Palms at a High Latitude in Florida

Total Page:16

File Type:pdf, Size:1020Kb

Palms at a High Latitude in Florida PRINCIPES Palmsat a High Latitudein Florida DENTSMITH Photographs by the author unless otherwise noted. The palm collection here discussed is site of my palm plantings. This site is in no way remarkable except lbr the very f'avorable for its latitude of 29' l0' larger number of genera and species N., .azhich in Florida has always been under cultivation far north of the areas considered too hish for the cultivation generally considered warm enough for of the tenderer p-ul*r. Daytona Betrch their success. In f'act it is the northern- is 260 miles north of Miami and only most outdoor planting of any compar- 90 miles south of Jacksonville; it is in able number in Florida and-so the prob- the same approximate latitude as Galves- abilities say-in the world. But it is not ton, Texas and the southern tip of the to be compared with the large gardens, Mississippi River delta, and in Flolida, {or the grounds are not extensive enough as Ocala. But latitude is only one an'rong for such a comparison and the palms are many factors controlling climate; elevir- still, most of them, of insignificant di- tion above sea level, prevailing winrls mensions. Nor will it ever have the and marine influence are some of the grandeur of the great gardens, for when principal offsetting factors. the palms linally reach impressive pro- There was once a beginning to the portions there will be no good perspec- palm collecting here, and it has not been tives for lack of space, no open grass- long since. Together with my neighbor grown vistas and no landscaping care- Miss Margueriete Martin (who htrs {ully planned for pleasing effect. There served as Treasurer of The Palm Societv) will be, instead, a forest or jungle of I acquired seven years ago about four' palms of many kinds incongruously acres of wild land in a section of the growing together in a way never dup.[i- Peninsula then sparsely inhabitecl cated in nature, though since urbanized; and subsequent- This planting, which because of its ly we each built a house. But at first remoteness from the tropics must still the land was so overgrown with strrv be considered in the experimental stage, palmetlocs, cabbage pilms, sand live- is at Davtona Beach. Florida on a nar- oaks, sand pines and tangled vines that "the row strip of land locally known as it was impenetrable till paths had beerr Peninsula," itself tightly embraced by cut. At least 200 scrawny trees had to the open Atlantic on the east and by be removed and some 500 saw palmet- the tidal Halifax River on the west. toes had to be srubbed out by hancl, These bodies of salt water not only tem- subterranean trunks and all, to rnrke per the air of the Peninsula but actually room for other plants; but even then a make its winter climate a different one good half of the land was and still is tr from that of the immediate mainland. half-open woodland mostly of sand live- In winter the minimum temperatures oaks (Quercus geminata Small). are often 5 to 10 degrees higher on the More than half of the oalms here Peninsula than at the principal lVeather have been planted under the oaks. Tlre Bureau station located at the mainland shade-loving kinds reap the benefits airport a scant three miles distant. A both of shade and cold protection; the maximum difference of 17" F. in minima sun-lovers thrive in shade when youllg, has been observed by me on instru- but the overhanging branches must be ments installed by Weather Bureau of- removed as the palm tops approrrch ficials for a Cooperative Station at the them. Matted oak leaves and nine r04 PRINCIPES Daytona Beach News-Journal Photo Tall slend,erspecimen l's ArchontophoenixAlexandrae acqttired fr. Reasoner,Braden- iott, planted, lr.ere1953. Young royal palnt, irt,Itackgroutd fr. Pampas, Cocoa, 1954. 105 PRINCIPES needles maintain the acidity of the soil The month of Janutrrv,1956 providect composed oI deep fine-grained sand a rather severetest, for it was the coldest with no humus visible in it below the January since 1940 when the entire depth of 16 inches. It contains no shell, state, minus the Keys, was frozen, The "sweeteners," marl, limerock or other palms here endured in January, 1956 and the water table is too far below the twelve mornings on which the mercury surface to benefit shallow-rooting palms; dipped into the 30's and ten other morn- but there is a second soil type here and ings into the 40's; they also endured a hieh water table on about an acre of brief liosts on two mornings when the low land beside the river where the soil is a mixture of