Analysis of Tidal Prism Evolution and Characteristics of the Lingdingyang

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Tidal Prism Evolution and Characteristics of the Lingdingyang MATEC Web of Conferences 25, 001 0 6 (2015) DOI: 10.1051/matecconf/201525001 0 6 C Owned by the authors, published by EDP Sciences, 2015 Analysis of Tidal Prism Evolution and Characteristics of the Lingdingyang Bay at Pearl River Estuary Shenguang Fang, Yufeng Xie & Liqin Cui Key laboratory of the Pearl River Estuarine Dynamics and Associated Process Regulation, Ministry of Water Resources, Guangzhou, Guangdong, China ABSTRACT: Tidal prism is a rather sensitive factor of the estuarine ecological environment. The historical evolution of the Lingdingyang water area and its shoreline were analyzed. By using remote sensing data, the evolution of the water area of the bay was also calculated in the past 30 years. Due to reclamation, the water area was greatly decreased during that period, and the most serious decrease occurred between 1988 and 1995. Through establishing the two-dimensional mathematical model of the Pearl River estuary, the tidal prism of the Lingdingyang bay has been calculated and analyzed. The hybrid finite analytic method of fully implicit scheme was adopted in the mathematical model’s dispersion and calculation. The results were verified though the method of combining the field hydrographic data and empirical formula calculation. The results showed that the main tidal entrance of the bay is the Lingdingyang entrance, which accounts for about 87.7% of the total tidal prism, while Hong Kong’s Anshidun waterway accounts for only 12.3% or so. Combining the numerical simulations and the historical evolution analysis of the water area and tidal prism, and compared with that in 1978, it showed that the tidal prism of the bay was greatly decreased, and the reduced area was mainly the inner Lingdingyang bay, which accounted for 88.4% of the whole shrunken areas. As weakening trends of the tidal powers of the medium and neap tides are obvious, the tidal prism is decreased during the medium and neap is larger than that during the spring. Keywords: Lingdingyang Bay; tidal prism; empirical formula; shoreline; mathematical model 1 INTRODUCTION sediment mining, the wetland wildlife resources were greatly reduced and the wetland environment was The topography and geomorphology as well as hy- destroyed[4]. In 1980s, due to the large area of wetland drodynamic environment were gradually formed in the reclamation in Liaohe delta, the landform of the orig- past thousands of years of evolution. The main three inal wetland has been considerably changed, which estuary types of the automatic adjustment and the substantially leads to the reduction of natural wetland geomorphological characteristics formation mecha- area while artificial wetlands such as rice fields are nism including the river dominant, the tide dominant gradually increased [5]. Human reclamation activities and the wave dominant have been elaborated by Li[1]. have not only directly caused the decrease of wetland It pointed out that, through factors contained in the area but also have caused the degradation of the wet- system such as velocity, slope, water depth, estuary land’s habitat environment and the decline of biodi- width and the composition of the sediment, the func- versity and ecological functions [6]. The fundamental tion of the estuary was constantly adjusted and formed reason is that the reclamation and the construction of some kinds of most optimal morphology to satisfy and estuary engineering and so on have changed the envi- meet the demand of energy input, output and transfer ronmental condition of hydrology, hydrodynamics and from two directions of the river and sea. Deposition, sediment transportation. While sediment scouring and biological and chemical features are also important silting variations that caused by fluctuation of tidal characteristic elements of the estuary because the dif- channels and flow conditions in the estuary area often fusion and self-cleaning of the pollutants, ecological lead to great disasters. Therefore, it is necessary to do species and environmental mutations also have intrin- basic research on the pattern of the water and sediment sic connections with the estuarine system [2]. In recent movement characteristics and its natural adaptability, years, the tidal flat reclamation and the construction of while weight and balance the reclamation and wetland wading engineering such as port terminals have protection [7]. changed the estuary morphology sharply, leading to The shrink of intertidal zone and wetlands in the ecological wetland shrunk rapidly. According to sta- estuary area directly changed the sea topography and tistics [3], the area of land reclamation from the sea hydrodynamic boundary conditions, which also led to reached to 34 thousand hm2 in the Yangtze River es- the change of tidal prism and water exchange in the