Facies Models 2. Turbidites and Associated Coarse Clastic Deposits
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States
BEST PRACTICES for: Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States First Edition Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Cover Photos—Credits for images shown on the cover are noted with the corresponding figures within this document. Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States September 2010 National Energy Technology Laboratory www.netl.doe.gov DOE/NETL-2010/1420 Table of Contents Table of Contents 5 Table of Contents Executive Summary ____________________________________________________________________________ 10 1.0 Introduction and Background -
A Few Months-Old Storm-Generated Turbidite Deposited in the Capbreton Canyon (Bay of Biscay, SW France)
Geo-Marine Letters DOI 10.1007/s003670100077 A few months-old storm-generated turbidite deposited in the Capbreton Canyon (Bay of Biscay, SW France) T. Mulder( ) · O. Weber · P. Anschutz · F. J. Jorissen · J.-M. Jouanneau T. Mulder · O. Weber · P. Anschutz · F.J. Jorissen · J.-M. Jouanneau Département de Géologie et Océanographie, UMR 5805 EPOC, Université Bordeaux I, Avenue des Facultés, 33405 Talence cedex, France E-mail: [email protected] Received: 22 January 2001 / Revision accepted: 20 July 2001 / Published online: Abstract. A gravity core taken in the canyon of Capbreton shows a succession of sedimentary facies which can be interpreted as three superimposed Bouma sequences. The turbiditic sequences are covered by an oxidised layer which contains live benthic foraminiferal faunas indicating a reprisal of hemipelagic deposition. Activities of 234 Th and 210 Pb suggest that the most recent turbidite was deposited between early December 1999 and mid-January 2000. During this period, the most probable natural event able to trigger a turbidity current was the violent storm which affected the French Atlantic coast on 27 December 1999. The turbidity current could have been caused by a sediment failure due to an excess in pore pressure generated by the storm waves, an increase of the littoral drift, or the dissipation of the along-coast water bulge through the canyon. This sub-Recent turbidite shows that the canyon experiences modern gravity processes, despite the lack of a direct connection with a major sediment source. Introduction Although turbidity currents and turbidites have been known for half a century (Kuenen 1951, 1952a, 1952b, 1953, 1959; Bouma 1962), much controversy still exists concerning the processes of deposition (Kneller and Branney 1995; Shanmugam 1997, 2000; Mulder and Alexander 2001), their origin (Mulder and Cochonat 1996) and their recognition. -
Pennsylvanian Minturn Formation, Colorado, U.S.A
Journal of Sedimentary Research, 2008, v. 78, 0–0 Research Articles DOI: 10.2110/jsr.2008.052 DEPOSITS FROM WAVE-INFLUENCED TURBIDITY CURRENTS: PENNSYLVANIAN MINTURN FORMATION, COLORADO, U.S.A. 1 2 2 3 2 M. P. LAMB, P. M. MYROW, C. LUKENS, K. HOUCK, AND J. STRAUSS 1Department of Earth & Planetary Science, University of California, Berkeley, California 94720, U.S.A. 2Department of Geology, Colorado College, Colorado Springs, Colorado 80903, U.S.A. 3Department of Geography and Environmental Sciences, University of Colorado, Denver, Colorado, 80217-3363 U.S.A. e-mail: [email protected] ABSTRACT: Turbidity currents generated nearshore have been suggested to be the source of some sandy marine event beds, but in most cases the evidence is circumstantial. Such flows must commonly travel through a field of oscillatory flow caused by wind-generated waves; little is known, however, about the interactions between waves and turbidity currents. We explore these interactions through detailed process-oriented sedimentological analysis of sandstone event beds from the Pennsylvanian Minturn Formation in north-central Colorado, U.S.A. The Minturn Formation exhibits a complex stratigraphic architecture of fan-delta deposits that developed in association with high topographic relief in a tectonically active setting. An , 20–35-m- thick, unconformity-bounded unit of prodelta deposits consists of dark green shale and turbidite-like sandstone beds with tool marks produced by abundant plant debris. Some of the sandstone event beds, most abundant at distal localities, contain reverse- to-normal grading and sequences of sedimentary structures that indicate deposition from waxing to waning flows. In contrast, proximal deposits, in some cases less than a kilometer away, contain abundant beds with evidence for deposition by wave- dominated combined flows, including large-scale hummocky cross-stratification (HCS). -