poor sand and shell in al- most equal am6unts. The palms known to have a preference for one or the other of the two kinds of soil are planted ac- cordingly. (Most palms will thrive, or at least live, in a wide range of differ- "specialists" ent soils, but some are that fail to adapt themselves outside their' restricted element). The first palms were planted here in 1950, of the kinds already common in this part of Florida. Gradually otliers were grown lrom seed or obtained as either large or small plants. The num- ber of species already or soon to be planted now approaches the 200 mark, which is something over 100 short of the 300-goal that might be attained by dint of enough persistence and by good luck. A ferv of the planted palms are adults but most are still in the juvenile stage. Tropical palms are tender to cold in direct ratio to their age and height, the Aiphanes caryotaefolia, fr. Betty Chalk, older and taller ones sulfering less cold Miami, pld. 1952. Fast grouer, but sub- injury in proportion to theii develop- iect to leaf-burn, fr. cold uinter winds. ment of toughened tissues; also in pro- portion to their height because the foli- temoerature reached a minimum of age is the tenderest part of the palm 30'-F. Nevertheless most were unaf- and the higher it is elevated above the fected and none was severely injured; ground, the less it is exposed to lrost several kinds suf1ered leaf damage alcl formation and the colder layers of air were made to look quite shabby, notablv nearer lhe ground levcl. Despite this Cocos nucifera, Aiphanes caryotaefolia, demonstrable f'act, the small and even Adonidia Merrillii, Guili,elma Gasipaes. minrlte size of some of the nalms here Others displayed an altogether unex- has not yet resulted in the winter-killing oected tolerance of both liost and thc: ol any; moreover, not one palm speci- protracted cold, as for example one 7- men, big or little, has been lost here to year-old specimen oI Latania borbonica cold damage thus far. Nor are the plants which was totally uninjured then or protected by artilicial heat or other later by actual and visible white frost means. on its leaves. Oddly enough this prilm 106 PRINCIPES "ii, . " Some of the iuaenile Ttalms. Upper l.eft: Hexopetion mexicanum, fr. U.S.P.I. Gdn', '52. '56, Coconut Grooe, pld. Lower left: Arengapinnata, Reasoner, shouing method ol trenchi'ng before back-filling uith nTanure to enlarge feeding-watering area 7 yr. ,fiter plantin,g. Top right: Arikwl'roba schizophylla,Reasoner, pld.'53. Middle right: "Rageg" '53, '54. Ptychospermasp. (Dr. Fairchild's palm), FTG distrib. pld. Bottom rlghf; Dictvospermaalbum, fr. Pampas,Cocoa, pld.'54. r07 PRINCIPES i a- H -Ea.-Y q qF ! (f 9 h./L 3^ f .i Z d*. 'iF ^ u -a% o lbf, F ".Xo .; 9 ;'; * ;._::i {',!c 1-.:'i. :9c '6'd 3 {:U s Gi. .*fu v!tr o-5: - .:\ = uto :X ksF :=y e \-! d::- Y3= a"l V : s< 9a\ 1;: i >\J i o <.i ^= =!4 v.i: :t= ): \ NV h.,i i 108 PRINCIPES and all of the others' from the Mascar- Moreover, of several hundred Palm ene Islands that have been tried here speciessupposed to be extremely tender, seem to be perfectly able to withstand one would be hard put to name even the rigors of this climate, oia., species ten with palmate leaves. The point of of Latania, Mascarena and Dictyosper- all this is not to show that the plumose ma, so that there is room for some oP- palms are tender, for some of them are tirnism for the two other genera, Lardy; it is to show that the palmate- palms with very minor ex- Acanthophoenix and Hyophorbe. On lhe leaved are, other hand, palms lrom the Seychelles ceptions',le*"rtabty hardy'to cold no Islands in the same Indian Ocean with matter their place of origin. "hardy" tl-re Mascarenes,are definitely tenderer, The term aPPlied to Palms as plants of the monotypic genera Stev- means that, for the plant family, they ensonia and Lodoicea-accounted for, are relativelv hardV but not in the usual possibly, by the closer proximity of the senseapplied to northern plants. And it Seychellesto the equator. a Latania proves hardy here, this does not constitute proof that it would be one seemsto have made the dis- No hardy in Ocala or Jacksonville. It seems covery that the palmate or fan-leaved improbable that manY of the Palms palrns are hardier, in the main, than the growing here-very likely more than plnrnot" or feather-leaved Palms; or if f,aH-could be successfully cultivated on the discovery has been made not once the mainland at a distance of onlY a but a dozen times, there has been no mile or two from this location, the as- accornpanying publicity and no wide sumption arising trom the fact that the recognition of it.