tuary from 1978 to 2002. In the Yellow River Delta, bay. Tidal prism is an important index for the bay due to beach reclamation, indiscriminate catching and environment evaluation, which reflects the 4 Article available at http://www.matec-conferences.org or http://dx.doi.org/10.1051/matecconf/20152501006 MATEC Web of Conferences N N Dahu Jiaomen Tide Level Stations Flow Stations Nansha Dock east Baoan Airport )DQVKL west east Inner Lingdingyang Bay Hengmen Wanqingsha beach trough middle west trough ay Chiwan n B Lingding 2# he S z h n e e n h z S h beach n e ctio n Se ross B beach n C a iwa y Ch C r o s s S e Qiao Island tion c Sec ti Cross o gding n Neilin Neilingding Island Jinxingmen Cross Section Jinxingmen T o n g g u Tangjia Bay C r Anshidun Waterway o s s S e c t i o n tion on s Sec Secti Cros Hongkong Airport Cross rway Xiangzhou Bay gzhou Wate Qin West Jiuzhou Cross Section Dahao Island Hongkong Dahao Jiuzhou Port n s Sectio th Cros ay Mou gyang B Lingdin ◣ 䰘 Guishan Island ᵪ ൪ Hengqin Island Open Sea 1# Open Sea 2# Huangmao Island Dawanshan Islands E Figure 1. Sketch of the Lingdingyang bay self-purification capacity of the bay and decides the compared and analyzed the results. Ye et al. [11] sepa- exchange strength between the bay and the open sea, rated intertidal zone and water area, calculated the and also plays a significant role on the environment, tidal prism and water exchange time of Sansha Gulf. ecology, sediment scouring and silting in the bay[8]. Wu et al. [12] used remote sensing image data to obtain The ADCP (Acoustic Doppler Current Profiler) the water area of Haikou Port and then calculated the method was used to cruse and observe the Jiaozhou tidal prism changes. Considering the situation of rec- Bay estuary and obtain the tidal prism by Qiao[9]. lamation in the estuary, Yang et al. [13] improved the Chen et al. [10] used both methods of charts and ADCP traditional calculation formula of tide, recalculated to calculate tidal prisms of the Jiaozhou Bay, and then and analyzed the tidal prism of Jiaozhou Bay. 01006-p.2 EMME 2015 In the recent thirty years, engineering constructions especially since 1990s. Simultaneously, deep trough such as of sea reclamation, together with significant area which is below 5 meters under the surface shows changes of the estuary shoreline as well as hydrologic that the trend of constant was decreased by 19.6 km2 and topographic conditions, have substantially affect- on total from 1974 to 1998, and becoming narrower ed the tidal prism and water exchange of the bay. Most and deeper with the improvement of water and sedi- research results [14][15][16][17][18] are focused on the as- ment transport capacity. pects of estuary hydrodynamics, water environment, Comparing Chen et al[15]’s and Xu et al[14]’s data on water geomorphology and hydrology, which are the evolution of the shoal and trough in the Lingding- closely and indirectly related to the tidal prism chang- yang estuary, their results are basically the same, es although still lack of fruits about it straightfor- namely the area of inner Lingdingyang which is above wardly. Therefore, based on summarizing and analyz- 5 meters under the surface was respectively decreased ing the existing research results, combining with the by 112.0 km2 and 112.6 km2 from 1974 to 1998. Deep hydrodynamic evolution and changes of water envi- trough areas of the elevations of sea bed which were ronment in the waters of the Pearl River estuary, this below 5 meters from the surface have respectively article discusses the process of the tidal prism evolu- decreased by 24.0 km2 and 19.6 km2 with a little dif- tion and the present condition of the estuary, adopting ference between them. the method of combining historical data, empirical formula, field data and mathematical model. 2.2 Historical evolution of Lingdingyang coastline The historical evolution of the Pearl River Delta can 2 OVERVIEW ON WATER AREA AND SHORE- be described as the processes such as the sediment LINE EVOLUTION OF LINGDINGYANG BAY which is constantly piling up outside the estuary, the coastline which is constantly pushing towards the sea, 2.1 Historical evolution of tidal water area the river course which is constantly extending, the estuary which is correspondingly moving outside and As shown in Figure 1, the landform of the Lingding- the branching bay which is gradually silting up. The yang bay generally maintained the pattern of “three artificial land reclaiming as well as the joint enclosing beaches and two troughs” in the recent 100 years. The and floodgate building have accelerated the speed of evolution of scouring and silting in the sea area is that the delta’s deposition and the coastline’s evolution the west beach is extending, the middle beach is ex- over the recent 100 years. The related data analysis [21] panding, the east beach is stable, and the west and east [19][20] shows that most shores of the east coast of Lingding- troughs are narrowing .
