SISC: a Complete Scheme Interpreter in Java
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Scheme Foreign Function Interface to Javascript Based on an Infix
A Scheme Foreign Function Interface to JavaScript Based on an Infix Extension Marc-André Bélanger Marc Feeley Université de Montréal Université de Montréal Montréal, Québec, Canada Montréal, Québec, Canada [email protected] [email protected] ABSTRACT FFIs are notoriously implementation-dependent and code This paper presents a JavaScript Foreign Function Inter- using a given FFI is usually not portable. Consequently, face for a Scheme implementation hosted on JavaScript and the nature of FFI’s reflects a particular set of choices made supporting threads. In order to be as convenient as possible by the language’s implementers. This makes FFIs usually the foreign code is expressed using infix syntax, the type more difficult to learn than the base language, imposing conversions between Scheme and JavaScript are mostly im- implementation constraints to the programmer. In effect, plicit, and calls can both be done from Scheme to JavaScript proficiency in a particular FFI is often not a transferable and the other way around. Our approach takes advantage of skill. JavaScript’s dynamic nature and its support for asynchronous In general FFIs tightly couple the underlying low level functions. This allows concurrent activities to be expressed data representation to the higher level interface provided to in a direct style in Scheme using threads. The paper goes the programmer. This is especially true of FFIs for statically over the design and implementation of our approach in the typed languages such as C, where to construct the proper Gambit Scheme system. Examples are given to illustrate its interface code the FFI must know the type of all data passed use. -
This Article Appeared in a Journal Published by Elsevier. the Attached Copy Is Furnished to the Author for Internal Non-Commerci
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Computer Languages, Systems & Structures 37 (2011) 132–150 Contents lists available at ScienceDirect Computer Languages, Systems & Structures journal homepage: www.elsevier.com/locate/cl Reconciling method overloading and dynamically typed scripting languages Alexandre Bergel à Pleiad Group, Computer Science Department (DCC), University of Chile, Santiago, Chile article info abstract Article history: The Java virtual machine (JVM) has been adopted as the executing platform by a large Received 13 July 2010 number of dynamically typed programming languages. For example, Scheme, Ruby, Received in revised form Javascript, Lisp, and Basic have been successfully implemented on the JVM and each is 28 February 2011 supported by a large community. Interoperability with Java is one important require- Accepted 15 March 2011 ment shared by all these languages. We claim that the lack of type annotation in interpreted dynamic languages makes Keywords: this interoperability either flawed or incomplete in the presence of method overloading. Multi-language system We studied 17 popular dynamically typed languages for JVM and .Net, none of them Interoperability were able to properly handle the complexity of method overloading. -
Hy Documentation Release 0.12.1+64.G5eb9283
hy Documentation Release 0.12.1+64.g5eb9283 Paul Tagliamonte Apr 14, 2017 Contents 1 Documentation Index 3 1.1 Quickstart................................................4 1.2 Tutorial..................................................5 1.2.1 Basic intro to Lisp for Pythonistas...............................5 1.2.2 Hy is a Lisp-flavored Python..................................7 1.2.3 Macros............................................. 12 1.2.4 Hy <-> Python interop..................................... 13 1.2.5 Protips!............................................. 14 1.3 Hy Style Guide.............................................. 14 1.3.1 Prelude............................................. 15 1.3.2 Layout & Indentation...................................... 15 1.3.3 Coding Style.......................................... 16 1.3.4 Conclusion........................................... 17 1.3.5 Thanks............................................. 17 1.4 Documentation Index.......................................... 18 1.4.1 Command Line Interface.................................... 18 1.4.2 Hy <-> Python interop..................................... 19 1.4.3 Hy (the language)........................................ 21 1.4.4 Hy Core............................................. 47 1.4.5 Reader Macros......................................... 65 1.4.6 Internal Hy Documentation................................... 66 1.5 Extra Modules Index........................................... 72 1.5.1 Anaphoric Macros....................................... 72 1.5.2 -
An Industrial Strength Theorem Prover for a Logic Based on Common Lisp