Recommended publications
  • Approved Plant List 10/04/12
    FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L
    [Show full text]
  • Journal of the International Palm Society Vol. 58(4) Dec. 2014 the INTERNATIONAL PALM SOCIETY, INC
    Palms Journal of the International Palm Society Vol. 58(4) Dec. 2014 THE INTERNATIONAL PALM SOCIETY, INC. The International Palm Society Palms (formerly PRINCIPES) Journal of The International Palm Society Founder: Dent Smith The International Palm Society is a nonprofit corporation An illustrated, peer-reviewed quarterly devoted to engaged in the study of palms. The society is inter- information about palms and published in March, national in scope with worldwide membership, and the June, September and December by The International formation of regional or local chapters affiliated with the Palm Society Inc., 9300 Sandstone St., Austin, TX international society is encouraged. Please address all 78737-1135 USA. inquiries regarding membership or information about Editors: John Dransfield, Herbarium, Royal Botanic the society to The International Palm Society Inc., 9300 Gardens, Kew, Richmond, Surrey, TW9 3AE, United Sandstone St., Austin, TX 78737-1135 USA, or by e-mail Kingdom, e-mail [email protected], tel. 44-20- to [email protected], fax 512-607-6468. 8332-5225, Fax 44-20-8332-5278. OFFICERS: Scott Zona, Dept. of Biological Sciences (OE 167), Florida International University, 11200 SW 8 Street, President: Leland Lai, 21480 Colina Drive, Topanga, Miami, Florida 33199 USA, e-mail [email protected], tel. California 90290 USA, e-mail [email protected], 1-305-348-1247, Fax 1-305-348-1986. tel. 1-310-383-2607. Associate Editor: Natalie Uhl, 228 Plant Science, Vice-Presidents: Jeff Brusseau, 1030 Heather Drive, Cornell University, Ithaca, New York 14853 USA, e- Vista, California 92084 USA, e-mail mail [email protected], tel. 1-607-257-0885.
    [Show full text]
  • Species Delimitation and Hybrid Identification of Acrocomia Aculeata
    Species delimitation and hybrid identification of Acrocomia aculeata and A. totai by genetic population approach Brenda D´ıaz1, Maria Zucchi2, Alessandro Alves-Pereira1, Joaquim Azevedo-Filho2, Mariana Sanit´a2, and Carlos Colombo2 1State University of Campinas 2Instituto Agronomico October 9, 2020 Abstract To the Neotropical genus Acrocomia (Arecaceae) is attributed eight species with a wide distribution in America. A. aculeata and A. totai are the most important species because of their high economic potential for oil production. However, there is no consensus in their classification as different taxons and their distinctiveness is particularly challenging due to morphological similarities with large plasticity of the traits. In addition, there is doubt about the occurrence of interspecific hybrids between both species. In this study, we applied a genetic population approach to assessing the genetic boundaries, diversity and to identify interspecific hybrids of A. aculeata and A. totai. Thirteen loci of simple sequence repeat (SSR) were employed to analyze twelve populations representing a wide distribution of species, from Minas Gerais, Brazil to Formosa, Argentina. Based on the Bayesian analysis (STRUCTURE and NewHybrids) and Discriminant Analysis of Principal Components (DAPC), our study supports the recognition of A. aculeata and A. totai as two species and the estimates of genetic parameters revealed more genetic diversity in A. totai (HE=0.551) than in A. aculeata (HE=0.466). We obtained evidence of hybridization between the species and that admixed individuals were assigned as F2 hybrids. In conclusion, this study showed the usefulness of microsatellite markers to elucidate the genetic boundaries of A. aculeata and A. totai, supporting their classification as different species and increase our knowledge about genetic diversity at the level of populations and species.
