<<

GEOLOŠKI ANALI BALKANSKOGA POLUOSTRVA Volume 80 (2), December 2019, 13–37 – https://doi.org/10.2298/GABP1902013R Original scientific paper Facies analyses, biostratigraphy and Оригинални научни рад radiometric dating of the Lower–Middle Miocene succession near Zaječar (Dacian basin, eastern )

1 1 2 jUPKo UNDIć 1 EBojša aSIć 1 IoDRag aNj1EšEVIć L EjaN RRELEVIć , N 1IoLETa V ajIć , M ojaN oBSTIć , DELENa P TEfaNoV,I ćV g , B K & j S Abstract.

Lower–Middle Miocene sedimentary succession and the conforma - ble/unconformable relationships between the lacustrine-continental systems (i.e. DLS, SLS) and Badenian marine transgression represents one of the in - trigue topics. Herein, we studied five exploration boreholes (eastern Serbia) and analyzed the main facies pattern, biostratigraphic characteristics of the Miocene succession, and applied the U-Pb radiometric dating of volcanic tuffs interstratified in the sedimentary series with coal layers (borehole NRKR- 17002 ). The obtained concordia age of 16.9 ±0.2 Ma for all the analysed zircon Key words: grains without any inherited cores indicate a single magmatic event. We defi - Lower–Middle Miocene, nite the freshwater series originated during Early Miocene Karpatian (= late lacustrine facies, Burdigalian). Consequently, for the first time, we demonstrate d that age of а marine transgression, part of the Serbian Lake System (SLS) is much older than it was previous re - U-Pb geochronology, ported. In addition, sporadic findings of foraminifers, ostracods and molluscs eastern Serbia. documented the late Badenian marine transgression in eastern Serbia. If ac - cept this fact the flooding occurred later than in the rest of Serbia (˂ 14.5 Ma). However, the lack of quality data and unclear stratigraphic position of some parts of the clastic succession (? Lower–Middle Badenian) makes this claim uncertain.

Апстракт.

Седиментна сукцесија између доњег и средњег миоцена и складан тј. дискордантан однос између језерско -континенталних наслага (нпр. DLS, SLS) и баденских морских седимената представља једну од занимљивих тема . У овом раду смо проучавали пет истражних бушотина (источна Србија) и анализирали главни фацијални образац, биострати - графске карактеристике миоценске сукцесије и применили U-Pb радио - метријско датирање вулканских туфова интерстратификованих у седиментној серији са слојевима угља (бушотина NRKR -17002). Доби je на је конкордија старост од 16,9 ± 0,2 милиона година за сва анализирана зрнца циркона без наследних језгара што говори да је у питању један магматски догађај. Прецизирали смо да је слатководна серија настала током раног миоцена – карпата (= млађи бурдигал). Сходно томе, по први пут смо показали да је старост једног дела Српског језерског система (SLS) много старија него што се раније мислило. Поред тога, спорадични 1 University of , Faculty of Mining and Geology, Đušina 7, 11000 Belgrade, Serbia. E-mails: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] 2 University of Belgrade, Technical Faculty in Bor, Vojske Jugoslavije 12, 19210 Bor, Serbia. E-mail: [email protected]

13 LJUPko RUnDić , n EBoJšA VASić , M ioDRAG BAnJEšEVić , D EJAn PRELEVić , V ioLETA GAJić , B oJAn koSTić & J ELEnA STEFAnoVić

Кључне речи:

наласци фораминифера, остракода и мекушаца документују касноба - Доњи –средњи миоцен, денску морску трансгресију у источној Србији . Ако прихватимо овај језерске фације, аргумент, онда се трансгресија догодила нешто касније него у остатку морска трансгресија , Србије (˂14.5 милиона година) . Међутим, недостатак квалитетних по - U-Pb геохронологија, датака и нејасан стратиграфски положај неких делова кластичне источна Србија . сукцесије (? доњи-средњи баден ) чини ову тврдњу доста несигурном .

Introduction

ESELINoVIć ETRoVIć V oPoVeIćt al., 1967o, P1o9V7Ić 5; P agIć , 1961T, E1V9aN6o9 , V1I9ć 88; P , 1968; P &a g NIć , 1969; aSRoVIć - The Dacian Basin was a paSrKta oRfE Vthe large Para- , 1958, 1964, 1967, 1977; g , 2005; M et tethyan epicontinental sea ( L , 1924). It cov - al., 2007 ). additionaly, in the area of Zaječar, the ers approximately the domain of the Moesian Miocene freshwater sediments with coal layers Platform located in the forealaSnILdIE oV f the highLlTyE baNeUnd - were determined more than a century ago and was eIdPa CarpathoI-PBa alkanLiadReIUs ( V , E2R 006oR; goH & exUpjolVoIić ted in thea ZDvoeVazNdoaVnIć coala mVLionVeI ć since 188IV9K o(eV.Igć . j , 2006; j & o , 2009; T B , 2013 ). ž , 1a8VL8o9V;I Rć & P , 1891; ž , During the Neogene, the area of eastern Serbia 1893; P , 1903). The scarce findings of bad (Timočka ) belonged to the westernmost preserved freshwater mollusks, ostracods and parts part of the Dacian Basin which leaned on the Car - of fishes skeleton could not closely define the strati - pathian foothills and the southern branches of the graphic position of these deposits. Litostratigraphic Carpathiansa aRnoVdI ć further eastwaarNdIć to BulgarNiaEž aEnVId ć analyses and correlation with similar sediments of RomaaNnIć ia ( M ER et aolR.g, 1H 998; g , 2005; K the Intra-Carpathian basins indicated tohLeIć middle & g , 2013; T B , 2013 ). The sedimentary MTiEoVcaeNnoeVI ć age of that sediments (e.g. D , 1977; facies in the Dacian Basin indicate an overall regres - S , 1977). all previous studies were based sive pattern of complete basin fill, characterized by on the lithostratigraphic and biostratigraphic char - mass-progradation structures with near-shore fa - acteristics of the freshwater series. fossil endemism, cies, and large-scale deltaic environments observed lithostratigraphic similarity, unconformable/con - in particulaar NdIuć ring middaSleIL-IlEaV te MiocenIPea and LeaaRrIlU y formable relationship to the overl аyi ng rocks, lack of PlioceneE (R g oRg, H 2005; V , 20a0jI6ć ; j & o , marker beds, etc., were not enough to precisely date 2009; T B et al., 2014; Đ et al., 2018). theU NtDimIć ing of thUeN fDoIćrmation of these lake basins Based on the data from seismic sections and ex - (R , 2013; R et al., 2013, 2018). In addi - ploratory drillings, the total thickness of NeogenEeR tion, independent age analyzes such as radiometry roocRkgsH reaches up to a few thousand meters ( T or magnetostratigraphy have never been done. The B , 2013). In the area of eastern Serbia, the proposed model of the existence of a large lake sys - Miocene formations unconformably overlie the tem during the Miocene in tRhSTeI ć territory of Serbia lower Cretaceous (Valanginian to albian) sandstones (Serbian Lake System by K et al., 2003) or upper Cretaceous (Cenomanian–Coniacian) car - opened numerous challenges of proving or doubting bonate and cElaSEsLtiINteo VroIć cks, andesite and theiorR vĐoEl VcIać n - the time span, distorLiIbć ution andU NgDeIćnesis of this laIrMgIeć ocalNajsEtšiEteVIsć ( V oReĐt EaVlI.,ć 1967, 1975N;T ĐoNIjEVIć & lake system (ea.NgT. D , 1998; R aNDIC et al., 2013; S B IjaToVIć , 1997; aĐSIć , 2005; a UNDIć & et al., 2017; S et al., 2018; M et al., 2019). M , 2014; V et al., 2018; R et al., In this regard, besides the main facies analysis 2018). In the framework of the Miocene succession, and biostratigraphic division of the Miocene succes - the middle Miocene Badenian marine deposits and sion, we applied the method of radiometric dating Sarmatian marine-brackish sediments have a great of volcanic tuff interstratified in the sedimentary se - 1d4 aisStKraibREuV tion. a lot of authžoorDsž orepooMrtIćed on that (e.g. ries, and tried to defineG emolo. arne. Bparlke. cpioslueolsy., t2h01e9 ,a 8g0e (2 o), f1 3t–h3e 7 L , 1924, 1934; D -T , 1963, 1970; Miocene freshwater series with coal as well as the Facies analyses, biostratigraphy and radiometric dating of the Lower–Middle Miocene succession near Zaječar (Dacian basin, eastern Serbia)

timing of Badenian marine transgression in this part Balkanides orogen was enabled by the general oGfe Soerlobigai. cal background phase of uplifting manifested from the abReogVinIć ning of the Sarmatian to the recent time ( M et al., 2002, 2007). During the middle Miocene, the Pa - ratethys marine and brackish water was flooded area of the westernmost part ofN ĐCEaLrKpoaVtIćhian NfoĐrEeL- The area of eastern Serbia belongs to the Car - dKoeVeIpć in the territory of Serbia ( a & a - paETthKoV-IBć alkanNiDdjEeLsK oaVsI ć a large RteUcBtIćonic NuTnoiNt Ij(EeV.Igć . , 1997). It flooded different Mesozoic and P & a IMITRIjEV,I ć 1958 ; g RäUT&N EaR RSTIć , Tertiary arNoIcć ks dependaijnIć g on morphologUyN DoIfć paleo - 1961/19C6H2M; ID D , 1997; K & K , relief (g , 2005; Đ et al., 2018; R et al., 2003; S et al . 2008 and references therein). 2018). generally, different Mezosoic rocks (mostly according to the last mentioned authors , they alsIo Upper Cretaceous flysch, clastites, volcanoclastites iMnIcTlRuIjdEeVI ćparts of the Serbo-Macedonian Massif ( D - and carbonates) as well as older Miocene continen - , 1997) and to the west, follow the eastern tal-lacustrine sediments represent the basement margin of East Vardar . Inside this belt, rock for the mentioned transgressive sediments. the fault represents one of the main strike- These Upper Cretaceous rock formations are known slip structure which displace the Cretaceous nappe aso RtĐhEeV Ić carriaeNrjsE šEoVfI ć mettalic orRaĐwEV Ić materialsN T(oeN.gI . unit along the contact betweCeHnM tIhD e Mega Unit ĐjEVIć &Ija BToVIć , 1997; Đ , 2005; a - and the Moesian Platform ( S et al., 2008). This & M , 2014) (fig. 1). In that sense, the fault accommodated oligocene to early Miocene studied boreholes were a part of exploration drilling dextral strike-slip motion wCiHthM ItD otal movements up wMhaicthe rwiasl paenrfdo rmmedt hboy dTis lva Co. during 2017. to a hundred kilometers ( S et al., 2008). gen - erally, from the end of the early Miocene up to the older part of the Middle Miocene, the Serbian part of Carpatho-BalkanRiSdTeIćs was subjectedRS TtoIć exten - sioanRoaVl Ipć rocesses ( K et al ., 1988; K , 1991; This study presents results of detail mapping of M et al., 1998, 2002). It was a secondary effect five exploration boreholes (RTK-1501, RTK-1502a, of a much stronger activity established in the area RTK-1503, NRKR-17001 and NRKR-17002) located of the which led to the formatioan near Zaječar, eastern Serbia (fig. 1). More than a hun - oRof VnIuć merous basinal structures in these areas ( M - dred samples were taken for different analyses. Petro - et al., 1998, 2002). Character of the Carpatho- logical and chemical analysis were performed in the laboratories of the Pe trology and geochemistry at the fac - ulty of Mining and geology using standard proce du re (grain-size analysis, calcime - try, thin-section, etc.). Tuff was Fig. 1. A. Geographic position of used for age determination the studied area (white square) in and chronostratigraphic posi - eastern Serbia, and B. A geologi- tion of the lowest positioned cal map B. A geological map of the Zaječar area with the position of five explored boreholes coal series as well as strati - (according to VeSeLinoVić et al., 1967, modified). Key: J 1-3 , Jurassic; K 1, Lower Cretaceous graphic position other Mioce- (Valanginian to Albian); K 2 , Upper Cretaceous (Turonian-Coniacian); M 2 , Badenian-early ne rocks. fossil molluscs, Sarmatian; M 2 , Sarmatian; t 1, Quaternary terrace; al, Alluvial; αhb, volcanic rock. fo rami nifers and ostracods were used for the biostrati - Geol. an. Balk. poluos., 2019, 80 (2), 13–37 graphic division of differen15t Miocene units. Standard sam - LJUPko RUnDić , n EBoJšA VASić , M ioDRAG BAnJEšEVić , D EJAn PRELEVić , V ioLETA GAJić , B oJAn koSTić & J ELEnA STEFAnoVić