An Industrial Strength Theorem Prover for a Logic Based on Common Lisp y z Matt Kaufmannand J Strother Moore Personal use of this material is permitted. particular style of formal veri®cation that has shown consid- However, permission to reprint/republish this erable promise in recent years is the use of general-purpose material for advertising or promotional pur- automated reasoning systems to model systems and prove poses or for creating new collective works for properties of them. Every such reasoning system requires resale or redistribution to servers or lists, or considerable assistance from the user, which makes it im- to reuse any copyrighted component of this portant that the system provide convenient ways for the user work in other works must be obtained from the to interact with it. IEEE.1 One state-of-the-art general-purpose automated reason- ing system is ACL2: ªA Computational Logic for Applica- AbstractÐACL2 is a re-implemented extended version tive Common Lisp.º A number of automated reasoning of Boyer and Moore's Nqthm and Kaufmann's Pc-Nqthm, systems now exist, as we discuss below (Subsection 1.1). In intended for large scale veri®cation projects. This paper this paper we describe ACL2's offerings to the user for con- deals primarily with how we scaled up Nqthm's logic to an venientªindustrial-strengthºuse. WebegininSection2with ªindustrial strengthº programming language Ð namely, a a history of theACL2 project. Next, Section 3 describes the large applicative subset of Common Lisp Ð while preserv- logic supportedby ACL2, which has been designed for con- ing the use of total functions within the logic. -
Mixing R with Other Languages JOHN D
Mixing R with other languages JOHN D. COOK, PHD SINGULAR VALUE CONSULTING Why R? Libraries, libraries, libraries De facto standard for statistical research Nice language, as far as statistical languages go “Quirky, flawed, and an enormous success.” Why mix languages? Improve performance of R code Execution speed (e.g. loops) Memory management Raid R’s libraries How to optimize R Vectorize Rewrite not using R A few R quirks Everything is a vector Everything can be null or NA Unit-offset vectors Zero index legal but strange Negative indices remove elements Matrices filled by column by default $ acts like dot, dot not special C package interface Must manage low-level details of R object model and memory Requires Rtools on Windows Lots of macros like REALSXP, PROTECT, and UNPROTECT Use C++ (Rcpp) instead “I do not recommend using C for writing new high-performance code. Instead write C++ with Rcpp.” – Hadley Wickham Rcpp The most widely used extension method for R Call C, C++, or Fortran from R Companion project RInside to call R from C++ Extensive support even for advanced C++ Create R packages or inline code http://rcpp.org Dirk Eddelbuettel’s book Simple Rcpp example library(Rcpp) cppFunction('int add(int x, int y, int z) { int sum = x + y + z; return sum; }') add(1, 2, 3) .NET RDCOM http://sunsite.univie.ac.at/rcom/ F# type provider for R http://bluemountaincapital.github.io/FSharpRProvider/ R.NET https://rdotnet.codeplex.com/ SQL Server 2016 execute sp_execute_external_script @language = N'R' , @script = -
TECHNIQUES for TRANSPARENT PROGRAM SPECIALIZATION in DYNAMIC OPTIMIZERS by S.Subramanya Sastry a Dissertation Submitted in Parti
TECHNIQUES FOR TRANSPARENT PROGRAM SPECIALIZATION IN DYNAMIC OPTIMIZERS by S.Subramanya Sastry A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Sciences) at the UNIVERSITY OF WISCONSIN-MADISON 2003 i ACKNOWLEDGMENTS 8 years, 5 houses, 30 housemates, countless officemates is how long it has taken to get this done. I have a number of people to thank who helped me get here, both academically, and personally. First and foremost, I have to acknowledge the support of my advisors, Jim Smith and Ras Bodik. It has been great working in Jim’s group because of the tremendous flexibility and “let-go” atmo- sphere I worked in. That, more than anything, helped in ways more than Jim himself could possibly know. Coming into Madison, as a newly minted undergraduate, I had a keen interest in computer science and in challenging projects and I had the opportunity to exercise those interests in the Virtual Machines project developing the Strata virtual machine initially and in working on my PhD research problem. That flexibility and easy-going attitude has also enabled me to pursue interests outside Computer Science, sometimes at the cost of my PhD research, which have since profoundly affected and changed me in ways I couldn’t have imagined. On the other hand, it was Ras’ push and sustained effort to get me done and graduate which has seen me here (finally!). His role has been wonderfully complementary to Jim’s and his effort came in at a time when I needed it most. His relentless stress for clarity in presentation has made the dissertation as good as it is now. -