    [Show full text]
  • Red Ring Disease of Coconut Palms Is Caused by the Red Ring Nematode (Bursaphelenchus Cocophilus), Though This Nematode May Also Be Known As the Coconut Palm Nematode
    1 Red ring disease of coconut palms is caused by the red ring nematode (Bursaphelenchus cocophilus), though this nematode may also be known as the coconut palm nematode. This disease was first described on coconut palms in 1905 in Trinidad and the association between the disease and the nematode was reported in 1919. The vector of the nematode is the South American palm weevil (Rhynchophorus palmarum), both adults and larvae. The nematode parasitizes the weevil which then transmits the nematode as it moves from tree to tree. Though the weevil may visit many different tree species, the nematode only infects members of the Palmae family. The nematode and South American palm weevil have not yet been observed in Florida. 2 Information Sources: Brammer, A.S. and Crow, W.T. 2001. Red Ring Nematode, Bursaphelenchus cocophilus (Cobb) Baujard (Nematoda: Secernentea: Tylenchida: Aphelenchina: Aphelenchoidea: Bursaphelechina) formerly Rhadinaphelenchus cocophilus. University of Florida, IFAS Extension. EENY236. Accessed 11-27-13 http://edis.ifas.ufl.edu/in392 Griffith, R. 1987. “Red Ring Disease of Coconut Palm”. The American Pathological Society Plant Disease, Volume 71, February, 193-196. accessed 12/5/2013- http://www.apsnet.org/publications/plantdisease/ba ckissues/Documents/1987Articles/PlantDisease71n02_193.PDF Griffith, R., R. M. Giblin-Davis, P. K. Koshy, and V. K. Sosamma. 2005. Nematode parasites of coconut and other palms. M. Luc, R. A. Sikora, and J. Bridges (eds.) In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. C.A.B. International, Oxon, UK. Pp. 493-527. 2 The host trees susceptible to the red ring nematode are usually found in the family Palmae.
    [Show full text]
  • Potassium Deficiency of Palms in Hawai'i
    Plant Disease July 2012 PD-89 Potassium Deficiency of Palms in Hawai‘i Scot Nelson and Erik Patnude Department of Plant and Environmental Sciences f the more than one thou- Potassium sand palm species, many Potassium is one of the key ele- playO important cultural, aesthetic, ments necessary for palm health medicinal, and culinary roles in and is required in relatively large indigenous and contemporary amounts. Potassium facilitates societies. Among the leading ag- many functions in plants, includ- ricultural palms, Cocos nucifera ing photosynthesis, enzyme activa- (coconut palm) has fruits valued at tion, and osmoregulation. It aids more than US$6 billion annually. in the production of adenosine Coconut oil accounts for US$2.9 triphosphate (ATP), which affects billion of that amount, and pro- the rate of photosynthesis, and acts cessed fresh coconuts, desiccated as a catalyst for over 60 enzymatic coconuts, husk material, and kernel processes related to plant growth or shell products are worth US$3.1 (Armstrong 2012). Osmoregula- billion (Smith et al. 2009). tion affects the pressure within a A key to growing healthy plant cell: potassium controls the palms in nurseries, on farms, and opening and closing of stomata, in landscapes is to ensure that the small openings in leaves that they receive adequate nutrition. regulate gas exchange, plant cool- Palms in Hawai‘i commonly dis- ing, and transpiration (Johnston play symptoms of deficiencies of Scorched tips of leaflets on the lower leaves 2010); thus, if potassium levels are a number of essential elements, of this Sabal palmetto (cabbage palm) are low, plant leaves develop symp- including nitrogen, magnesium, diagnostic symptoms of potassium defi- toms of water stress (Armstrong boron, and potassium.