Recommended publications
  • Modeling Dynamic Processes of Mondego Estuary and Óbidos Lagoon Using Delft3d
    Journal of Marine Science and Engineering Article Modeling Dynamic Processes of Mondego Estuary and Óbidos Lagoon Using Delft3D Joana Mendes , Rui Ruela, Ana Picado, João Pedro Pinheiro, Américo Soares Ribeiro , Humberto Pereira and João Miguel Dias * Physics Department, CESAM–Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (J.M.); [email protected] (R.R.); [email protected] (A.P.); [email protected] (J.P.P.); [email protected] (A.S.R.); [email protected] (H.P.) * Correspondence: [email protected] Abstract: Estuarine systems currently face increasing pressure due to population growth, rapid economic development, and the effect of climate change, which threatens the deterioration of their water quality. This study uses an open-source model of high transferability (Delft3D), to investigate the physics and water quality dynamics, spatial variability, and interrelation of two estuarine systems of the Portuguese west coast: Mondego Estuary and Óbidos Lagoon. In this context, the Delft3D was successfully implemented and validated for both systems through model-observation comparisons and further explored using realistically forced and process-oriented experiments. Model results show (1) high accuracy to predict the local hydrodynamics and fair accuracy to predict the transport and water quality of both systems; (2) the importance of the local geomorphology and estuary dimensions in the tidal propagation and asymmetry; (3) Mondego Estuary (except for the south arm) has a higher water volume exchange with the adjacent ocean when compared to Óbidos Lagoon, resulting from the highest fluvial discharge that contributes to a better water renewal; (4) the dissolved oxygen (DO) varies with water temperature and salinity differently for both systems.
    [Show full text]
  • Study on Hydrodynamic Characteristics and Environmental Response in Shantou Offshore Area
    Journal of Marine Science and Engineering Article Study on Hydrodynamic Characteristics and Environmental Response in Shantou Offshore Area Yuezhao Tang 1,2 , Yang Wang 1,*, Enjin Zhao 2,* , Jiaji Yi 1, Kecong Feng 1, Hongbin Wang 1 and Wanhu Wang 1 1 Haikou Marine Geological Survey Center, China Geological Survey, Haikou 570100, China; [email protected] (Y.T.); [email protected] (J.Y.); [email protected] (K.F.); [email protected] (H.W.); [email protected] (W.W.) 2 Marine Geological Resources Laboratory, China University of Geosciences, Wuhan 430074, China * Correspondence: [email protected] (Y.W.); [email protected] (E.Z.) Abstract: As a coastal trading city in China, Shantou has complex terrain and changeable sea conditions in its coastal waters. In order to better protect the coastal engineering and social property along the coast, based on the numerical simulation method, this paper constructed a detailed hydrodynamic model of the Shantou sea area, and the measured tide elevation and tidal current were used to verify the accuracy of the model. Based on the simulation results, the tide elevation and current in the study area were analyzed, including the flood and ebb tides of astronomical spring tide, the flood and ebb tides of astronomical neap tide, the high tide, and the low tide. In order to find the main tidal constituent types in this sea, the influence of different tidal constituents on tide elevation and tidal current in the study area was analyzed. At the same time, the storm surge model of the study area was constructed, and the flow field under Typhoon “Mangkhut” in the study area was simulated by using the real recorded data.
