3.2. Monodromy data parametrization of the solution space 28 3.3.3. Constructing solutions for arbitrary monodromy data . 30 4. Publications 33 4.1. Books . 33 4.2. Refereed journals . 34 4.3. Proceedings of international conferences . 39 4.4. Talks at international conferences . 41 5. The last year (2010) research activity 45 5.1. Exact solutions of Einstein and Einstein-Maxwell equations: . 45 5.2. Cosmology . 46 5.3. The work on the book ”Cosmological Singularity” by V.Belinski and T.Damour . 47 5.4. The work on the second edition of the book”Gravitational Soli- tons” by V.Belinski and E.Verdaguer . 48 11 Contents A. Equilibrium configurations of two charged masses in General Rela- tivity 49 A.1. Introduction . 49 A.2. The solution . 52 A.3. Properties of the solution .
    [Show full text]
  • Multipole Structure of Compact Objects
    Physical Sciences and Technology Vol. 3 (No. 1), 2016: 42-49 UDC 53.02 Multipole structure of compact objects Quevedo H. Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70543, México, DF 04510, Mexico Dipartimento di Fisica and ICRA, Università di Roma "La Sapienza", I-00185 Roma, Italy e-mail: [email protected] We analyze the applications of general relativity in relativistic astrophysics in order to solve the problem of describing the geometric and physical properties of the interior and exterior gravitational and electromagnetic fields of compact objects. We focus on the interpretation of exact solutions of Einstein's equations in terms of their multipole moments structure. In view of the lack of physical interior solutions, we propose an alternative approach in which higher multipoles should be taken into account. Key words: Exact solutions of Einstein equations, compact objects, multipole moments PACS numbers: 04.20.Jb, 95.30.Sf 1 Introduction considered to contain collectively planet-like objects, white dwarfs, neutron stars, other exotic dense stars, Einstein's equations [1] and black holes. The problem of describing the gravitational field of compact objects can be split 1 into two related problems, namely, the exterior and R Rg= T , (1) 2 the interior field, each of them represented by a i e particular metric g and g , respectively. The relate the geometric structure of spacetime, which is surface of the compact object represents the 1 hypersurface at which the interior and the exterior given by the Einstein tensor G= R Rg , 2 fields must coincide. The exterior field corresponds with the matter content of spacetime, which is given to a vacuum spacetime Tμv = 0, for which Einstein's by the energy-momentum tensor Tμv.
    [Show full text]
  • Advanced Lectures on General Relativity
    Lecture notes prepared for the Solvay Doctoral School on Quantum Field Theory, Strings and Gravity. Lectures given in Brussels, October 2017. Advanced Lectures on General Relativity Lecturing & Proofreading: Geoffrey Compère Typesetting, layout & figures: Adrien Fiorucci Fonds National de la Recherche Scientifique (Belgium) Physique Théorique et Mathématique Université Libre de Bruxelles and International Solvay Institutes Campus Plaine C.P. 231, B-1050 Bruxelles, Belgium Please email any question or correction to: [email protected] Abstract — These lecture notes are intended for starting PhD students in theoretical physics who have a working knowledge of General Relativity. The 4 topics covered are (1) Surface charges as con- served quantities in theories of gravity; (2) Classical and holographic features of three-dimensional Einstein gravity; (3) Asymptotically flat spacetimes in 4 dimensions: BMS group and memory effects; (4) The Kerr black hole: properties at extremality and quasi-normal mode ringing. Each topic starts with historical foundations and points to a few modern research directions. Table of contents 1 Surface charges in Gravitation ................................... 7 1.1 Introduction : general covariance and conserved stress tensor..............7 1.2 Generalized Noether theorem................................. 10 1.2.1 Gauge transformations and trivial currents..................... 10 1.2.2 Lower degree conservation laws........................... 11 1.2.3 Surface charges in generally covariant theories................... 13 1.3 Covariant phase space formalism............................... 14 1.3.1 Field fibration and symplectic structure....................... 14 1.3.2 Noether’s second theorem : an important lemma................. 17 Einstein’s gravity.................................... 18 Einstein-Maxwell electrodynamics.......................... 18 1.3.3 Fundamental theorem of the covariant phase space formalism.......... 20 Cartan’s magic formula...............................
    [Show full text]