    [Show full text]
  • Low-Maintenance Landscape Plants for South Florida1
    ENH854 Low-Maintenance Landscape Plants for South Florida1 Jody Haynes, John McLaughlin, Laura Vasquez, Adrian Hunsberger2 Introduction regular watering, pruning, or spraying—to remain healthy and to maintain an acceptable aesthetic This publication was developed in response to quality. A low-maintenance plant has low fertilizer requests from participants in the Florida Yards & requirements and few pest and disease problems. In Neighborhoods (FYN) program in Miami-Dade addition, low-maintenance plants suitable for south County for a list of recommended landscape plants Florida must also be adapted to—or at least suitable for south Florida. The resulting list includes tolerate—our poor, alkaline, sand- or limestone-based over 350 low-maintenance plants. The following soils. information is included for each species: common name, scientific name, maximum size, growth rate An additional criterion for the plants on this list (vines only), light preference, salt tolerance, and was that they are not listed as being invasive by the other useful characteristics. Florida Exotic Pest Plant Council (FLEPPC, 2001), or restricted by any federal, state, or local laws Criteria (Burks, 2000). Miami-Dade County does have restrictions for planting certain species within 500 This section will describe the criteria by which feet of native habitats they are known to invade plants were selected. It is important to note, first, that (Miami-Dade County, 2001); caution statements are even the most drought-tolerant plants require provided for these species. watering during the establishment period. Although this period varies among species and site conditions, Both native and non-native species are included some general rules for container-grown plants have herein, with native plants denoted by †.
    [Show full text]
  • Sfps Fall 2011 Sale Plant List
    SFPS FALL 2011 SALE PLANT LIST PLANTS VENDOR # Palms Acanthophoenix rubra 35 Acoelorrhaphe wrightii 26, 67 Acrocomia aculeata 50, 67 Actinokentia divaricata 35, 57, 66, 68, 72 Actinorhytis calapparia 72 Adonidia merrillii 31, 57, 66, 89 Adonidia merrillii var. "Golden Form" 35 Aiphanes aculeata = Aiphanes horrida - Aiphanes caryotifolia = Aiphanes horrida - Aiphanes erosa = Aiphanes minima - Aiphanes horrida 35, 68, 72 Aiphanes minima 68 Aiphanes vincentiana = Aiphanes minima - Allagoptera arenaria 57, 66, 67, 68, 72 Allagoptera campestris 67 Allagoptera leucocalyx 57 Alloschmidia glabrata = Basselinia glabrata - Alsmithia longipes = Heterospathe longipes - Archontophoenix cunninghamiana var. 'Illawara' 68 Archontophoenix maxima 67, 72 Archontophoenix myolensis 50, 66, 67, 68 Archontophoenix purpurea 57, 66, 72 Archontophoenix tuckeri 66, 68 Areca aliceae = Areca triandra - Areca camarinensis 57, 68 Areca catechu 57, 67, 72 Areca catechu var. 'Dwarf' 35, 50 Areca hutchinsoniana 68 Areca ipot 67 Areca latiloba = Areca montana - Areca macrocalyx var. 'Red Form' 35, 57, 68 Areca macrocarpa 68 Areca montana 57 Areca triandra 68, 72 Areca vestiaria 25, 35, 57, 67, 68 Areca vestiaria var. 'Orange Form' 25, 57, 67, 72 Areca vestiaria var. 'Maroon Leaf' 35, 57, 67 Areca vestiaria var. 'Red Leaf' 57, 67, 72 Areca sp. 'Yellow Crownshaft' 25 Arenga ambong = Arenga undulatifolia - Arenga brevipes 57 Arenga caudata 66 Arenga engleri 31, 66, 68, 72 Arenga hookeriana 35, 57, 66, 72 Arenga microcarpa 26, 66 Arenga obtusifolia 57, 66 PLANTS VENDOR # Arenga pinnata 50, 57, 66, 67, 68 Arenga porphyrocarpa 66 Arenga tremula 26, 57, 66, 68, 72 Arenga undulatifolia 35, 57, 66, 67 Arenga westerhoutii 68 Asterogyne martiana 57, 68, 72 Astrocaryum acaule 72 Astrocaryum alatum 35, 50, 57, 67 Astrocaryum mexicanum 72 Astrocaryum murumuru 72 Attalea butyracea 57, 67, 72 Attalea cohune 35 Attalea phalerata 50, 91 Attalea rostrata 68 Attalea speciosa 50, 66 Bactris bidentula 72 Bactris gasipaes 67 Bactris gasipaes var.