ple of ca. 300 g was disintegrated by breaking or using common lead, were corrected afterwNDaErRdSsE N using an diluted hydrogen peroxide and sieved (2-0.063 mm) Excel spreadsheet of ComPbcorr ( a , 2002). with water at room temperature at the Laboratory for The inter-element fractionation during ablation was Paleontology and Historical geology, faculty of Mining corrected linearly. for this purpose, ablation condi - and geology, Belgrade. t20io4 ns suc2h0 4 as spot sizes and ablation times w20e2 re kept

Zircon grains were separated from the tuff sam - constant du20r4 ing each session. Th20e4 inte20r2 ference of ples no. 93 and 94 (NRKR-17002) using standard Hg on Pb was corrected by measuring Hg and  mineral separation techniques. The rocks were calculating Hg using the natural Hg/ Hg ratio of crushed to coarse sand size with a tungsten carbide 0.2299. ages, uncertainties and concordia diagUrDaWmIg s jaw crusher. Subsequ2,3 ently, zircons were concen - we1r,2 e produced using Isoplot3 for Excel ( L , trated by si2eving, magnetic separation and heavy 2003). Concordia ages are plotted with 2 uncertainty liquids. a representative batch of the zircon crystals ellipses and discordia intercept ages are given at 95% with grain sizes of 150–300 μm was manually confidence. analysLeasM awere calibrated using a gj-1 picked and mounted in araldite 2020 resin. (gEMoC) zircon ( S et al., 2008). Reproducibility after polishing, cathodoluminescence (CL) im - and accuracy were controlled by repeated analyasCeKsS ooN f ages were taken using a CL detector connected to Plesovice and 9150IE0D ErNeBfeECrKence zircons, from j Scanning Electron Microscope at University of Bel - et al. (2004) and W et al. (1995), respectively, grade, faculty of Mining and geology. The CL inves - Rtreastuedl tas s unknown samples; measured values devi - tigations were carried out using a jEoL jSM-6610LV ate <2% from the published values. SEM (with a W-filament as a beam source), coupled Facies analyses with an X-Max EDS. The samples were coated with carbon using a BaLTEC-SCD-005 sputter coating de - vice. The results were recorded under high vacuum conditions with acceleration voltage was 20 kV. Zircons were dated with the U/Pb method using all of the boreholes drilled the different Mio cene Laser ablation-Inductively Coupled Plasma-Mass units with total thickness up to 600 m (e.g. RTK- Spectrometry (La-ICP-MS). U, Th and Pb isotopes 1501). generally, Miocene succession is composed were measured at the Institute for geosciences, Uni - of clastic rocks. They unconformably overlies the versity of Mainz using an agilent 7500ce quadrupole various Cretaceous sediments and volcanoclastics. ICP-MS system coupled to an ESINWR193 arf ex - older units include the Valanginian limestone, al - cimer laser system with a 193 nm output wavelength. bian glauconitic sandstone and siltstone, Cenoman - The laser system is equipped with a two volume sam - ian fine-grained clastics and the coarse-grained ple chamber (10 cm × 10 cm). after pre-ablation, andesitic epiclastites of the uppoeRrĐ ECVIrć etaceaoNujEs , analyses were conducted using a spot size of 30 μm, kšEnVoIć wn as MeNtToovNnIijcEVaI ćformIajatTioonVI ć ( Đ & B - 20 s warm up time, 30 s dwell time and 20 s washout , 1997; a & M , 2014). In vertical time. The repetition rate was 10 Hz at pulse energy of succession, the Miocene sediments were deposited 3.5 jcm-2. The instrument was tuned for ma ximum Nino dnif-fmeraenritn een vfiarcoinems e(nLtosw: neorn-M-miadrdinlee ,M miaorcineen ean) d sensitivity at low oxide formation rates of <0.5 %. The brackish ones (from the bottom to the top). dwell times for individual masses are 10 ms for masses 232 and 238, and 30 ms for 202, 204 and 208. Dwell ti mes of 40 and 60 ms were used for masses 206 and 207, respectively. for a first step data reduc - Within the lower (non-marine, continetal-lacus - tion, the time-resolved signal was proces sed using the trine) sedimentary succession, the following lithofa - program gLITTER (www.glittergemoc.com, Mac - cies are separated: a) Basal clastites, b) Colorful quarie University, Sydney, ). Time-dependent fine-grained clastites of muddy , c) fine-grained 1la6 ser and mass spectrometer induced inter-element clastites, d) SedimentsG eoolf. amn. aBraslkh. p, oelu)o sM., 2a0r1 g9,i n80a (l2-)l, a13c–u37 - fractionation (Pb/U), mass fractionation, as well as strine clastites and, f) alluvial-lacustrine clastites. Facies analyses, biostratigraphy and radiometric dating of the Lower–Middle Miocene succession near Zaječar (Dacian basin, eastern Serbia)

The lacustrine succession starts with (a) basal ing petrology, the most complex unit due to rapid clastites or coarse-grained clastites. Clasts are derived vertical and lateral changes of conditions in deposi - from the Valanginian limestones, re-deposited weath - tional environment. generally, it consists of clastic ering crust of andesites and andeasSiIćte epiclastites of sediments, coal, coaaSlI-ć bearing sediments, carbonate fm. (U. Cretaceous) ( V et al ., 2018). at rocks and tuffs ( V et al ., 2018). The succession the same time, a part of that could be clastites from discovered by drilling may contain from two to 10 the marginal parts with gravel and sand sequences. levels of coal that are from 10 cm to 4 m thick such The thickness of the basal clastites is from several me - as in borehole NRKR-17002. Lithologically, marsh ters (RTK-1503 and NRKR-17002) up to 35 meters facies succession include homogeneous marls, a (RTK-1502a, fig. 2). fossils not observed. layer of coarse sand that has intraformation frag - ments of marl in the top (framed by a polygon), gray b. Colorful fine-grained clastites of muddy marls with small deformations, thin layered and ( laminated marls/marls with freshwater gastropods This lithofacies is made of finest clastics (silty and coal (figs. 3, 4). generally, marl contains the as - clay and silt) with rapid color shifting in vertical di - semblage of fossil fauna, particularly of gastropods rection (figs. 2, 3). The colour can be marked by and ostracods RTK-1503, fig. 3). a lot of thin, trans - Camptocypria tones of red, grey, green, yellow with all the passes. parent ostracode specimens belongs the Candona The lithofaciesa StIhć ickness is variable and ranges from group. It has been observed and rare large forms Dinarocythere, ilyocypris 10 to 65 m ( V et al ., 2018). It suggests a shallow reaching over 1.8 mm. They have slightly perforated habitat with occasional subaeric conditions. as ef - ornamentation resembling . There are fect of this, thin levels of the paleosoil was devel - also fragments of slightly accentuated sculpture oped (fig. 2). Note that whole the Miocene series in such as ? but the carapace the borehole RTK-1503 is located much more up - is straighter. Rare, tiny suboval forms similar to ward than in borehole RTK-1502a. Cypria have also been found. fossil remains are found in carbonate rocks, commonly revealing the c. Lithofacies of gray fine-grained clastites lamination. a peculiarity of this facies is the pres - ence of a tuff layer which is exposed at the different This lithofacies, from 5 to 40 m thick, represents position within the coal series. The observed thick - the gradual transition from the lithofacies of vari - ness ranges of the marsh facies from 25 to 90 me - coaloSIrć ed fine-grained clastites into a marsh facies ters (NRKR-17002, fig. 4). (V et al ., 2018). Regarding sedimentology, it sug - gests on the deepening of the lake basin. Regarding e. Marginal-lacustrine facies petrology the fine-grained clastites in shades of grey, brown, grayish-brown and green color prevail. Marginal lacustrine (lake) facies is generally They consider clayey silt, and silty clays with more shallow-water facies. It was developed along the or less sandy or calcareous component. If the con - margins of the basin, and gradually towards the caeSn Ić- tent of calcite exceeds 35% the sediments transit tral parts of the lake, crossing the lake facies (V into marlstones. These sediments contain car - et al ., 2018). It is characterized by deposition of fine bonized floral detritus as well as the debris from grained clastics and marl (e.g. RTK-1503, fig. 3). If fresh-water mollusk molds (e.g. RTK-1502a and it is closer to the alluvial-lake facies, it occasionally RTK-1503 – figs. 2, 3). contains medium-sized and coarse clastics. Interpretation: Marginal-basinal facies f. alluvial-lacustrine facies d. Marsh facies alluvial-lacustrine facies developed at place where GeolS. aend. Bimalke. pnotluso os.f, 2m01a9r, 8s0h ( 2f)a, 1c3i–e3s7 were identified in the rivBeRra eDnoVteIć rs a alaSIkć e exhibitainSIgć alluvial fans or delta1s7 northern part of the area of interest. This is, regard - (o & V , 2007; V et al ., 2018). The most LJUPko RUnDić , n EBoJšA VASić , M ioDRAG BAnJEšEVić , D EJAn PRELEVić , V ioLETA GAJić , B oJAn koSTić & J ELEnA STEFAnoVić

Fig. 2. Lithostratigraphic column of the RTK-1502A borehole (depth interval 390–560 m). numbers (34–45) indicate position of the samples. Symbols (thin column) mark sedimentological structures and fossils and explained within the text.

18 Geol. an. Balk. poluos., 2019, 80 (2), 13–37 Facies analyses, biostratigraphy and radiometric dating of the Lower–Middle Miocene succession near Zaječar (Dacian basin, eastern Serbia)

Fig. 3. Lithostratigraphic column of the Miocene sediments in the borehole RTK-1503. Sporadic findings of the marine sediment with foraminifers observed at the depth of 66 m. For the key, see previous figures.