    [Show full text]
  • A Novel Approach for the Assessment of Morphological Evolution Based on Observed Water Levels in Tide-Dominated Estuaries
    https://doi.org/10.5194/hess-2019-661 Preprint. Discussion started: 10 January 2020 c Author(s) 2020. CC BY 4.0 License. A novel approach for the assessment of morphological evolution based on observed water levels in tide-dominated estuaries 1,2 1,2 3 4 1,2 Huayang Cai , Ping Zhang , Erwan Garel , Pascal Matte , Shuai Hu , 1,2 1,2 Feng Liu , and Qingshu Yang 1Institute of Estuarine and Coastal Research/State and Local Joint Engineering Laboratory of Estuarine Hydraulic Technology, School of Marine Engineering and Technology, Sun Yat-sen University, Guangzhou, China 2Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China 3Centre for Marine and Environmental Research (CIMA), University of Algarve, Portugal 4Meteorological Research Division, Environment and Climate Change Canada, Quebec, Canada Correspondence to: Feng Liu ([email protected]) Abstract. Assessing the impacts of both natural (e.g., tidal forcing from the ocean) and human- induced changes (e.g., dredging for navigation, land reclamation) on estuarine morphology is par- ticularly important for the protection and management of the estuarine environment. In this study, a novel analytical approach is proposed for the assessment of estuarine morphological evolution in 5 terms of tidally averaged depth on the basis of the observed water levels along the estuary. The key lies in deriving a relationship between wave celerity and tidal damping or amplification. For given observed water levels at two gauging stations, it is possible to have a first estimation of both wave celerity (distance divided by tidal travelling time) and tidal damping or amplification rate (tidal range difference divided by distance), which can then be used to predict the morphological changes 10 via an inverse analytical model for tidal hydrodynamics.
    [Show full text]
  • Congressional-Executive Commission on China Annual
    CONGRESSIONAL-EXECUTIVE COMMISSION ON CHINA ANNUAL REPORT 2016 ONE HUNDRED FOURTEENTH CONGRESS SECOND SESSION OCTOBER 6, 2016 Printed for the use of the Congressional-Executive Commission on China ( Available via the World Wide Web: http://www.cecc.gov U.S. GOVERNMENT PUBLISHING OFFICE 21–471 PDF WASHINGTON : 2016 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 VerDate Mar 15 2010 19:58 Oct 05, 2016 Jkt 000000 PO 00000 Frm 00003 Fmt 5011 Sfmt 5011 U:\DOCS\AR16 NEW\21471.TXT DEIDRE CONGRESSIONAL-EXECUTIVE COMMISSION ON CHINA LEGISLATIVE BRANCH COMMISSIONERS House Senate CHRISTOPHER H. SMITH, New Jersey, MARCO RUBIO, Florida, Cochairman Chairman JAMES LANKFORD, Oklahoma ROBERT PITTENGER, North Carolina TOM COTTON, Arkansas TRENT FRANKS, Arizona STEVE DAINES, Montana RANDY HULTGREN, Illinois BEN SASSE, Nebraska DIANE BLACK, Tennessee DIANNE FEINSTEIN, California TIMOTHY J. WALZ, Minnesota JEFF MERKLEY, Oregon MARCY KAPTUR, Ohio GARY PETERS, Michigan MICHAEL M. HONDA, California TED LIEU, California EXECUTIVE BRANCH COMMISSIONERS CHRISTOPHER P. LU, Department of Labor SARAH SEWALL, Department of State DANIEL R. RUSSEL, Department of State TOM MALINOWSKI, Department of State PAUL B. PROTIC, Staff Director ELYSE B. ANDERSON, Deputy Staff Director (II) VerDate Mar 15 2010 19:58 Oct 05, 2016 Jkt 000000 PO 00000 Frm 00004 Fmt 0486 Sfmt 0486 U:\DOCS\AR16 NEW\21471.TXT DEIDRE C O N T E N T S Page I. Executive Summary ............................................................................................. 1 Introduction ...................................................................................................... 1 Overview ............................................................................................................ 5 Recommendations to Congress and the Administration ..............................