Self-Guiding Geology Tour of Stanley Park
Page 1 of 30 Self-guiding geology tour of Stanley Park Points of geological interest along the sea-wall between Ferguson Point & Prospect Point, Stanley Park, a distance of approximately 2km. (Terms in bold are defined in the glossary) David L. Cook P.Eng; FGAC. Introduction:- Geomorphologically Stanley Park is a type of hill called a cuesta (Figure 1), one of many in the Fraser Valley which would have formed islands when the sea level was higher e.g. 7000 years ago. The surfaces of the cuestas in the Fraser valley slope up to the north 10° to 15° but approximately 40 Mya (which is the convention for “million years ago” not to be confused with Ma which is the convention for “million years”) were part of a flat, eroded peneplain now raised on its north side because of uplift of the Coast Range due to plate tectonics (Eisbacher 1977) (Figure 2). Cuestas form because they have some feature which resists erosion such as a bastion of resistant rock (e.g. volcanic rock in the case of Stanley Park, Sentinel Hill, Little Mountain at Queen Elizabeth Park, Silverdale Hill and Grant Hill or a bed of conglomerate such as Burnaby Mountain). Figure 1: Stanley Park showing its cuesta form with Burnaby Mountain, also a cuesta, in the background. Page 2 of 30 Figure 2: About 40 million years ago the Coast Mountains began to rise from a flat plain (peneplain). The peneplain is now elevated, although somewhat eroded, to about 900 metres above sea level. The average annual rate of uplift over the 40 million years has therefore been approximately 0.02 mm. -
Non-Clastic Sedimentary Rocks by Cindy Grigg
Non-Clastic Sedimentary Rocks By Cindy Grigg 1 Rocks can be put into three main groups. They are grouped by how the rocks formed. Sedimentary (sed-uh-MEN-tuh-ree) rocks are formed on or near Earth's surface. Sedimentary rocks are sorted into other groups. They can be sorted as clastic or non-clastic. This group tells something about the rocks' beginning and what they formed from. 2 Non-clastic rocks are created when water evaporates or from the remains of plants and animals. Limestone is a non-clastic sedimentary rock. Limestone is made of the mineral calcite. It often contains fossils. Limestone formed in the ocean from the shells and skeletons of dead sea creatures. Some of the fossils in limestone are too small to be seen without a microscope. Chalk is a type of limestone that is usually white. It consists almost entirely of the shells of tiny dead sea creatures. Limestone is a common building material. 3 Coal is another non-clastic rock. It formed from the dead remains of plants. Millions of years ago, plants fell into swamps. They were covered with layers of sediment and did not rot. Over millions of years, as the remains were buried deeper under more and more layers of sediment, they were changed by pressure into coal. Coal is commonly used as fuel in power plants to make electricity. 4 Evaporite rocks formed when minerals such as gypsum and halite (rock salt) were left behind as water evaporated from oceans and lakes. Evaporite is common in desert areas, where evaporation is high, such as the Great Salt Lake in Utah. -
Permian Basin, West Texas and Southeastern New Mexico
Report of Investigations No. 201 Stratigraphic Analysis of the Upper Devonian Woodford Formation, Permian Basin, West Texas and Southeastern New Mexico John B. Comer* *Current address Indiana Geological Survey Bloomington, Indiana 47405 1991 Bureau of Economic Geology • W. L. Fisher, Director The University of Texas at Austin • Austin, Texas 78713-7508 Contents Abstract ..............................................................................................................................1 Introduction ..................................................................................................................... 1 Methods .............................................................................................................................3 Stratigraphy .....................................................................................................................5 Nomenclature ...................................................................................................................5 Age and Correlation ........................................................................................................6 Previous Work .................................................................................................................6 Western Outcrop Belt ......................................................................................................6 Central Texas ...................................................................................................................7 Northeastern Oklahoma -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