Geol. an. Balk. poluos., 2019, 80 (2), 13–37 19 LJUPko RUnDić , n EBoJšA VASić , M ioDRAG BAnJEšEVić , D EJAn PRELEVić , V ioLETA GAJić , B oJAn koSTić & J ELEnA STEFAnoVić

Marine and marine- brackish facies (Middle Miocene)

This sedimentary package consists of different size clastic roks and covers the previous mentioned lacustrine-conti - ne ntal sediments. Main crite - ria for the separation was the presence UoNfD Imć arine-brackish Fig. 4. Lithostratigraphic column of borehole nRKR-17002. Sediments of marsh facies trans - fauna ( R et al., 2018). gressivly overlying the Lower Cretaceous carbonates. For the key, see previous figures. Lithologicaly, it can be divided onto three lithofacies: a) the lithofacies association of fine- grained clastites with sand and gravels, b) gravel and sand, and c) the upper lithofacies as - abundant are coarse- and medium-gra ined clastites. sociataiSoInć of fine-grained clastites with sand and grav - Material was brought by alluvial flows from broader els ( V et al., 2018). coastal area. Coarse-grained clastites were periodi - cally brought into deeper and farther basin parts by a. Lower lithofacies association of fine-grained torrential flows (flooding events) giving rise to mar - clastites with sand and gravels ginal-lacustrine or basin facies. Marginal-lacustrine facies is generally a shallow-water. It is juxtaposed The measured thickness of the given lithofacies against basin margins and transits gradually towards is within range of 60–160 m (e.g. RTK-1501, fig. 7). the central lake parts into lacustrine facies. Regarding sedi mentology is the unit very similar The estimated thickness of alluvial-lacustrine facies with the succession of marginal-lacustrine facies as is 170–190 m (RTK-1501, fig. 5). Main lithology are the fine-grained clastites are also dominating. The gravel, sand, and their transitions. Vertical and lateral more emphasized frequency and thickness of sand distribution is in sequences, which may be of two or and gravel bodies suggests on the proximity of the three members. 40 sequences from 1a–S2Ić m to over 10 main source of clastic material, i.e. to a strong allu - m thick were recognized vertically ( V et al ., 2018). vial system. fine-grained clastites were referred general characteristic of the all of sequences is the de - silty clays, clayey silts, sandy-clayey silts, clayey-silty creasing coarseness upward. Due to erosional contacts sands, clayey-sandy silts. all sediments are generally between sequences, a part of them may be shortened caalcSiItć e-poor, with the contents of 10–20% of CaCo 3 and lack of upper, sandy sequence part. Signi ficant (V et al ., 2018). Sands vary in grain size from thickness of given facies and its gravelly pattern sug - fine- to coarse-grained and their composition is in - gest on a relatively strong alluvial sysBtReam D otVhIać t formaSeIćd herited from gravel fraction. gravels consist of peb - a deltaica SmIć o del at river mouths ( o & V , bles that have been derived from andesite complex 2007; V et al ., 2018). Clastic material was re-de - or from MetovanSiIcć a fm., from older limestones or posited inaStoIć other facies du ring extreme flooding clastic units ( V et al ., 2018). events ( V et al ., 2018). That was also the source area for the present marginal-lacustrine environment. b. Lithofacies of gravel and sands In terms of lithology, the marginal-lacustrine facies is g20enerally made by fine-grained clastites with bodies This unit is 60–120G emol. atnh. iBcaklk . (pRolTuoKs.-, 1205109,1 8,0 f(2i)g, 1. 37–3)7 . of sand and gravel (fig. 6). gravels and sands are the most abundant lithology. Facies analyses, biostratigraphy and radiometric dating of the Lower–Middle Miocene succession near Zaječar (Dacian basin, eastern Serbia)

Fig. 5. Lithological succession between the marsh and alluvial-lacustrine facies in borehole RTK-1501 (depth interval 300–540 m). Let - ters A, K, and P indicate quantitative relation between three dominant rock fragments: andesite-limestone-sandstone.

Geol. an. Balk. poluos., 2019, 80 (2), 13–37 21 LJUPko RUnDić , n EBoJšA VASić , M ioDRAG BAnJEšEVić , D EJAn PRELEVić , V ioLETA GAJić , B oJAn koSTić & J ELEnA STEFAnoVić

were governed by the system energy, which has been low. Consequently, hori zontal and cross lamination developaeSdIć. fossil remains include tiny debris of mol - lusks ( V et al., 2018). Carbonized flora is occasion - ally present. gravels and sands are quite the same as Granulolabium bicinctum those in the lithofacies described above. Acteocina lajonkaireana Psamobia In the upper part of borehole RTK-1501 (up to laboidei sarmatica , Mohrensternia pseudoan - 80 m), the assemblage of tiny gastropods andR obC i - gulata ervilia dissita irus vCHaIlves were found: aSTERoT (B - gregarius Abra Hydrobia Cerithium ), aPP B , cf. Fig. 6. Two sequences (2 and 3) from the alluvial-lacustrine facies EKELIUS P ICHWcaf.LD (RTK-1502A); 2, The top of this sequence is represented by fine- j , cf. (E ), cf. grained clastites with concretions of carbonates (white-bead bark aRTSCH of decomposition); 3, Polymict gravel in the base of sequence. (P ), sp., sp., sp. and it suggests restricted marine environment. However, the foraminifer assemblage in same bore - Ammonia viennensis Ammonia hole at 270 m depth (see fig. 7) suggests a marine beccarri Asterigerinata planorbis environment. In the fine-grained calcite-poor and , Angulogerina angulosa Bo - calcite-rich clastites the followDingR tBaIxgaN y were recog - livina dilatata Bulimina elongata In terms of sedimentology, the unit is organized in nized: INcNf.E ( ’o ), D R Cancris auricularis Cibicidoides un - clastic sequences whose thickness is up to 12 m BeIxg Ngry . L , ILLIaMSoN ( ’o - gerianus Fursenkoina schreibersiana (fig. 8). Sequences are commonly from three mem - ) EUScS f. (W D R)B,I gNy Globigerina bulloides Globigerina bers (gravel-sand-fine-grained clastites), less com - cf. R IC,H TEL oLL ’o , Cassidulina laevigata Hanzawaia mon of two members (gravel-sand). gravelly D RBIgNy (f & M ), Zj boueana Heterolepa dutemplei se diments (lag gravels, gravels, sandy gravels and ZEK ( ’o ), D RBIgNy C - Lenticulina calcar Lenticulina inor - gravelly sands) occur in the base of sequences. They , cf. D ’o RBIgNy , nata nonion commune display the upward transition into sandy sediments sp., D RBIgNy ’o , D R Quinqueloculina triangularis , Quinque - (gravelly sands and sands of variable coarseness). BIgNy ( ’o ), INNE ( ’o - loculina ., Stilo stomella adolphina The very top of sequences, which is the thinnest, ), D RBIgNy (L ), D RBIgNy Stilo stomella . consonbrina build horizontally or cross laminated fine-grained ( ’o ), D RBIgN(y ’o ), Cytheridea sands and silts. general characteristic of the all of cf. ’o D RBIgNy acuminata Krithe papillosa sequences is the upward decrease in coarseness. sp D RBIgNy ( ’o ), olimfalunia plicatula Cytheridea Their relatioanSsIć with basal sequences are constantly cf ( ’o ), etc. The os - C. acuminata Callistocythere Lepto - erosional ( V et al ., 2018). tracod identiofiSc qaUtEioT ns included: oSqUETcf. cythere Interpretation: alluvial facies. (B ), EUSS (B ), cf. oSqUET (R ), sp. (cf. c. Upper lithofacies association of fine-grained B ), sp., clastites with sand and gravels sp. at some samples located upward in the column, The estimated thickness of this lithofacies is 80-90 fossil remain resembles more brackish to freshwa - m (e.g. RTK-1501, see fig. 7). In this succession is the ter forms (230 m). domination of fine-grained clastites striking, whereas BioInsterraptriegtraatipohni: cS hfraallmowe-waotrek r facies with the oc - the sands and gravels are subordinated. general char - casional basinal influence. acteristic of fine-grained clastites is that they repre - sent two- or three-component systems from sand-silt-clay, silt-clay, clay-silt, and sand-silt. ThaeS cIćon - t2e2 nt of calcite is very low, i.e. less than 10% ( V et Based on the mentiGoenole. adn .f oBaslks.i pl ocluoons.t, e20n1t9 ,a 8s0 w(2)e, 1l3l –a3s7 al ., 2018). fine-grained clastites display textures that superposition relationships of different Miocene fa - Facies analyses, biostratigraphy and radiometric dating of the Lower–Middle Miocene succession near Zaječar (Dacian basin, eastern Serbia)

Fig. 7. A thick series of predominantly fine-grained clastites with thin interbeds of gravel and sandy gravel (borehole RTK-1501). Upper part of the studied section corresponds to the Lower Sarmatian whereas the bottom part relates to the Upper Badenian (documented at 270 m).

Geol. an. Balk. poluos., 2019, 80 (2), 13–37 23 LJUPko RUnDić , n EBoJšA VASić , M ioDRAG BAnJEšEVić , D EJAn PRELEVić , V ioLETA GAJić , B oJAn koSTić & J ELEnA STEFAnoVić

Cypria

? sUpN.D wIć ere observed in so-called the ostracod marls ( R et al., 2018). Somewhere, very rare and few fragments of charophyta could be seen. Based on these fossils, it is impossible to give a precise stratigraphic designation of the mentioned series. However, the marsh facies contains tuff layers, which are exposed across the whole facies (at the base of coal series, inside it as well as in its covering part, too). Radiometric dating of zircon grains from the Fig. 8. Close-up view on the two clastic sequences (A, B). 1, vitroclastic tuff was obtained (borehole NRKR- Gravel;, 2, Sand (RTK-1501, 108-110 m). 17002). This is the first evidence concerning the age of the coal series (freshwater equivalents of Karpat - ian, Lower Miocene, 16.9 Ma) in this part of SLS. The total thickness of continentaSl-Ićlacustrine MioU cNeDnIeć reaches from 110 to 260 m ( V et al., 2018; R et al., 2018). cies, three different stratigraphic units could be sep - Middle Miocene Badenian regional stage was de - arated: late Lower Miocene (Karpatian), early Middle termined by well-preserved foraminifera and mollusk Miocene (Badenian) and late Middle Miocene (Sar - remains (e.g. borehole RTK-1502a, fig. 10). However, matian). The oldest one unit is marked by poor and this conclusion is based on only a few samples with Ammonia endemic assemblages of fossil mollusks, ostracods, marine taxa (RTK-1501, 1502a and 1503). So, there viennensis Ammonia fish remains and very scarce charophyta gyrogonites are no good biostratigraphic markers across the bore - beccarri Asterigerinata plan- within the marsh facies with coal (e.g. borehole NRKR- hole sections. among the fora mi nifers, dominance of orbis, Bolivina dilatata Bu - the spe cies such as limina e longata Cassidulina cf. , ex gr. laevigata Fursenkoina schrei - , bersiana Globigerina bul - cf. , loides , Bolivina- Bulimina , , cf. Fig. 9. Characteristic small planispiral gastropods (left, RTK-1502A, 374.80 m) and a “co - suggest to the Upper quina” containing operculums (right, RTK-1503, 110 m). BadenianE ZELj Zone ( P et al., 2016). Non-systematic biostratigra - phic sampling and lack of fos - Gy - siliferous samples make this raulus Planorbarius Planorbis statement questionable. The 17002, RTK-1501, RTK-1502a, and RTK-1503). Small mentioned fauna confirms the previous reports con - Prososthenia Fossarulus and often fragmented planispiral forms such as cerning BadžeonDžiao n moMaIrć ine clastic facieso iPno VthIć e studagieIćd sp., sp. and sp. (fig. 9) area (e.go.L DIć -T TEV,a 1No9V6I3ć , 1970; P & g , Granu - represent typical freshwater fauna. only few findings 1969; D , 1977; S , 1977). lolabium bicinctum Acteocina lajon kaireana of sp. and sp. were noted Middle Miocene Sarmatian regional stage (Volhyn - Candona Fabaeformiscandona Psamobia laboidei sar matica Mohren - (NRKR-17002). Very often along the thin layers there ian, Rissoid/Hydrobian strata) is documented by the ilyocypris Dinarocythere Candonopsis sternia pseudoangulata ervi lia dissita are the “coquina” with operculums of freshwater gas - assemblage of small gRaosCtCrHoIpods and bivalves: tropods (fig. 9). Similarly, poorly preserved ostra - aSTERoT (B ), aPP c24ods such as sp., sp., B , cf. Geol. anE.K BEaLlkI.U pS oluos., 2P019, 80 (2), 13–37 sp., ? sp., sp., cf. j , cf. Facies analyses, biostratigraphy and radiometric dating of the Lower–Middle Miocene succession near Zaječar (Dacian basin, eastern Serbia)

tained concordia age of 16.9 ± 0.2 Ma for all analysed grains without any inherited cores, meaning that we were able to document a single magmatic . event. This age in general cor -