    [Show full text]
  • Coastal Squeeze Evidence and Monitoring Requirement Review
    Coastal Squeeze Evidence and Monitoring Requirement Review Oaten, J., Brooks, A. and Frost, N. ABPmer NRW Evidence Report No. 307 Date www.naturalresourceswales.gov.uk About Natural Resources Wales Natural Resources Wales’ purpose is to pursue sustainable management of natural resources. This means looking after air, land, water, wildlife, plants and soil to improve Wales’ well-being, and provide a better future for everyone. Evidence at Natural Resources Wales Natural Resources Wales is an evidence based organisation. We seek to ensure that our strategy, decisions, operations and advice to Welsh Government and others are underpinned by sound and quality-assured evidence. We recognise that it is critically important to have a good understanding of our changing environment. We will realise this vision by: Maintaining and developing the technical specialist skills of our staff; Securing our data and information; Having a well resourced proactive programme of evidence work; Continuing to review and add to our evidence to ensure it is fit for the challenges facing us; and Communicating our evidence in an open and transparent way. This Evidence Report series serves as a record of work carried out or commissioned by Natural Resources Wales. It also helps us to share and promote use of our evidence by others and develop future collaborations. However, the views and recommendations presented in this report are not necessarily those of NRW and should, therefore, not be attributed to NRW. www.naturalresourceswales.gov.uk Page 1 Report series: NRW Evidence Report Report number: 307 Publication date: November 2018 Contract number: WAO000E/000A/1174A - CE0529 Contractor: ABPmer Contract Manager: Park, R.
    [Show full text]
  • National Reports on Wetlands in South China Sea
    United Nations UNEP/GEF South China Sea Global Environment Environment Programme Project Facility “Reversing Environmental Degradation Trends in the South China Sea and Gulf of Thailand” National Reports on Wetlands in South China Sea First published in Thailand in 2008 by the United Nations Environment Programme. Copyright © 2008, United Nations Environment Programme This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publicationas a source. No use of this publication may be made for resale or for any other commercial purpose without prior permission in writing from the United Nations Environment Programme. UNEP/GEF Project Co-ordinating Unit, United Nations Environment Programme, UN Building, 2nd Floor Block B, Rajdamnern Avenue, Bangkok 10200, Thailand. Tel. +66 2 288 1886 Fax. +66 2 288 1094 http://www.unepscs.org DISCLAIMER: The contents of this report do not necessarily reflect the views and policies of UNEP or the GEF. The designations employed and the presentations do not imply the expression of any opinion whatsoever on the part of UNEP, of the GEF, or of any cooperating organisation concerning the legal status of any country, territory, city or area, of its authorities, or of the delineation of its territories or boundaries. Cover Photo: A vast coastal estuary in Koh Kong Province of Cambodia. Photo by Mr. Koch Savath. For citation purposes this document may be cited as: UNEP, 2008.
    [Show full text]
  • Congressional-Executive Commission on China
    CONGRESSIONAL-EXECUTIVE COMMISSION ON CHINA ANNUAL REPORT 2017 ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION OCTOBER 5, 2017 Printed for the use of the Congressional-Executive Commission on China ( Available via the World Wide Web: http://www.cecc.gov VerDate Nov 24 2008 16:24 Oct 04, 2017 Jkt 000000 PO 00000 Frm 00001 Fmt 6011 Sfmt 5011 U:\DOCS\26811 DIEDRE 2017 ANNUAL REPORT VerDate Nov 24 2008 16:24 Oct 04, 2017 Jkt 000000 PO 00000 Frm 00002 Fmt 6019 Sfmt 6019 U:\DOCS\26811 DIEDRE CONGRESSIONAL-EXECUTIVE COMMISSION ON CHINA ANNUAL REPORT 2017 ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION OCTOBER 5, 2017 Printed for the use of the Congressional-Executive Commission on China ( Available via the World Wide Web: http://www.cecc.gov U.S. GOVERNMENT PUBLISHING OFFICE 26–811 PDF WASHINGTON : 2017 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 VerDate Nov 24 2008 16:24 Oct 04, 2017 Jkt 000000 PO 00000 Frm 00003 Fmt 5011 Sfmt 5011 U:\DOCS\26811 DIEDRE CONGRESSIONAL-EXECUTIVE COMMISSION ON CHINA LEGISLATIVE BRANCH COMMISSIONERS Senate House MARCO RUBIO, Florida, Chairman CHRISTOPHER H. SMITH, New Jersey, JAMES LANKFORD, Oklahoma Cochairman TOM COTTON, Arkansas ROBERT PITTENGER, North Carolina STEVE DAINES, Montana TRENT FRANKS, Arizona TODD YOUNG, Indiana RANDY HULTGREN, Illinois DIANNE FEINSTEIN, California MARCY KAPTUR, Ohio JEFF MERKLEY, Oregon TIMOTHY J. WALZ, Minnesota GARY PETERS, Michigan TED LIEU, California ANGUS KING, Maine EXECUTIVE BRANCH COMMISSIONERS Department of State, To Be Appointed Department of Labor, To Be Appointed Department of Commerce, To Be Appointed At-Large, To Be Appointed At-Large, To Be Appointed ELYSE B.