Apollo 14 Lunar Sample Catalog
1 Glossary of Terms Used in Petrographic Descriptions anorthite - triclinic plagioclase feldspar with the composition (Ca90-100, Na10-0) Al2Si208 anorthosite - rock name for an igneous rock (or lithic fragment) composed almost entirely of plagioclase (usually calcic plagioclase). Lunar anorthosites have a granulitic texture. basalt - a fine grained, usually dark colored, igneous rock which commonly is extrusive in origin. Composition of basalt, ordinarily, includes primarily calcic plagioclase, pyroxene, and other mafic minerals, such as olivine. breccia - a clastic rock with angular and broken rock fragments in a finer grained matrix. For purposes of this catalog, breccia fragments larger than 1 mm are designated as clasts, and those smaller than 1 mm are referred to as matrix. clast - fragmental part of a breccia larger than 1 mm. A clast may be lithic, mineral, or glass in lunar breccias. coherent- consolidated; not friable; doesn't crumble easily crystallite- a broad term applied to grains or crystals which are too small for identification dendritic - minerals that have crystallized in a branching or feathery pattern, commonly in a glassy matrix devitrified - said of a glass which has converted to a crystalline texture after its solidification fragmental rock - any clastic rock; rock composed of fragments of other rocks, minerals, or glass; includes breccias and microbreccias friable - said of a rock that crumbles naturally or is easily broken; poorly consolidated; poorly cemented; not coherent gabbro - coarse grained equivalent of -
EPS 50 Lab 4: Sedimentary Rocks Grotzinger and Jordan, Chapter 5
Name: _________________________ EPS 50 Lab 4: Sedimentary Rocks Grotzinger and Jordan, Chapter 5 Introduction In this lab we will classify sedimentary rocks and investigate the relationship between environmental conditions and sedimentary rock deposition. Remember that the diversity of rock in nature is generally continuous, and we are learning interpretive guidelines. The underlying principle for understanding sedimentary rocks and geological processes is that minerals and rocks are stable only under the conditions at which they form. If the temperature, pressure, water content, or other conditions change, the rocks will change to adapt to the new conditions. Objectives Learn to identify common sedimentary rocks (i.e. sandstone, shale, limestone and conglomerates) and the depositional environments they indicate. Learn to identify sedimentary structures and the processes that form them. Answers Please answer the numbered questions on the separate answer sheet handed out during lab. Only the answer sheet will be graded. Explanations should be concise—a few sentences or fewer. All answers should be your own, but we encourage you to discuss and check your answers with a few other students as you work through the exercises. ===================================================================== Sedimentary Rocks Sedimentary rocks form by the accumulation of sediment (eroded bits of pre-existing rocks) or by the precipitation of minerals out of solution. Sediment is deposited in a number of environments by moving air and water. Sedimentary rock identification is primarily based on composition. Texture can be used, but texture of a sedimentary rock has a slightly different meaning than texture of an igneous rock. In this lab, texture of a sedimentary rock refers to the origin or type of sediment found in the rock. -
Bulletin of the Geological Society of Denmark, Vol. 35/1-2, Pp. 19-23