Fig. 10. Badenian large foraminifer Lenticulina inornata ( D’o RBiGny ) - left, and small speci - responds to similar ages - mens of Bolivina cf. dilatata ( ReUSS ) - right. (RTK-1502A, 268.4 m). tained thEgeH CEeDnI tral PannoniaUn KbáaCsSin ( S et al , 2013, L - et al., 2018) when a vo - irus gregarius Abra Hy - luminous magmatism was drobia Ceri thium syn chronous with the devel - ICHWaLD aRTSCH opment of main sedimentary (E ), cf. (P ), sp., basins during the main Mio cene–quaternary tectonic sp., sp. They are identified in bore - events in Carpathian-Pannonian . Therefore, Anomalinoides Ammo - holes NRKR-17001, RTK-1501, RTK-1502a, and we interpret this to represent their crystallization age nia beccarri ( RTK-1503 (fig. 11). Besides, the scarce finding of aDnids cthuesresfiooren a as nthd e age of emplacement of this tuff. foraminifers and ostracods indicate Lower Sarmati - interpretation an association of small sp. and ex gr. RTK-1502a, 210 m).

During the Early to Middle Miocene large parts of Central were covered by the Sea that had phases of good and partial connectivity to the Mediterranean. Paratethys reduced and expand ed through time by a complex combination of climate variability, sea level change, anödgL geody - naERmico pRgrHo cesses of alpinaNeT tectonics (e.g. R , 1998; T B et al., 2014; S et al., 2017). In the latest Fig. 11. Lower Sarmatian mollusks Psamobia cf. laboidei sarmat - Early Miocene, the Central Parate thys mainly occu - ica PAPP (left) and Granulolabium bicinctum ( BRoCCHi ) (right). pied the northwestern part of the Pannonian Basin Borehole RTK-1503 (44.50 m). in , , and . During the early Middle Mio cene this sea extended to the southeastern Pannonian Ba sin in , Zircon U/Pb dating by LA-ICP-MS and Her zegovina and Serbia, to the Transylvanian Basin ionR IRć omania, and tEoZ EthLj e Carpa thian fEoR re doeRegpH (e. g. ć et aalN.,T 2009; P et al., 20o1V3a;N ToVIć B et al., 2014; S aNeDtI Cal., 2017, 2018; j et al., 2019, 2019a; M et al., 2019). During this ma - The zircons from the volcanic tuff from borehole rine water expansion, there were a few corridoErUs NRKR-17002 that is positioned on the top of coal se - bBaeUtwER een Central and Eastern Paratethys Sea ( N - ries (fig. 12) were dated. We analysed around 20 zir - et al., 2015). Similar scenario was observed in con grains, each grains are analysed in the core and eastern Serbia and so-called the Trans-Carpathian in the rim (fig. 13). Results from the zircon U/Pb are seaways across the DjerdoPaopV, Ić anodL Ić Borska Gperoel.s aenn. Btaelkd. pionlu Tosa.,b 2l0e1 91, 8 0a n(2)d, 1 c3–o3r7 responding concordia STlaEtVianNao wVIeć re recognized ( P , 1968; D , 197275 ; plots and age results are presented in fig. 14. We ob - S , 1977). In the same time span a series of LJUPko RUnDić , n EBoJšA VASić , M ioDRAG BAnJEšEVić , D EJAn PRELEVić , V ioLETA GAJić , B oJAn koSTić & J ELEnA STEFAnoVić

Fig. 12. Lithostratigraphic column of the Lower Miocene coal series in the borehole nRKR-17002 and position of the sampled tuff in - terbed (grey arrow, samples 93 and 94). For the symbols, see previous figures.

Fig. 13. Cathodoluminescence (CL) images of the zircon grains.

26 Geol. an. Balk. poluos., 2019, 80 (2), 13–37 Facies analyses, biostratigraphy and radiometric dating of the Lower–Middle Miocene succession near Zaječar (Dacian basin, eastern Serbia)

Table 1. U-Pb data measurements and isotope ratio.

misunderstandinagN T of the age andU NevDoIć lution of the Serbian basins ( S et al., 2018; R et al., 2018). Miocene sediments of eastern Serbia were a sub - ject of interest from long time ago. The first obser - vation on Timok tertiary basin and determination of some mollusks taxa (Venus, Cerithium) comes from ami Boué, the founder of geology of Balkan PeninsulIaV,K doVuIrć ing his trip in Serbia between 1836- 1837 ( ž , 1893 ). a half century later, jovan žujović, the founder of geology of Fig. 14. U-Pb concordia diagram and weighted mean ages informed that during the Miocene the Mediter - (16.9 Ma). raneanU jSoeVaIć flooding the Timok valley in eastern Ser - bia ( ž , 1889). His conclusion was based on analysis of five fossiliferous localities (including Zvezdan near Zaječar). Since that time, the Miocene freshwater sediments with coal layers were already known from the Zvezdan coaaDlo VmaNinoeVI ć whicahV LwoVaIsć basins, filled with lacustrine deposits, developed in opened in 188IV9K. oVVeIrć y soon, R & P thEeU BDaUinEaR rides, northern Croatia and Serbia (e.g. (1891) and ž (1893) gave very important N et al. 2015, figs. 15, 16). These dominantly contributions concerning the Neogene of Timok intramountain basins were disconnected from both basin and, especially its geological relationships as Mediterranean and Para tethys which gave rise to well as systematics and taxonomy of Tertiary fossils. the development of regional biopaRrZoHvainUcSEeRs witha tNhDeIiC r The last one author mentioned very interesting ge - Melania serbica, own speRcSiTfIićc endemic faunEaU ( BHaUER & M aNT , ological realtionship between freshwater Tertiary Melanopsis sandbergeri Prososthenia suessi 2008; K et al., 2R0a1D2Ić ; N ILINoVIć et al. 2015; S sedimeInVKtso VwIć ith coal and marine deposits near Zvez - et al., 2017, 2018; B -M et al., 2019). dan ( ž , 1893 ). He found a very abundant as - GeolT. ahn.e B aelkn. pdoelumosi.,c 2 0f1a9u, 8n0a (2, ),t 1o3g–3e7 ther with the lack of semblage of freshwater taxa ( 27 magnetostratigraphic and radioisotopic data, led of , , etc.). a LJUPko RUnDić , n EBoJšA VASić , M ioDRAG BAnJEšEVić , D EJAn PRELEVić , V ioLETA GAJić , B oJAn koSTić & J ELEnA STEFAnoVić

Fig. 15. Palinspastic maps of europe freshwater system during the early Miocene with indication of palaeobiogeographic units (red color) ( neUBAUeR et al., 2015). note that during the early Miocene there are no data from the Serbian territory except the no.40 – Trije - bine (illyrian province).

Fig. 16 . Palinspastic maps of europe freshwater system during the Middle Miocene ( neUBAUeR et al. 2015). note the Balkan lacustrine province existed: 39 – Vračević, 40 – Serbia, 41 – Timok, 43 – Metohia and, 44 – Skopje. White ellipse marks the studied area of eastern Serbia.

Planorbis pavlovici emmericia zivkovici, nema - RUSINa aVLoVIć turella? nikolajevici, Prososthenia serbica, Amphime - decade later, B (1902) and P (1903) in - freshwater mollusks from the Zvezdan and Zvezdan - formed about freshwater mollusks, ostracods and ski Ključ sites. He determined the tiny specimens 2p8 arts of fRiUsShIeNsa skeleton of the Miocene age. for ex - ( , Geol. an. Balk. poluos., 2019, 80 (2), 13–37 ample, B (1902) determined and drawn a few Facies analyses, biostratigraphy and radiometric dating of the Lower–Middle Miocene succession near Zaječar (Dacian basin, eastern Serbia)