    [Show full text]
  • Understanding the Relationship Between Sedimentation, Vegetation and Topography in the Tijuana River Estuary, San Diego, CA
    University of San Diego Digital USD Theses Theses and Dissertations Spring 5-25-2019 Understanding the relationship between sedimentation, vegetation and topography in the Tijuana River Estuary, San Diego, CA. Darbi Berry University of San Diego Follow this and additional works at: https://digital.sandiego.edu/theses Part of the Environmental Indicators and Impact Assessment Commons, Geomorphology Commons, and the Sedimentology Commons Digital USD Citation Berry, Darbi, "Understanding the relationship between sedimentation, vegetation and topography in the Tijuana River Estuary, San Diego, CA." (2019). Theses. 37. https://digital.sandiego.edu/theses/37 This Thesis: Open Access is brought to you for free and open access by the Theses and Dissertations at Digital USD. It has been accepted for inclusion in Theses by an authorized administrator of Digital USD. For more information, please contact [email protected]. UNIVERSITY OF SAN DIEGO San Diego Understanding the relationship between sedimentation, vegetation and topography in the Tijuana River Estuary, San Diego, CA. A thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Environmental and Ocean Sciences by Darbi R. Berry Thesis Committee Suzanne C. Walther, Ph.D., Chair Zhi-Yong Yin, Ph.D. Jeff Crooks, Ph.D. 2019 i Copyright 2019 Darbi R. Berry iii ACKNOWLEGDMENTS As with every important journey, this is one that was not completed without the support, encouragement and love from many other around me. First and foremost, I would like to thank my thesis chair, Dr. Suzanne Walther, for her dedication, insight and guidance throughout this process. Science does not always go as planned, and I am grateful for her leading an example for me to “roll with the punches” and still end up with a product and skillset I am proud of.
    [Show full text]
  • The Ghost of Liaozhai: Pu Songling's Ghostlore and Its History of Reception
    THE GHOST OF LIAOZHAI: PU SONGLING’S GHOSTLORE AND ITS HISTORY OF RECEPTION Luo Hui A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of East Asian Studies University of Toronto © Copyright by Hui Luo, 2009 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-58980-9 Our file Notre référence ISBN: 978-0-494-58980-9 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Surface Deformation Evolution in the Pearl River Delta Between 2006 and 2011 Derived from the ALOS1/PALSAR Images
    Surface Deformation Evolution in the Pearl River Delta between 2006 and 2011 derived from the ALOS1/PALSAR images Genger Li Guangdong Institute of Surveying and Mapping of Geology Guangcai Feng ( [email protected] ) Central South University Zhiqiang Xiong Central South University Qi Liu Central South University Rongan Xie Guangdong Institute of Surveying and Mapping of Geology Xiaoling Zhu Guangdong Institute of Surveying and Mapping of Geology Shuran Luo Central South University Yanan Du Guangzhou University Full paper Keywords: Pearl River Delta, natural evolution, surface subsidence, SBAS-InSAR Posted Date: October 30th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-32256/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on November 26th, 2020. See the published version at https://doi.org/10.1186/s40623-020-01310-2. Page 1/22 Abstract This study monitors the land subsidence of the whole Pearl River Delta (PRD) (area: ~40,000 km2) in China using the ALOS1/PALSAR data (2006-2011) through the SBAS-InSAR method. We also analyze the relationship between the subsidence and the coastline change, river distribution, geological structure as well as the local terrain. The results show that (1) the land subsidence with the average velocity of 50 mm/year occurred in the low elevation area in the front part of the delta and the coastal area, and the area of the regions subsiding fast than 30 mm/year between 2006 and 2011 is larger than 122 km2; (2) the subsidence order and area estimated in this study are both much larger than that measured in previous studies; (3) the areas along rivers suffered from surface subsidence, due to the thick soft soil layer and frequent human interference; (4) the geological evolution is the intrinsic factor of the surface subsidence in the PRD, but human interference (reclamation, ground water extraction and urban construction) extends the subsiding area and increases the subsiding rate.
