A computational study of a solver system for processing two-stage stochastic linear programming problems Victor Zverovich ∗y Csaba I. F´abi´an zx Francis Ellison ∗y Gautam Mitra ∗y November 13, 2009 1 Introduction and background Formulation of stochastic optimisation problems and computational algo- rithms for their solution continue to make steady progress as can be seen from an analysis of many developments in this field. The edited volume by Wallace and Ziemba (2005) outlines both the SP modelling systems and many applications in diverse domains. More recently, Fabozzi et al. (2007) has considered the application of SP models to challenging financial engineering problems. The tightly knit yet highly focused group of researchers COSP: Committee on Stochastic Pro- gramming, their triennial international SP conference, and their active web- site points to the progressive acceptance of SP as a valuable decision tool. At the same time many of the major software vendors, namely, XPRESS, AIMMS, MAXIMAL, and GAMS have started offering SP extensions to their optimisation suites. Our analysis of the modelling and algorithmic solver requirements re- veals that (a) modelling support (b) scenario generation and (c) solution ∗CARISMA: The Centre for the Analysis of Risk and Optimisation Modelling Appli- cations, School of Information Systems, Computing and Mathematics, Brunel University, UK. yOptiRisk Systems, Uxbridge, Middlesex, UK. zInstitute of Informatics, Kecskem´etCollege, 10 Izs´aki´ut,Kecskem´et,6000, Hungary. E-mail:
[email protected]. xDepartment of OR, Lor´andE¨otv¨osUniversity, Budapest, Hungary. 1 methods are three important aspects of a working SP system. Our research is focussed on all three aspects and we refer the readers to Valente et al.