lania macedonica Ancylus serbicus

, , etc.) from the water series from the Zvezdan and Lubnica coal samples which žujović gave him for identification. mines that underlie the Badenian marine sediments Much more later, the great field campaign in frame of was deposited during the Karpatian (= late Burdi - theE SEbLaINsoicV Ić geological mapping of eastern Serbia galian). Chronologically, i t could be correlated with (V et al., 1967) shows that a close strati - Pag, and Sinj basins within the Dinaridic Lake graphic position of these Miocene freshwater series System (DLS) which are origEinaEEteW d during the is impossible and there are noo gLoIć od biostratigraphic Miocene Climatic optimum ( D L et al., 2012). mTaErVkaeNrosV.I ćSimilar studies by D (1977, 1998) and age of the tuff can be correlated with well-known S (1977) confirmed that the mentioned Miocene syn-extensional voVlEcTaKnoiVsImć acrEoCsSsK atyhe Pan - freshwater fossils have the early-middle Miocene age. noVEnTiKaonV aIć nd Dacian basinU (CKáCS & P a, R1K9o9V9Ić ; However, based on lithostratigraphic correlation, C et al ., 2004; L et al., 2018; M biostratigraphy and radiometric measurements, our et al., 2018). our results prove that SLS was devel - study confirms that the freshwater fossiliferous se - opReSdT Ićmuch early thaNnT the latest study reported ries from the studied boreholes ( NRKR-17002, (K et al., 2012, S et al., 2g0N1ja8N).o BVa aseUdM oEnN ooVsa - RTK-1501, RTK-1502a, RTK-1503) corresponding tracods gNajnadNo Vda iatUoMmEsN otVaxa ( RoSTIć -R , to the late Early Miocene equivalents of the Karpa - 2006; o -R & K RSTIć , 2007) as well as tian regional stage (= late Burdigalian). fossil mate - some mollusks comparison, K et al. (2012) con - Gyraulus rial that was found within the marsh facies with coal cluded that majority of the freshwater basins in Ser - Fos - layers has been deposited during the lacustrine bia (SLS) were developed during the early Middle sarulus Prososthenia phase of the late Early Miocene (SLS). The tiny, Miocene (including Popovac and Zaječar basins). Bithynia planispiral forms of -type gastropods, the Similarly, in the palinspastic map of Balkan area rare tower-shaped and sculptured forms like during the Early Miocene thereEU aBraeU nEoR data about la - and , and the numerous oper - custrine basins in Serbia ( N et al., 2015). culums (mostly ) show no orderliness in only exception is the Levač basin (), Candona terms of orientation. In addition, there are many os - which according to the flora remaiRnSsT wIć as developed in tracods, especially many molds of elongated forms during the very Early Miocene ( K et al., 2012). situ that are difficult to determine (most belong to the However,a rNeT cent study from Popovac basin in central genus ). Their carapaces do not show or - Serbia ( S et al., 2018) and obtained radiometric Fossarulus, Prososthe - derliness i.e. no dominant orientation indicating age of 14.4 Ma (ar/ar dating of tuff from lacustrine nia ilyocypris,?Di - association. This lake (Lubnica Lake) was an en - marls) show that all the mentioned basins are sig - narocythere demic lake settled by various, more or less endemic nificantly different age. all the conventional meth - biota. Sculptured gastropods ( ods (lithostratigraphy, biostratigraphy, etc.) are not Candona, Cypria, Fabaeformis - ) as well as ornamented ostracods ( enough for a precise age determination of these candona ) indicate shallow-water, but more lakes. fossil fauna have endemic charUaNcDteIć r and it dynamic water regime. Contrary, tiny, transparent haven’t biostratigraphic potential ( R et al., ostracod carapaces ( 2013, 2018). It needs more independent age control , etc.) live in a quiet, low turbulence depo - methods (magnetostratigraphy, radiometric age sitionala cNoT nditions in sheltered or profundal part of dating) whichU cNaDnIć obtain real data conceranNiT ng tim - lake ( S et al., 2018). This environmental de - ing of SLS ( R et al., 2013, 2018; S et al., pended life pattern is more or less recognized 2018). otherwise, its relationship towards the within all freshwater lakes during the Miocene time. younger Badenian marine atNraDnIC sgressive sediments for that reason, the clear stratigraphic range of the is subject of debate (e.g. M et al., 2019). Some - mentioned lake based on fossil content couldn’t be wahNeT re, this relation can be more or less obvious (e.g. defined. However, for the first time, our radiometric S et al., 2018). Some authors reported that t he age dating (16.9 Ma) of tuff located above the coal age of the SLS is older than the marine Middle Bade - Gseorli. eans. Bgailkv. epo ltuhose., 2p01r9e, c80is (2e) , 1s3t–r3a7 tigraphic position of niaRnST bIćut there is concordant relation between them29 these sediments. on other words, the famous fresh - (K et al., 2012) . LJUPko RUnDić , n EBoJšA VASić , M ioDRAG BAnJEšEVić , D EJAn PRELEVić , V ioLETA GAJić , B oJAn koSTić & J ELEnA STEFAnoVić

rd a few of the studied boreholes documented the dication about the late Badenian transgressive Ammonia Badenian marine transgression (e.g. RTK-1501, event. It could be correlative with global 3 order beccarri A viennensis Bolivina . dilatata Bulim - RTK-1502a). There is good compariEsToRno VbIćetween cycle TB 2.5 of sea-level fluctationo RtIhć at is already ina elongata, Hanzawaia boueana Heterolepa du - our resužltosD ažno d porMeIvć ious researches E( SPELINoVIć , 1961, knEZoEwLj n form Central Paratethys ( ć et al., 2009; templei, Cassidulina laevigata . 1969; D -T oPoVIć, 1963, 19o7P0o;V VIć agIć et al., P et al., 2016). Species such as ex gr. 19o6LI9ć , 1975; P TEVaNo, V1I9ć 68; P aNI&ć g , 1969; , . cf . , cf , D , 1977; S , 1977; g , 2005). The , transgression occurred accross the Timok bay oPoVIć etc oPionVdIić cate afguIćll which was developed along the Timok strike-slip marine EcToRnodVIićtions ( P , 1968; P & g , fauRlät UrTeNaEcRtivatedR SaTtI ćthe beginniRnSgTI oć f Middle Miocene 1969; P , 1969, 1988). However, large portion (K & K , 2003; K et al., 2012). In of clastites within all the studied boreholes indicate eastern Serbia, the area of Zaječar was the soutTh E - a regressive trend and transition towards thTeE rVea - Granulolabium bicinctum Acteocina lajonkaire - VearNnomVoIć st prolongatNiIoć n of the Paratethys Sea ( S - sNtorViIcć ted marinCeH aWnadR ZbHraaNcS kish environmeanStI ć ( S - ana Mohrensternia . pseudoangulata ervilia , 1977; g , 2005). During the Middle , 19UN7D7I;ć S et al., 2015; V et al., dissita, irus gregarious, Abra Hydrobia and Badenian, RmSTaIć rine facies reached to the town of 2018; R et al., 2018). Indeed, fossil fauna such Cerithium Zaječar ( K et al., 2012). However, in the Upper as , Badenian (= Konkian, regional stage in eastern Pa - , cf , cf. ratethys), the topmost part of succession have a Sar - cf. sp., sp., matoid chaaSrKacRtEeV r and clažsosDifžio ed oaMsI ćthe “Buglovian sp. suggest that changes. additionally, layers” ( L , 1934;ó DKay -T , 1963) or “Ve - small foraminifers such as rare anomalinoides and selyankian horizon” ( K , 1984, p. 41). Based on ammonia with small-size shell as well as scarce os - these studies, the topmost Badenian and transi - tracod species indicate the shift from the maSrKinaeR EtVo tional Badenian/Sarmatian sediments have Eastern shallow-žwoaDtžeo r obMraIć ckish environmoePnotV Ić ( L agIć , Parathetian affinity. However, it is not easy to recon - 1934; DaNIć -T ,1963, 1970; P & g , struct marine gatóeKwayays betweEeR n oCRegnH tral and East - 1969; g , 2005). afterwards , we recognized a ern Paratethys ( K , 1984; T B et al., 2014).. faunistic sterile package of clastites between the The existence of small oases of Badenian rocks freshwater lacustrine sediments and marine-brack - within so-called the Trans-Carpathian corridor (Ser - ish sediments on the top of some boreholes bian parto LoIfć CarpathiaTnEsVa) NcooVuIć ld be a connection (RTK-1501, RTK-1502a, and RTK-1503 - fig. 17). It route ( D , 1977; S , 1977 ). Contrary, represents the transitional part between these units other authors mentioned that the Badenian Sea of and it is impossible to give it more precise strati - so-called the type, mainly comes through SW graphic age. So, it could correspond to time interval RoRmSTaInć ia to the north-western part of from late Karpatian to late Badenian. Based on the (K et al., 2012). Recently, similar paleogeo - mentioned results and spatial and temporal relation graphic reconstructions based on biochronology between the studied boreholes RTK-1501 and RTK- and ar/ar radiometric age of tuffs from the NW 1502a, the next stratigraphic range within the ma - Transylvanian basin and SE Carpathian foredeep in - rine and marine-brackish succession could be dicate that the marine transgression of the Para - determined (fig. 18). tethys occurred adNuT ring Middle Badenian between finally, based on all the collected data from the 14.9–14.4 Ma ( S et al., 2019). studied area, we sketched a hypothetical model of de - our results from a few samples contain micro - velopment of the lateral alluvial-lacustrine and fauna confirm existence of late Badenian to early marginal-lacustrine facies during the early Miocene Sarmatian phases of evolution of the Paratethys Sea (fig. 18). Vertical alteration of the facies in the stud - in the studied area. Based on foraminifer and ostra - ied wells and their basic sedimentological and pale - cod assemblages and scarce molluscan remains ontological properties give some elements to the 3fo0 und in these samples as well as lithological suc - sketch and suggest aboGueotl . tahn.e B malko. pdoelu oosf., d20e1p9,o 8s0i (t2i)o, 1n3 –i3n 7 cession (e.g. RTK-1501, RTK-1502a) there is an in - such a system. The arrangement of individual facies Facies analyses, biostratigraphy and radiometric dating of the Lower–Middle Miocene succession near Zaječar (Dacian basin, eastern Serbia)

(marginal-lacustrine, lacustrine, prodelta, etc.) and during the middle Miocene marine water of Para - their distribution over the surface indicate to the de - tethys flooded this area. It is clearly observed in the positional mode. The thickness of the clastic sedi - boreholes RTK-1501 and RTK-1502a. However, these ments from the alluvial facies (aL) decreases to basin sporadic evidences of the late Badenian transgressive wards. generally, this model of facies distribution in - event (no evidence on older Badenian flooding) and dicates the direction of transport from north to south. more or less uniform pattern of distribution of the Two of transparent arrows mark the direction of the clastic sediments across the basin make too difficult redeposited clastic material to the mar ginal facies. to create another one sketch map of facies distribu - on the other hand, there is clear evidence that tion during the Badenian and Sarmatian time. So, we

Fig. 17. A simplified geological cross-section based on data from the studied boreholes ( VASić et al ., 2018). Stratigraphic units: A. Pale - orelief (older than Metovnica Fm.): 1, Berrias?carbonates; 2, Valanginian limestones; 3, Albian glauconitic sandstones and; 4, Ceno - manian fine-grained clastites. R1 – Pre-Miocene and Miocene fault. R2 i R3 –Post-Miocene, reverse faults; B. Cr-Paleogene Metovnica Fm.; C. Lower Miocene terrestrial-lacustrine clastites;, and D. Middle Miocene marine and brackish clastites. Small letters within the unit C indicate six main non-marine lithofacies mentioned in the text. Letters for the unit D mark three main marine and marine-brackish lithofacies. These unstandardized colors and textures should to point out main lithological differences and lithofacies distribution.

think that more detailed analyses of the mentioned core-wells as well as the future nearby boreholes can better support this attempt to reconstruct the direc - tion of the marine Badenian flooding as well as fol - lCoownincgl uresgiroensssive trend during Sarmatian.