    [Show full text]
  • Lista De Palmas Cubanas I- Hemithrinax
    ISSN 2519-7754 RNPS 2402 www.revistas.geotech.cu/index.php/abc ║LISTA DE ESPECIES║ Vol. 218, No.1 (enero-abril 2019): 1-10 Lista de Palmas Cubanas. I. Hemithrinax, Leucothrinax y Thrinax Cuban Palms Checklist. I. Hemithrinax, Leucothrinax and Thrinax Celio E. Moya López R SU N Autor para correspondencia: [email protected] Se actualiza la lista de táxones y de sinónimos nomenclaturales de los géneros Hemithrinax, Leucothrinax y Thrinax. Se designaron los lectotipos de Hemithrinax compacta y Leucothrinax morrisii, y se precisaron los lectotipos de otros nueve nombres. Sociedad Cubana de Botánica Calle Cuba 406 e/ Amargura y Brasil, Palabras clave: Arecaceae, Hemithrinax, Leucothrinax, Thrinax La Habana Vieja, La Habana, Cuba A S RAC Recibido: 01/06/2018 Aceptado: 21/01/2019 The list of taxa and nomenclatural synonyms of the genera Hemithrinax, Leucothrinax and Thrinax is updated. The lectotype of Hemithrinax compacta were designated and lectotypes of other ten names were specified. Key words: Arecaceae, Hemithrinax, Leucothrinax, Thrinax INTRODUCCIÓN Hemithrinax es un género endémico cubano, representa- do por tres especies y una variedad reconocida. Sus La familia Arecaceae Schultz Sch. (nom. cons.) está táxones se diferencian fácilmente de los de Thrinax o representada en Cuba por 15 géneros con 80 especies, Leucothrinax por presentar las venas transversales poco ocho híbridos y nueve táxones infraespecíficos (Moya y visibles, mientras que en éstos las venas transversales Leiva, 2000). De ellos, tres constituyen nuevos registros o son conspicuas (Lewis y Zona, 2008). cambios de estatus posteriores (Suárez, 2015; Verdecia, 2016; Moya et al., 2017; Moya y Méndez, 2018), lo cual Leucothrinax es un género monotípico, de distribución sugiere que la riqueza taxonómica de la familia en Cuba caribeña, representado por Leucothrinax morrisii aún no es totalmente conocida.
    [Show full text]
  • Antioxidant and Cytotoxicity Activities of Veitchia Merrillii Fruits
    ANTIOXIDANT AND CYTOTOXICITY ACTIVITIES OF VEITCHIA MERRILLII FRUITS ALI VAFAEI FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2013 ANTIOXIDANT AND CYTOTOXICITY ACTIVITIES OF VEITCHIA MERRILLII FRUITS ALI VAFAEI DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIRMENTS FOR THE DEGREE OF MASTER OF BIOTECHNOLOGY INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2013 ORIGINAL LITERARY WORK DECLARATION Name of Candidate: Ali Vafaei (I.C/Passport No:L95235477) Registration/Matric No: SGF080045 Name of Degree: Master of Biotechnology Title of Dissertation: ANTIOXIDANT AND CYTOTOXICITY ACTIVITIES OF VEITCHIA MERRILLII FRUITS Field of Study: Biotechnology I do solemnly and sincerely declare that: (1) I am the sole author/writer of this Work; (2) This Work is original; (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work; (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work; (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained; (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.