    [Show full text]
  • Tidal Datums and Their Applications
    U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Ocean Service Center for Operational Oceanographic Products and Services TIDAL DATUMS AND THEIR APPLICATIONS NOAA Special Publication NOS CO-OPS 1 NOAA Special Publication NOS CO-OPS 1 TIDAL DATUMS AND THEIR APPLICATIONS Silver Spring, Maryland June 2000 noaa National Oceanic and Atmospheric Administration U.S. DEPARTMENT OF COMMERCE National Ocean Service Center for Operational Oceanographic Products and Services Center for Operational Oceanographic Products and Services National Ocean Service National Oceanic and Atmospheric Administration U.S. Department of Commerce The National Ocean Service (NOS) Center for Operational Oceanographic Products and Services (CO-OPS) collects and distributes observations and predictions of water levels and currents to ensure safe, efficient and environmentally sound maritime commerce. The Center provides the set of water level and coastal current products required to support NOS’ Strategic Plan mission requirements, and to assist in providing operational oceanographic data/products required by NOAA’s other Strategic Plan themes. For example, CO-OPS provides data and products required by the National Weather Service to meet its flood and tsunami warning responsibilities. The Center manages the National Water Level Observation Network (NWLON) and a national network of Physical Oceanographic Real-Time Systems (PORTSTM) in major U.S. harbors. The Center: establishes standards for the collection and processing of water level and current data; collects and documents user requirements which serve as the foundation for all resulting program activities; designs new and/or improved oceanographic observing systems; designs software to improve CO-OPS’ data processing capabilities; maintains and operates oceanographic observing systems; performs operational data analysis/quality control; and produces/disseminates oceanographic products.
    [Show full text]
  • Coupling of Sea Level Rise, Tidal Amplification, and Inundation
    MAY 2014 H O L L E M A N A N D S T A C E Y 1439 Coupling of Sea Level Rise, Tidal Amplification, and Inundation RUSTY C. HOLLEMAN* AND MARK T. STACEY Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California (Manuscript received 1 October 2013, in final form 13 January 2014) ABSTRACT With the global sea level rising, it is imperative to quantify how the dynamics of tidal estuaries and em- bayments will respond to increased depth and newly inundated perimeter regions. With increased depth comes a decrease in frictional effects in the basin interior and altered tidal amplification. Inundation due to higher sea level also causes an increase in planform area, tidal prism, and frictional effects in the newly inundated areas. To investigate the coupling between ocean forcing, tidal dynamics, and inundation, the authors employ a high-resolution hydrodynamic model of San Francisco Bay, California, comprising two basins with distinct tidal characteristics. Multiple shoreline scenarios are simulated, ranging from a leveed scenario, in which tidal flows are limited to present-day shorelines, to a simulation in which all topography is allowed to flood. Simulating increased mean sea level, while preserving original shorelines, produces addi- tional tidal amplification. However, flooding of adjacent low-lying areas introduces frictional, intertidal re- gions that serve as energy sinks for the incident tidal wave. Net tidal amplification in most areas is predicted to be lower in the sea level rise scenarios. Tidal dynamics show a shift to a more progressive wave, dissipative environment with perimeter sloughs becoming major energy sinks.
    [Show full text]