This study is obtained the first exact data regard - ing the stratigraphic position of freshwater Miocene Fig. 18. A hypothetical model of development of the lateral allu - clastic sediments and pyroclastites in the Zaječar vial-lacustrine and marginal-lacustrine facies during the early area. The oldest Miocene unit corresponds to the Miocene (with the positions of wells). Key: K, land with an alluvial continental-lacustrine series of so-called the Ser - network; ML, Marginal-lacustrine facies; B, Basin (lacustrine fa - bian Lake system (SLS) that was originated during cies); P, Prodelta ; AL, Alluvial-lacustrine facies with diverse delta the late early Miocene whereas overlying marine (D1) ( VASić et al., 2018, modified). and restricted marine sediments belong to the mid - dle Miocene (Badenian and Sarmatian). Geol. an. Balk. poluos., 2019, 80 (2), 13–37 Six different major lithofacies within the cont3i 1- nental-lacustrine deposition (SLS) and three major LJUPko RUnDić , n EBoJšA VASić , M ioDRAG BAnJEšEVić , D EJAn PRELEVić , V ioLETA GAJić , B oJAn koSTić & J ELEnA STEFAnoVić

marine and restricted marine facies (marine-brack - Technological Development (RgNejpauNobVlia c oUfM SEeNrobVaia). our ish Paratethys) indicate rapid evolution of the area thanks gooR Itć o the reviewers N. o -R (Sofia) during the early and middle Miocene. and S. ć (Wien) for useful suggestions and construc - Stratigraphically, the continental-lacustrine sed - tive comments which improved the first version of the iments (basal clastites and marsh facies especially) manuscript. The results of this researches which per - belong to the Lower Miocene (freshwater equiva - formed during 2017 have been published courtesy by the lents of Karpatian i.e. late Burdigalian). RTielvfae Croe., nBeclegrs ade. U-Pb radiometric analyses of zircon grains from the tuff located above the coal series (borehole Chemical geology NRKR-17002) indicates a mean radiometric age of NDERSEN 16.9 Ma. It is the first data that precisely indicate the 204 Lower Miocene age of coal series in eastern Serbia. a , T. 2002. Correction of common lead in U–Pb Previously, it understood as the Lower–Middle Mio - analyses that do not report Pb. , Geološki anali Balkanskoga poluostrva cene. NĐ1EL9K2o V(I1ć -2): 59–N7ĐE9L. KoVIć analyses of mollusk and foraminifer assem - a , M. & a , j. 1997. Badenski ciklusi u Srbiji blages from the different clastic sediments which [Badenian cycles of Serbia – in Serbian and En glish] . Geološki anali Balkanskoga poluostrva overlay the mentioned freshwater series indicate a NToNIjEVIć IjaToVIć , 62: 25–45. marine and marine-brackish development that cor - a , I. & M , P. 2014. The copper deposits of responds to the time interval from late Badenian to Bor, eastern Serbia: geology and origin of the Depo - early Sarmatian. RasDiItć s . ILINoVIć HNELT UNDIć C, H7W5a: R5Z9H–a7N4S . Swiss Journal of Paleontology Based on data from the studied boreholes, it is B -M , K., a , H., R , Lj. & S , impossible to date the timing of marine Badenian W. 2019. The lost freshwater goby fish fauna (Tele - transgression in this westernmost part of Dacian ostei, gobiidae) from the early Miocene of Klinci basin. Namely, biostratigraphic analyses of the stud - RU(SSINea rbia). , 138: 285–315. ied material show that the older biostratigraphic B , S. 1902. Iconographia Molluscorum fossilium in zones within Badenian could not be determined. tellure tertiaria Hungariae, Croatiae, Slavoniae, Dal - only up per Badenian Bolivina-Bulimina Zone is rec - matiae, Bosniae, Herzegovinae, Serbiae and Bulgariae . Geologica Carpathica ognized. No determined stratigraphic range for dif - VEiTnKvoeVnIć torum. ofEfiCcSiKnaay Soc. Typographicae, agram ferent clastites which separate the lower, freshwater C , V. & P , Z. 1999. The Early Miocene series of clastites with coal (Lower Miocene) from eruptive complex of Borač (Central Serbia): Volcanic the upper Badenian and Lower Sarmatian sedi - facies and evolution over time , ments on the top of Miocene succession. They have VET5K0o:V 9Ić 1–93. RELEVIć oWNES oVaNoVIć aSELI . Lithos a potential stratigraphic range from the Karpatian C ECS, KVa.y, P , D., D , H., j , M., V , o. to Upper Badenian. &P , Z. 2004. origin and geodynamic signi ficance Comparative lithostratigraphic analysis as well of Tertiary postcollisional basaltic magmatism in Serbia as a geological model of the studied area, point that oR(IćCentraalV BELaIlć kan PeőnginL sula) aNDIć , 73:R 1a6Ba1C–186. VaNIć Badenian flooding sediments or Sarmatian re - ć , SE.,R P KoVIć , D., R RaNjfK.o, VM Ić , o., V , S., a , Geologia Croatica stricted marine clastites cover different older geo - R., j , L. & V , a . 2009. Revised Middle logical units (e.g. Lower Miocene, Lower or Upper Miocene datum for initial marine flooding of North Cretaceous, etc.) depending of the morphological Croatian Basins (Pannonian Basin System, Central Achcakrancotewrilsetidcsg oefm paelenotrs elief. E PEaErW atethysa)N.D IC RIjgSMa , 62U (IP1E)R : 31–43R. Va ToVIć D L , А., M Tecto, ono., pKhysics, n, W., K , K. & H , H. 2012. PaleomaGgneoeltoicg ya nofd yugegocslharvoina ologic con- straints on the geodynamic evolution of the Cen tral

IMDITiRnIajErViIdć es. 530–531 (2012): 286–298. These studies represent results of a few projects (No. D , M. 1997. . geological 32 Geol. an. Balk. poluos., 2019, 80 (2), 13–37 176015, 176019) funded by Ministry of Science and Institute gEMINI Special Publication, Belgrade, 187 pp. Facies analyses, biostratigraphy and radiometric dating of the Lower–Middle Miocene succession near Zaječar (Dacian basin, eastern Serbia)

Palaeogeography, Pa - laeoclimatology, Palaeoecology,

oLIć D , D. 1977. o problemima stratigraZfaspkiosgn ircai sSčrlpasnkjoag - gradients and interrelations.

vgaeonljoaš skloagtk dorvuošdtvnao zga n 1e9o7g5 ena Srbije [on problems of aCKSoN EaRSoN RIffIN E2L6a0U:So4V1a 7–434. stratigraphic division of freshwater Neogene of Ser - j , S., P , Cj.h, gemical, GLe. o&l oBgy , a. 2004 . The bia – in Serbian, german summary]. application of laser ablation-inductively coupled

oLIć , 93–103. plasma-mass spectrometry to in situ U–Pb zircon D , D. 199X8i.i io kdonogsre ns agseloelđoag aP Jaurgaotseltaisvaij e i miocenskih oVagNeooVcIć hronooloRIgć y. RaBaC , 211: G4e7o–l6o9šk. i anali jezerskih formacija u Srbiji [The relationship of Para - j Balka,n gs.k, oćga p,o Sl.u &o sVtrva , S. 2019. The first evidence tethyan and Miocene lake deposits of Serbia – in of marine Badenian transgression near Koceljeva

žoSDežro biaonM]I.ć , 2: 373–382. (Central Paratethys, western Serbia). D -T , R. 1963. Mikrofauna buglovskog horizonta oVaNoVIć RIf oDREa , 80 (1):U 1RI–ć 15. Timočke krajine s naročitim osvrtom na njegovo j , Gge.,o Tlošk, iN a.,n Cali Balk, Va.n &sk Đoga p,o Dlu. 2o0st1r9va . Middle stratigVreasfnsikko G meoezsatvoo (dMa icrofauna of Buglovian hori - Miocene shark teeth from the southern margin of the zont from Timočka krajina with the special regard to Pannonian Basin System (Serbia, Central Parate - its stratigrafical position - in Serbian, English sum - thys). , 80 (1):

žomDžao ry. oMIć , 21 (a): 11–132. IPa 29–4G3e. o-eLcaoR-IMU arina special publication D -T , R. 1970. Sarmatsko razvice Dakijskog j , D.C. & o , C. 2009. Dacian Basin - Depositional basena u istočnoj Srbiji sa aspekta mikrofaune i architecture and sedimentary history of a Paratethys

njegova zonalna biostratigrafska podela [VSeasrnmik atic NESžeEaVI. ć aNIć , n3e: o2g6e4n pe pa. nd evolution of the Dacian Basin in eastern Serbia from K Quate, Srn. &ar g y str,a Mtig. 2ra0p1h3y. In- tAracctaurapl attehrimani ncolnongeyc taionnd the aspect of microfauna and its zonal biostratigra - bnoetmweenecnla tthuer ePannonian and Dacian basins. In: Rundić, phic division – in Serbian, English abstract]. , 28 Lj., gaudenyi, T. & jovanović, M. (Eds.).

ajI(ć a ): 201a–N2a1S2K.o VIć ETRoVIć Đ , S., T , L j. & P , S. 2018. Paleo - óKay Ge. oSleorgbician H guenoglaorgicicaa, ls eSroiceise ptya,l a3e4o–n3t5o.l ogi - palinološke asocijacije srednjeg miocena istZoačpnie - K ca, j. 1984. Central and Eastern Paratethyan Inter - sSnribciij eS r(pšsikrao go gkeoolilnošak Noge gdorutišntava) [zPaa 2la0e1o8 palynological relations in the light of Late Badenian salinity middle Miocene associations of east Serbia (broader conditions.

vicinity of ) – in Serbian and English]. RSTIć 48: 61 pp. oRĐEVIć , 1–20G. eološki K , N. 1991. PosleRdaidcoav ši tGaejoeirnssktiihtu ptaokreta u jugo slo - Đ anali ,B Mal. k2a0n0s5k.o Vgoal cpaonluoogsetnrvica Turonian and epiclastic venskim Karpato-Balkanidima [Styrian effect Senonian in the Timok MagmaGteioc loCgoym opf ltehxe bsoeutwtheeern in the yugoslavian Carpatho-BalkanidAesct–a inG eSoelrobgiaicna ,

Bpaort a onfd t hTeu pTiizmnoicka eMrouupntitvae ina,r eeaa stern Serbia. RSEHTInuć gnlgisahr iaacbVa Isć trajct ].o VaNoVIć oDoR , 25: 21–30. oRĐEVIć aNjEšEVIć , 66: 63–71. K , N., S , L ., j , g. & B , E. 2003. Lower Đ , M. & B , M. 1997. Miocene lakes of the Balkan Land.

(in Serbian, English RSPTIrć oceedinIKg,o s4š E6oK f( 3G)e:o 2i9n1st–iRt2Su9TtI9eć . summary). Savezno mMinairsintaer-bstrvaoc kzisah pMriiovcreendeu o, f Bthee - K , N., S , B. & K , N. 1988. The Neogene

aNoDIćgarcaidan, 1 B71aspipn., eastern Serbia tectonics of the yugoslav Carpathian–Balkanides. g , M. 2005. Morsko-brakični miocen Dakijskog Ge, o2lo2š: k7i 7a–n8a5li B(ianlk Saenrsbkioagna ,

basena, istočna Srbija [ RSpETIonć lguloisshtr svauaVm,I ć mary). oVaNoVIć – in Serbian]. Unpu - K , N., S , L j. & j , g. 2012. The Neogene blished PhD thesis, faculty of Mining and geology. Lakes on the Balkan Land.

