Noname manuscript No. (will be inserted by the editor) A Review on the Performance of Linear and Mixed Integer Two-Stage Stochastic Programming Algorithms and Software Juan J. Torres · Can Li · Robert M. Apap · Ignacio E. Grossmann Received: date / Accepted: date Abstract This paper presents a tutorial on the state-of-the-art methodologies for the solution of two-stage (mixed-integer) linear stochastic programs and provides a list of software designed for this purpose. The methodologies are classified according to the decomposition alternatives and the types of the vari- ables in the problem. We review the fundamentals of Benders Decomposition, Dual Decomposition and Progressive Hedging, as well as possible improve- ments and variants. We also present extensive numerical results to underline the properties and performance of each algorithm using software implemen- tations including DECIS, FORTSP, PySP, and DSP. Finally, we discuss the strengths and weaknesses of each methodology and propose future research directions. Keywords Stochastic programming · L-shaped method · Scenario Decom- position · Software benchmark Juan J. Torres Universit´eParis 13, Sorbonne Paris Cit´e,LIPN, CNRS, (UMR 7030), France E-mail: torresfi
[email protected] Can Li Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pitts- burgh, PA 15213, USA E-mail:
[email protected] Robert M. Apap Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pitts- burgh, PA 15213, USA Ignacio E. Grossmann Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pitts- burgh, PA 15213, USA E-mail:
[email protected] 2 Juan J. Torres et al. 1 Introduction In the modeling and optimization of real-world problems, there is usually a level of uncertainty associated with the input parameters and their future outcomes.