Eindhoven University of Technology MASTER Extracting GXF Models
Eindhoven University of Technology MASTER Extracting GXF models from C code towards LIME-ng tool-chain for dtaflow models Deshpande, A.S. Award date: 2010 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Extracting GXF Models from C Code: towards LIME - next generation for Dataflow Models Aditya S. Deshpande August 2010 TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Mathematics & Computer Science Software Engineering & Technology Master Thesis Extracting GXF Models from C Code towards LIME-ng Tool-chain for Dataflow models by Aditya S. Deshpande (0728718) Supervisors: dr. ir. Tom Verhoeff Pjotr Kourzanov, ir. Yanja Dajsuren, PDEng. August 2010 Preview This thesis introduces the LIME - next generation (LIME-ng) toolchain. -
The Embeddable Common Lisp
ACM Lisp Pointers 8(1), 1995, 30-41 The Embeddable Common Lisp Giuseppe Attardi Dipartimento di Informatica, Universit`adi Pisa Corso Italia 40, I-56125 Pisa, Italy net: [email protected] Abstract The Embeddable Common Lisp is an implementation of Common Lisp designed for being embeddable within C based applications. ECL uses standard C calling conventions for Lisp compiled functions, which allows C programs to easily call Lisp functions and viceversa. No foreign function interface is required: data can be exchanged between C and Lisp with no need for conversion. ECL is based on a Common Runtime Support (CRS) which provides basic facilities for memory management, dynamic loading and dumping of binary images, support for multiple threads of execution. The CRS is built into a library that can be linked with the code of the application. ECL is modular: main modules are the program development tools (top level, debugger, trace, stepper), the compiler, and CLOS. A native implementation of CLOS is available in ECL: one can configure ECL with or without CLOS. A runtime version of ECL can be built with just the modules which are required by the application. 1 Introduction As applications become more elaborate, the facilities required to build them grow in number and sophistica- tion. Each facility is accessed through a specific package, quite complex itself, like in the cases of: modeling, simulation, graphics, hypertext facilities, data base management, numerical analysis, deductive capabilities, concurrent programming, heuristic search, symbolic manipulation, language analysis, special device control. Reusability is quite a significant issue: once a package has been developed, tested and debugged, it is un- desirable having to rewrite it in a different language just because the application is based in such other language. -
Towards Customizable Pedagogic Programming Languages
TOWARDS CUSTOMIZABLE PEDAGOGIC PROGRAMMING LANGUAGES by Kathryn E. Gray A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science School of Computing The University of Utah August 2006 Copyright c Kathryn E. Gray 2006 All Rights Reserved THE UNIVERSITY OF UTAH GRADUATE SCHOOL SUPERVISORY COMMITTEE APPROVAL of a dissertation submitted by Kathryn E. Gray This dissertation has been read by each member of the following supervisory committee and by majority vote has been found to be satisfactory. Chair: Matthew Flatt Wilson Hsieh Gary Lindstrom Joe Zachary Gilad Bracha THE UNIVERSITY OF UTAH GRADUATE SCHOOL FINAL READING APPROVAL To the Graduate Council of the University of Utah: I have read the dissertation of Kathryn E. Gray in its final form and have found that (1) its format, citations, and bibliographic style are consistent and acceptable; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the Supervisory Committee and is ready for submission to The Graduate School. Date Matthew Flatt Chair, Supervisory Committee Approved for the Major Department Martin Berzins Chair/Dean Approved for the Graduate Council David S. Chapman Dean of The Graduate School ABSTRACT In introductory education, pedagogic tools and languages can help focus students on the fundamental programming concepts. Subsets of a professional language support the presentation of the language’s syntax in step with the presentation of the underlying concepts, relieving students and instructors from superfluous details. This dissertation presents the design and implementation of pedagogic tools integrated with an introduc- tory computer science course. -
Ants Go Marching—Integrating Computer Science Into Teacher Professional Development with Netlogo