RUUBInć iversity NoTfo BNeIjlEgVrIać de, 185 pp. RäUTNER 73: R3S7T–Ić 60. g , a. & a Zb, oIr. n1i9k6 r1a/d1o9v6a 2R. GNF ova shvatanja o K , H.g. & K , B. 2003. geological map of the tektonskom sklopu istočne Srbije. [News on the Carpatho-BalkanidesR beecutweiel edne TMreahvaduixa o, foferratv áit aJo, vNainš

structural properties of east Serbia – in Serbian, aSKCaanvRidjEi ćSV ofia, at scale 1: 300 000. geoinstitute, Belgrade. aREZnHagUliSsEhR abstracta].N DIC , 8: 177–187. L , V. 1924. Sur les equivalents du Sarmatien H , M. & M , o. 2008. Neogene lake systems Superieur en Serbie. Geol. an. Balk. poluos., 2019, 80 (2), 13–37 33 of Central and South-: faunal diversity, . Državna štamparija Beograd, 73–85. LJUPko RUnDić , n EBoJšA VASić , M ioDRAG BAnJEšEVić , D EJAn PRELEVić , V ioLETA GAJić , B oJAn koSTić & J ELEnA STEFAnoVić

Proceeding of 18th international Diatom Sympo -

aSKaREV sium, Bristol ITKoWSKI L , V. 1G9e3o4l.o osk bi uagnlaolvi sBkaimlk asnlosjkeovgima ap odlužo sstprvoaljneg the region of the Balkan Peninsula. In: W , a. oboda Karpata [Sur les couches Bougloviennes le long (Ed.).

du bord exterieur des Carpathes – in Serbian, french gNjaNoVa UMEN, o3V3a 7–345. RSTIć resume]. , 12 o -R , N. & K , N. 2007. Neogene diatom

UD(W1I)g : 1–17. , Special Publication assemblages from lacustrine Psreodciemedenintgs off 1Ssetr Cbeina tarnald - L , K.R. 2003. User’s manual for Isoplot 3.00. a tehueriorp edaisnt rDiibautotimon M iene titnhge 2c0o0r7r,e Blaetrilvine formations in

geochronological Toolkit for Microsoft Excel. Berkeley SoUuSBtEhR -West BulagHaN ria and Republic of Macedonia. In: UKgáCeS ochronaRoaloNgIy CenUteILr LoNg aCHMaNN , 4: o1D–o7R 4. K , H-W. & j , R. (Eds.), L UR, ERT ., H UNKL , S., gLIWINSKI , M., BUaDT ,E oyT.,C fHEVa , L., LTEaNU IPa Geo-eco-Marina, , 121–124. BIMME,R yE.R, D , I., S , j., q , a., P , I. & o , R. & j , D.C. 2006. Dacian Basin environmental Z , M. 2018. Early to Mid-Mioceneea rstyhn-S-ecxietnence - evolutionG edoulroišnkgi aUnpaplie Bra lNkeaongskeongea w poitlhuions ttrhvae Para -

Rsieovnieawl ms assive silicic volcanism in the Pannonian Basin aVtLeotVhIćys domain. 12: 91–105. (East-): Eruption chronology, correla tion P , P. 1903. Zwei neue arten aus Zvezdan und potential and geodynamic implications. Madjare. , 6 (1):

aNDIC 1U7N9D:I ć 1–19. oRIć EZELj HEoBaLT aNT ET3Ko2V4I–ć 325. NDjELKoVIć M , o.R, RIjgSMaN , Lj., ć , S., P P,a Dla., iTos , D., S , P , K. & a , M. 1958. Neki novi podaci o K. & K , W. 2019. age and mode of the Middle vremenu epirogenih i orogenih zbivanja i pratećim Miocene marine flooding of the Pannonian Basin - pojavama u severoistocnoj Srbiji [Neue DatGeneo Ülobšekr i

aRcKoonVsItć raints ofrVoamčI ć Centralo SReIrć bia. IBLjaš , 34 (2)E:Z 7E1Lj–95. adneanl i zBeailtkliacnhsekno gVae prolaluof sterpvia rogener und orogener M ajEMK ,i ofac.D,e EnKSeS E tuffs, fMroE.Rm, Nć ItThZ e n,U oSčr.E,t NhTja CK roat, iDan., bPasin , Đ., Vorgänge und detren Begleiterscheinungen in os - H -T , V., H -K , M. & Bakrač, K. tserbien – in Serbian, german summary].

2018. Miocenski tufovi Sjevernohrvatskoga baze - ETRoVIć , 25: 1–16. na [ – in P , M. 1961. Prilog poznavanju mikrofaune oGklaoslinnike Croatian, English abstract]. 17. KongreGs egoelolsokgi a aSnrbail -i SPtruirboidknaj, aVčekloikgo mg Iuzzveojara i Vojilova. [Contribution to the

aRjBeoa,V lSIkć rapnsskkoo goeaKo polVoIlšćukoos tdrrvua šotLvjIoć , abstract book, 164–168. knowledge of the microfauna of štubik, Veliki izvor M , M., Đ I. & T , M. 1998. genesis of the and Vojilovo – in Serbian, English summary].

Neotectonic Structures of Serbia. ETRoVIć , 22 (a): 14–15. aRoVIć oKoVIć IL,I ć6E2V:I ć 25–45o. LjIć ERZINa P , M. 1969. TortoVnessknii kforzaamvoindiafe rzia š tgueboilkoaš k(ais ti. M , M., Đ , I., M Geolo, sVk.i, T anali, MBa. l&k ag nskoga , Sgrebofijizai)č kia n isjithraožvi vbainojsa tratigrafski znacaj [Tortonian pNo. l2u0o0st2r.v Pa aleomagnetism of the late Paleogene and foraminifers of štubik, eastern Serbia – in Serbian, Neogene rocks of the Serbian Carpatho-Balkanides: English summary].

tneecotoalnpiicn ei mtepctloicnaitciso onfs S. erbia ETRoVIć , 27 (a): 231–254. aRoVIć ,o 5L1jI:ć 329–3U3N4D. Ić j ILIVojEVIć P , M. 1988. Novine u biostratigrafiji badenskog M , M., T , M., R , L . & M , j. 2007. kGaetoalo šštkuib ainčkaoli- tBiamlkoačnkoskgo rgoav ap,o Vlueolisktorgv a Izvora i Vojilova . Serbian geological Soci - [The new in the Badenian biostratigraphy of štubik-

EUeBtayU, EBR elgradaeR, Z8H7a UpSpE.R RoH EoRgoPoULoU Timok trough – in Serbian, English summary]. N aNDI,eC Ta.r, tH h-Science R,e Mvi.e, wKs , a., g , E. & EZELj aNDIC oRIć , 51: 3G2e9o–lo3g3i4ca. M , o. 2015. a gastrnopeogde-bnea slaecdu bstiroigneo bgarsainpsh oic f P Ca,r Đpa., tM hica , o. & ć , S . 2013. Paleoenvironmental Sscehrbeima e for the European Neogene freshwater sys - dynamics in the southern Pannonian Basin during

BRtaeDmoVsI.ć aSIć , 143: 98–116. initial Middle Miocene marine flooding. o , j. & V , N. 2007. EZELj RE, M6a4C (1): 81–1E0R0M. aNEC . Serbian academy of Sciences and arts, Mono - P , Đ., S , j. & B , V . 2016. Shallow- graphs 662, Department of Mathematics, Physics and wa ter benthic foraminiferal asGseeomlobglaicgae sC arapnad - geo- Sciences, 3: 310 pp. (In Serbian, English sum - thieciar response to the palaeoenvironmental changes

gNmjaaNroyVa). UMENoVa – example from the Middle Miocene of Medvednica o -R , N. 2006. Some aspects and problems Mt. (Croatia, Central Paratethys) . 34 Geol. an. Balk. poluos., 2019, 80 (2), 13–37 concerning diatom biochronology for the Neogene in , 67 (4): 329–345. Facies analyses, biostratigraphy and radiometric dating of the Lower–Middle Miocene succession near Zaječar (Dacian basin, eastern Serbia)

oPoVIć Vesnik zavoda za Swiss Journal of Geoscience P geolo, Ršk. a1 9i 6g8eo. ofi zsitčakrao sistti rsaeždiivmanenja ata Slatinskog basena 2008. The alpine-Carpathian-Dinaridic orogenic u istočnoj Srbiji [about age of the sediments of system: correlation and evolution of tectonic units.

basin, eastern Serbia – in Serbian]. CHWaRZHaNS RaDIć , 101U:N 1D3Ić 9–183. oPoVIć agIć , 26: 101–110. S Paläontol,o gWis. c, hBe Zeits,c hKr.i f&t R , Lj. 2015. fish- P , R. & g , N. 196V9e. sNniokv zi apvodaa czia og etoolrotšoknau i otoliths from the marine-brackish water transition sgreeodfinzjiečgk ad eisltar Tažimivoačnkjaog basena (ist. Srbija ) [New data from the Middle Miocene of the Belgrade area, Serbia.

about Tortonian of the middle part of Timok basin, EgHEDI RSoy EL, V8a9CI (4): 815–837. east Serbia – in Serbian]. S , I., E , y. EL. it&h oHs, , C. 2013. Miocene–

aDoVaNoVIć Glas SrapVsLkoeV kIć ,r a2l7je, vas,k 8e3 a–k1a0d4e.mije quaternary volcanism and geodynamic evoeluvotilounti oin R , S. & P , P. 1891. o tercijaru Timočke tohf en ePoagnennoen iinatnra Bmaosninta nane dB atshien sM ine nSedrebrieas - MFiaeslds iTf:r iap

krajine [on Tertiary of the Timok Krajina – in IMIGcćoumidpe aIrVaotTiIvć e studNyD. RIć 18U0N-D1I8ć 1: 25–42. ögSL erbian]. Geologica Carpathica , 29: 1–113. S , V., ž , D., a , N. & R , Lj. 2017. R , f., 1999. Mediterranean and Paratethys. facts and Hypotheses of an oligocene to Miocene Paleogeo graphy . Émile argand Conference - 13th Workshop on

UN(DSIhć ort overview). neogene and Qua, t5e0r:n 3a3ry9 –s3tr4a9t. i - alpine geological Studies September 7th - 18th 2017 R gra,p Lhyj. /2 A0c1t3ua. lS tterramtiignroalpoghy aonfdU N nDeoIomć geennjcela t–ua rSUe tDaEtNuy s and Mts. (Serbia). University of Belgrade – faculty poeVrasNpoeVcIćtives in Serbia. In: R , L ., g T. & LaMofa Mininogš aLnER d geoloNgyD,o 5N 8 pp. RoWLEy ERDES j M. (Eds.). S a,N jC.H, aKR , oj.R, SCTWooD , D., CoRRIS , j., gaSDaLa , a., . abstract HoRBERg , j., HCHaLTEggER , M., CMHoENE , g., UNBRETT , L., UNbDoIćok, SerbiNaEnž EgVeIoć logical SoacKiIejatyš G, eBoellogšrkaid ae,n 9a–li1 B1a. lkan- N HITEHo,U CNShE .,e Smical Geolo,g Uy,., S , B., T , M. & R skog, aL jp.,o lKuostrva , S. & R , M. 2013. Badenian W , M. 2008. Plešovice zircon - a new natural marine transgression: new evidence from the Vrdnik reference material for U-Pb and Hf isotopic micro -

coal basin (northern Serbia). TEVaanNaolyVsIć is. 249 (1-2): 1–35. UNDIć aSIć ,a 7N4jE:š 9EV–I2ć 3. RELEVIć ajIć o S , P. 1958. Marinski miocen (torton, sarmat i R VaN,o LVjI.ć , V , Na.,N BTELIć , M.,T PEfaNoVIć , D., g , V., j - meot) između sela Sipa, i Kladušnice na izlazu iz ĐGeor - , M., P , N. & S , j. 2018. New ldoašpksi kaen akllii Bsuarlkea [nTsokrotgoan ,p Soaluromstartv ia n Mäot ostlich des Abibosstrtraacttisg roaf pthhiec , XsXeid Cimonegnrteoslso goifc athl,e a CnBdG rAa, dSiaolmzbeutrigc , eisernen Tores am rechten Donauufer zwischen Sip dAautsatr fiaro (mSe pLtoewmebre r- 1M0i-d1d3l, e2 0M1i8o)c, eGneeo logf itchae B Zaalcjeačnaicra area und Kladušnica – in Serbian, german summary].