Soft sediment deformation structures in Silurian turbidites from North Greenland POUL-HENRIK LARSEN Larsen, P.-H.: Soft sediment deformation structures in Silurian turbidites from North Greenland. Bull, DGF geol. Soc. Denmark, vol. 35, pp. 19-23, Copenhagen, October, 29th, 1986. Turbidite beds in the Silurian turbidite sequence, North Greenland, show soft sediment deformation struc tures suggesting that the structureless (in respect of traction structures) sandstones divisions of the turbidi tes were deposited by direct suspension sedimentation from high-density flows. The deposits may have re sulted from multiple successive depositional events within the same turbidity flow. Reworking and shear ing of the newly formed loosely packed high-density suspension deposits caused by the still moving flow above create secondary soft sediment deformation structures which may be used as current indicators if other structures are absent (e.g. flute casts). P.-H. Larsen, Grønlands Geologiske Undersøgelser, Øster Voldgade 10, DK-1350 Copenhagen K, Den mark. May 6th, I985. General aspects of turbidite sedimentation fine sand, silt and clay in a turbulent suspension. These residual currents may complete bypass The organisation of deposits from low-density areas of high-density turbidity current deposi turbidity currents, the classical Bouma model, tion, but may have significant local effects. They has been extensively discussed and reviewed by may shear, liquify and homogenise the loosely Bouma (1962), Walker (1965), Sanders (1965), packed high-density suspension deposits (Mid Middleton (1967, 1969, 1970), Walton (1967), dleton 1967; Lowe 1982). Unsteady, residual low Allen (1970) and Middleton & Hampton (1973, density currents can deposit sediment above that 1976) among others. -
Sedimentary Rocks
Name: ___________________________________________ Minerals and Rocks Date: __________________________ Period: ___________ The Physical Setting: Earth Science Lab Activity: Sedimentary Rocks INTRODUCTION: ! Sedimentary rocks are formed from an accumulation of sediments. Most of the time a sedimentary rock is formed from the materials that settle in quite waters. More often then not, the individual characteristics of the sediments can be found in the sedimentary rock it self. Geologist have classified sedimentary rocks into three categories called clastic, crystalline and bio- clastic. The clastic rocks are those formed mechanically where sediments are compacted or ce- mented together. Crystalline rocks form chemically from precipitates and evaporites and bioclastic rocks are composed of former living things. OBJECTIVE: ! Learn how to identify sedimentary rocks based on their properties. VOCABULARY: ! Clastic - Lithification -! Cementation -! Compaction - Crystalline - Bioclastic - PROCEDURE A: For each unknown sedimentary rocks, identify the key characteristics. After identifying the charac- teristics, use your Earth Science Reference Tables and determine the name of the rock based on your observations. Leigh-Manuell - "1 Lab Activity: Sedimentary Rocks Texture Texture Observations Rock Name ! Clastic ! Various sizes ! Sand sized: 0.006 - 0.2 cm ! Silt sized: 0.0004 - 0.006 cm ! Clay sized: less than 0.0004 cm ! Crystalline ! Fine to coarse ! Bioclastic ! Microscopic to very coarse Method of Lithification: ! Burial and Compaction ! Burial -
The Seismite Problem G
Journal of Palaeogeography, 2016, 5(4): 318e362 (00104) Available online at www.sciencedirect.com ScienceDirect journal homepage: http://www.journals.elsevier.com/journal-of-palaeogeography/ Multi-origin of soft-sediment deformation structures and seismites The seismite problem G. Shanmugam Department of Earth and Environmental Sciences, The University of Texas at Arlington, Arlington, TX 76019, USA Abstract During a period of 82 years (1931e2013), 39 genetic terms were introduced for various deposits. Of the 39 terms, only ten are meaningful in understanding the true depositional origin (e.g., turbidites), the remaining 29 are just jargons (e.g., seismites, tsunamites, etc.). The genetic term “seismites”, introduced by Seilacher (1969) for recognizing palaeoearthquakes in the sedimentary record, is a misnomer. The term was introduced in haste, based on an examination of a single exposure of the Miocene Monterey Formation (10 m) in California, without a rigorous scientific analysis. The fundamental problem is that earthquake is a triggering mechanism, not a depositional process. Type of triggers cannot be recognized in the ancient sedimentary record because evidence for triggers is not preserved by nature. Soft-sediment deformation structures (SSDS), commonly used as the criteria for interpreting seismites, are a product of liquefaction. However, liquefaction can be induced by any one of 21 triggers, which include earthquakes, meteorite impacts, tsunamis, sediment loading, among others. Brecciated clasts, typically associated with earthquake-induced deposits in the Dead Sea Basin, are also common depositional products of debris flows (i.e., synsedimentary product unrelated to earthquakes). Also, various types of SSDS, such as duplex-like structures and clastic injections, can be explained by synsedimentary processes unrelated to earthquakes.