education sciences Article Ants Go Marching—Integrating Computer Science into Teacher Professional Development with NetLogo Mike Borowczak 1,* and Andrea C. Burrows 2 1 Department of Computer Science, College of Engineering and Applied Science, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA 2 School of Teacher Education, College of Education, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA; [email protected] * Correspondence: [email protected] Received: 1 February 2019; Accepted: 20 March 2019; Published: 26 March 2019 Abstract: There is a clear call for pre-collegiate students in the United States to become literate in computer science (CS) concepts and practices through integrated, authentic experiences and instruction. Yet, a majority of in-service and pre-service pre-collegiate teachers (instructing children aged five to 18) lack the fundamental skills and self-efficacy to adequately and effectively integrate CS into existing curricula. In this study, 30 pre-collegiate teachers who represent a wide band of experience, grade-levels, and prior CS familiarity participated in a 16-day professional development (PD) course to enhance their content knowledge and self-efficacy in integrating CS into existing lessons and curricula. Using both qualitative and quantitative methodology, a social constructivist approach guided the researchers in the development of the PD, as well as the data collection and analysis on teacher content knowledge and perceptions through a mixed-methods study. Ultimately, participants were introduced to CS concepts and practices through NetLogo, which is a popular multi-agent simulator. The results show that although the pre-collegiate teachers adopted CS instruction, the CS implementation within their curricula was limited to the activities and scope of the PD with few adaptations and minimal systemic change in implementation behaviors. -
23 Things I Know About Modules for Scheme
23 things I know about modules for Scheme Christian Queinnec Université Paris 6 — Pierre et Marie Curie LIP6, 4 place Jussieu, 75252 Paris Cedex — France [email protected] ABSTRACT difficult to deliver (or even rebuild) stand-alone systems. The benefits of modularization are well known. However, Interfaces as collection of names — If modules are about shar- modules are not standard in Scheme. This paper accompanies ing, what should be shared ? Values, locations (that is an invited talk at the Scheme Workshop 2002 on the current variables), types, classes (and their cortege` of accessors, state of modules for Scheme. Implementation is not addressed, constructors and predicates) ? only linguistic features are covered. Cave lector, this paper only reflects my own and instanta- The usual answer in Scheme is to share locations with neous biases! (quite often) two additional properties: (i) these loca- tions can only be mutated from the body of their defin- ing modules (this favors block compilation), (ii) they 1. MODULES should hold functions (and this should be statically (and The benefits of modularization within conventional languages easily) discoverable). This restricts linking with other are well known. Modules dissociate interfaces and implemen- (foreign) languages that may export locations holding tations; they allow separate compilation (or at least indepen- non-functional data (the errno location for instance). dent compilation a` la C). Modules tend to favor re-usability, This is not a big restriction since modern interfaces (Corba common libraries and cross language linkage. for example) tend to exclusively use functions (or meth- Modules discipline name spaces with explicit names expo- ods). -
The Gozer Workflow System
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE THE GOZER WORKFLOW SYSTEM A THESIS SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE By JASON MADDEN Norman, Oklahoma 2010 THE GOZER WORKFLOW SYSTEM A THESIS APPROVED FOR THE SCHOOL OF COMPUTER SCIENCE BY Dr. John Antonio, Chair Dr. Amy McGovern Dr. Rex Page © Copyright by JASON MADDEN 2010 All rights reserved. Acknowledgements I wish to thank my friends and colleagues at RiskMetrics Group, including Nicolas Grounds, Matthew Martin, Jay Sachs, and Joshua Zuech, for their valuable additions to the Gozer Workflow System. It wouldn’t be this complete without them. Thanks also go to the programmers, testers, deployers and operators of Gozer workflows for their patience in dealing with an evolving system, and their feedback and suggestions for improvements. Special thanks go to my manager at RiskMetrics, Jeff Muehring. Without his initial support (following a discussion consuming most of the duration of a late-night flight to New York) and ongoing encouragement, the development and deployment of Gozer could never have happened. Finally, I wish to express my appreciation for my thesis advisor, Dr. John Antonio, for keeping me an the right track and guiding me through the graduate process, and for my committee members, Dr. McGovern and Dr. Page, for their support and for serving on the committee. iv Contents 1 Introduction and Background1 1.1 Before Gozer...............................2 1.2 From XML to Lisp............................4 1.3 Gozer Design Philosophy.........................5 1.4 Gozer Development............................6 1.5 Related Work...............................7 2 The Gozer Language 10 2.1 Syntax..................................