(westernmost part of Dacian basin, eastern Serbia). TEVaNoVIć , 25: 17–28. S , P. 1964. MarinGslakso -SbArnaUkični miocen

aNT aLCU aNDIC RIjgSMaN , 99. karpatskog predgorja u istočnoj Srbiji. [Marine- S , K., P , TDe.r, rMa nova , o. &K , W. 2017. brackish Miocene of the Carpathian foredeep of

Changing seas in the Early - Middle Miocene of Central TEVeaaNsoteVrIćn Serbia – in SPerrobcieaend]i. ngs of Viii, 2C5o: n8g3r–e1s0s 1o. f Europe: a Mediterranean approach to Paratethyan S Carpath, iPa.n 1-9B6al7k.a gne Goelogloicgaicl arle Avsiesowc ioaft itohne, Carpatho-

aNsT tratigraaNpDhICy. UNDIć , 29 (U5I)P:E 2R 73–281R. IjgSMaN Balkanides of Eastern Serbia (stratigraphy, tectonics S , K.,n Mewslett, eor. ,o Rn Strat, iLgrj.a, pKhy , K. & K , W. and magmatism).

2018. age and evolution of the Serbian Lake System: TEVGaeNooloVIgć y of Serbia, ii–3, Stratigraphy of Se1r6b0ia pp. integrated results from Middle Miocene Lake Popo - S , P. 1977. Istočna Srbija, MioEcTeKno V(IMć iocene of aNvT ac. aLCU URCo I TEf, a5N1o (1), 11a7LD–a1S4SI3N. I Eastern Serbia – iCno nSneerbctiiaonn)s. Ibne:t wPeen sed, imK.e(nEtadr.)y . S , oKU.W, EPNHoV,E ND., T UIP,E ER ., D S RIjgSM, aN ., B , N., basins during continental collision - how tec.t oUnnici -, K , T., K , K. & K , Win.t 2er0n1a9t.i oTnhae l ER vsuerofsRaigtcyH e oaf nBde lgserdadime,e 3n1ta–r6y5 . processes shaped the Pa - mJouidr-nLaalnogf heiaarnth fl Socoidenincge sin the eastern Central Para tethys: T raBtethy,s M. 2013. integrated stratigraphic data from the Tran sylvanian Basin and SE Carpathian foredeep .

CHMID ERNoULLI , 108U g(7EN):S 2C2HU0H9–2232.aTENCo ER oRgH . PhDT oTIhCaesis, UnoivNeSErLsaitaeR it Utrecht,a 2TE0N4C opp. S , S.M., B , D., f , B, M , L., T B , M., S , M., D , M. E., M , L. & Geol. aCnH.E BfaElkR . poluosC.H, 2U0S1T9E, R 80 (2), 13IS–C3H7 LER STaSZEWSKI RIjgSMaN 35 S , S., S , R., T , M. & U , K. K , W. 2014. Miocene connectivity between the LJUPko RUnDić , n EBoJšA VASić , M ioDRAG BAnJEšEVić , D EJAn PRELEVić , V ioLETA GAJić , B oJAn koSTić & J ELEnA STEFAnoVić

Palaeogeography, Palaeoclima - tology, Palaeoecology A new chronology for the Dacian Basin Central and Eastern Paratethys: Constraints from the 1924). За време миоцена, подручје источне (): consequences for the kinematic and paleo- western Dacian Basin. Србије (Тимочка крајина) припадало је најза - environmental evolution of the Paratethys region aSILIEV , 412: 45–67. паднијем делу Дакијског басена који се ослањао V , I. 2006. на карпатско предгорје, југоисточне огранке Карпата иa дRoаVљIć е на исток прaеNмIćа БугарскEоR ј иo RРgуH - . PhD мунији ( M et al., 1998; g , 2005; T B , aSITć hesis, aUNnjEivšEeVrIsć iteit UtUrNeDcIhć t, 193 apjpIć . oVaNoVIć 2013 ). Седиментне фације у Дакијском басену V R, ENL.E, VBIć , aMN.T, ERLIć , Lj., g , V., j , M., указују на један регресивни образац запуне P , D. & P , N. 2018. Sedimentologija i басена који карактерише присуство про града - Zbornik apstrakata 17. Kongresa geologa Srbije biostratigrafija miocena Kraljevice (istočna Srbija) ционих структура с приобалским фацијама и [Miocene sedimentology and biostratigraphy in the великим делтама које су нарочито присутне Kraljevica area (east Serbia) – in Serbian and English]. током срaеNдIњć ег и млађaSеIгL IмEV иоцена иI Pрa аног LпaлRIиU - , vol. 1: оцена (gER oR, g2H 005; V , 2a0jI0ć 6; j & o , ES1EL0I2No–V1I0ć 8. IVLjaN oRĐEVIć aLENIć 2009; T B et al., 2014; Đ et al., 2018). На Basic Geological map of Former V ILošaKo, VMIć ., D ajčE, VMIć ., Đ oPoVIć, M., K UDoL,f M., основу детаљне петрографске односно седи - 1:100 000, sheet Zaječar M , R., R , D., P , R. & R , Lj. ментолошке анализе пет истражних бушотина 1967. osnovna geološka karta SfRj 1: 100 000 - list у околини Зајечара (RTK-1501, RTK-1502a, Zaječar [ RTK-1503, NRKR-17001 и NRKR-17002), у оквиру – in Serbian]. Savezni geo - мио ценске стенске сукцесије велике дебљине Basic Geological Map of Former ESEloLšINkoi VzIać vod, BeNoTogNraIjdEV. Ić oNčaREVIć aLENIć (негде и преко 500 m), издвојено је шест главних yugoslavia 1: 100 000. explanatory booklet for the Sheet V ajčEVIć . M., aRSTIć , Ia.N, KLoVIć , ča.,K KIć , M., литофација унутар старије миоценских конти - Zaječar R , D., K , B., B , V. & R , B. 1975. нентално-језерских наслага и три литофације Tumač za list Zaječar [ које одговарају наслагама морaсSкIć ог и морско- бракичног мора Паратетиса ( V et al., 2018). IEDENBECK – in SerLbLiE an]. SaovRefzU ni geoRlIofšfkIN i Zavod, BEeIoERgrad. Релативно брза смена грубокластичних стена и Geostandards and W BERLI , Mo.,N a Ua,D PT ., C oD,D fIC.,K g , PWIE.LgE.,L M , M., финозрних кластита указује на динамичан ра - oGeoan,afly., tVical qResea,r ach., R , j.C. & S , W, 1995. звој овог подручјEаS EтLоINкoоVмIć старијег и средњег Three natural zircon standards for U-Th-Pb, Lu-Hf, мoиPоoцVеIć на (нпр. oVPoVIć agIeć t al., 196T7E,V a1N9o7VI5ć ; trace element and REE analyses. P , 1968; P & g , 1969; S , Geološki anali Balkanskoga poluostrva IVKoVIć , 19: 1–23. 1958, 1964, 1967, 1977). Поред детаљних седи - ž , M. 1893. Tercijer srednjeg dela Timočkog basena ментолошких анализа, појединачни наласци Geološki anali Balkanskoga poluostrva [Tertiary of the middle part of the Timok basin – in Ser - фосилног материјала и радиометријско дати - UjobViaIć n]. , 4: 37–117. рање прослојака туфа унутар седиментне серије, ž , j. 1889. osnovi za geologiju Kraljevine Srbije. омогућили су стратиграфско расчлањавање ми - Резиме , 1: 1–131. оценске серије и добијање првих егзактних по - датака о стратиграфском положају слатко водни х Анализа фација, биостратиграфија и миоценских кластита и вулканита. Нај ста рија радиометријско датирање доње и миоценска јединица одговара кон тинентално- средње миоценск e сукцесије код језерској серији такозваног Српског језерског Зајечара (Дакијски басен, источна система ( SLS) а посебно базални кла стити и Србија ) мочварне фације са угљем. U-Pb ра диометријске анализе зрна циркона из интерстратификованог туфа у повлати лубничке угљене серије (бушотина NR KR -17002 , дубина 34 m) указују на старост туфа од 16,9 милиона година (доњи миоцен – 36 Дакијски басен је у неогену био део вaеSлKиaкREоV г Карпат). Ово су прGвeиo l. пanо. дBaаlkц. pиo luкoоs.,ј и20 1п9, р80е (ц2)и, 1з3н–3о 7 епиконтиненталног мора Паратетиса ( L , указују на старије миоценску старост угљене Facies analyses, biostratigraphy and radiometric dating of the Lower–Middle Miocene succession near Zaječar (Dacian basin, eastern Serbia)

серије са угљем у Лубници односно Звездану. дошла мало касније на ове про сторе (горњи Тиме је утврђено да овај језерски басен по баден) за разлику од јужног дела Панонског времену стварања оEдгоEвEаW ра тзв. Динарском басена где је утврђена наo RоIкć о 14, 5 милиEоZнELа j језерском систему (D L et al., 2012) и да је година (доњaиN бT аден) (нпр. ć aNDeIC t al., 2009; P знатно старији од неких језерских aбNаT сена у et al., 2013; S et al., 2018; M et al., 2019). На оквиру Српског језерског система ( S et al., граници старији/средњи миоцен , екстензиони 2018). Пронађена асоци јација мекушаца, фора - процеси и син-рифтна наглашена спуштања у мини фера и остракода ( RTK -150 1, RTK -1502a , домену басенских структура на ширем простору, RTK -150 3) из различитих нивоа кластита који утицали су и на обликовање локалних морфо- трансгресивно леже преко поменуте слатко - структурних депресија (нпр. Тимочки ров). Све водне серије, указује на развој мора тј. бра - то је праћенVоE TзKнoаVчIćајним вулканиUKзáмCоS м на ширем кичног мора (Паратетис) на овом простору у простору ( C et al ., 2004; L et al., 2018 ). периоду с краја бадена и почетка сармата Тако су стварани предуслови да надолазећа (средњи миоцен). На основу доступних података морска трансгресија у средњем миоцену пре крије Bolivina- Bulimina из проучаваних бушотина, није могуће датирати велики простор централне Европе . Ме ђутим, време баденске трансгресије на овом, најза пад - управо је текто ника била главни контролни нијем делу Дакијског басена (конста тована је фактор који је условио да трансгресија није била само горњобаденска зона). На синхрона на aNчTитавом простору некадашњег жалост, због оскудних налазака фо силног мате - Паратетиса (S et al., 2019). О томе где су били ријала, није утврђен стратиграфски поло жај за морски коридори (тзв. транс-карпатски мореуз у различите кластите који раздвајају доњу, слат - Србији или Трансилванија) и како је та „поплава ” Manuscript received october 15, 2019 ководну серију са угљем (доњи ми оцен) од стигла на просторе источне Србије за сада нема Revised manuscript accepted December 03, 2019 горње баденских и доње сарматских седимента довољно егзактних података. на врху миоценске сукцесије. Узи мајући те чињенице у обзир, ова истраживања би могла указати да је поменута баденска трансгресија

Geol. an. Balk. poluos., 2019, 80 (2), 13–37 37