    [Show full text]
  • Evolutionary Consequences of Dioecy in Angiosperms: the Effects of Breeding System on Speciation and Extinction Rates
    EVOLUTIONARY CONSEQUENCES OF DIOECY IN ANGIOSPERMS: THE EFFECTS OF BREEDING SYSTEM ON SPECIATION AND EXTINCTION RATES by JANA C. HEILBUTH B.Sc, Simon Fraser University, 1996 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 2001 © Jana Heilbuth, 2001 Wednesday, April 25, 2001 UBC Special Collections - Thesis Authorisation Form Page: 1 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. The University of British Columbia Vancouver, Canada http://www.library.ubc.ca/spcoll/thesauth.html ABSTRACT Dioecy, the breeding system with male and female function on separate individuals, may affect the ability of a lineage to avoid extinction or speciate. Dioecy is a rare breeding system among the angiosperms (approximately 6% of all flowering plants) while hermaphroditism (having male and female function present within each flower) is predominant. Dioecious angiosperms may be rare because the transitions to dioecy have been recent or because dioecious angiosperms experience decreased diversification rates (speciation minus extinction) compared to plants with other breeding systems.
    [Show full text]
  • Acrocomia Crispa Fruits Lipid Extract Prevents LPS-Induced Acute Lung Injury in Mice
    BOLETÍN LATINOAMERICANO Y DEL CARIBE DE PLANTAS MEDICINALES Y AROMÁTICAS 18 (1): 16 - 26 (2019) © / ISSN 0717 7917 / www.blacpma.usach.cl Artículo Original | Original Article Acrocomia crispa fruits lipid extract prevents LPS-induced acute lung injury in mice [Extracto lipídico de los frutos de Acrocomia crispa previene el daño pulmonar agudo inducido por LPS en ratones] Licet Mena, Roxana Sierra, Maikel Valle, Vivian Molina, Sandra Rodriguez, Nelson Merino, Zullyt Zamora, Victor González & Jose Alberto Medina Pharmacology Department, Centre of Natural Products, National Centre for Scientific Research, Havana City, Cuba Contactos | Contacts: Vivian MOLINA - E-mail address: [email protected] Abstract: The aim of this study was to evaluate the effects of single oral doses of D-005 (a lipid extract obtained from the fruit oil of Acrocomia crispa) on LPS-induced acute lung injury (ALI) in mice. D-005 batch composition was: lauric (35.8%), oleic (28.4%), myristic (14.2%), palmitic (8.9%), stearic (3.3%), capric (1.9%), caprylic (1.2%), and palmitoleic (0.05%) acids, for a total content of fatty acids of 93.7%. D-005 (200 mg/kg) significantly reduced lung edema (LE) (≈ 28% inhibition) and Lung Weight/Body Weight ratio (LW/BW) (75.8% inhibition). D-005 (25, 50, 100 and 200 mg/kg) produced a significant reduction of Histological score (59.9, 56.1, 53.5 and 73.3% inhibition, respectively). Dexamethasone, as the reference drug, was effective in this experimental model. In conclusion, pretreatment with single oral doses of D-005 significantly prevented the LPS-induced ALI in mice.
    [Show full text]
  • Las Palmeras En El Marco De La Investigacion Para El
    REVISTA PERUANA DE BIOLOGÍA Rev. peru: biol. ISSN 1561-0837 Volumen 15 Noviembre, 2008 Suplemento 1 Las palmeras en el marco de la investigación para el desarrollo en América del Sur Contenido Editorial 3 Las comunidades y sus revistas científicas 1he scienrific cornmuniries and their journals Leonardo Romero Presentación 5 Laspalmeras en el marco de la investigación para el desarrollo en América del Sur 1he palrns within the framework ofresearch for development in South America Francis Kahny CésarArana Trabajos originales 7 Laspalmeras de América del Sur: diversidad, distribución e historia evolutiva 1he palms ofSouth America: diversiry, disrriburíon and evolutionary history Jean-Christopbe Pintaud, Gloria Galeano, Henrik Balslev, Rodrigo Bemal, Fmn Borchseníus, Evandro Ferreira, Jean-Jacques de Gran~e, Kember Mejía, BettyMillán, Mónica Moraes, Larry Noblick, FredW; Staufl'er y Francis Kahn . 31 1he genus Astrocaryum (Arecaceae) El género Astrocaryum (Arecaceae) . Francis Kahn 49 1he genus Hexopetion Burret (Arecaceae) El género Hexopetion Burret (Arecaceae) Jean-Cbristopbe Pintand, Betty MiJJány Francls Kahn 55 An overview ofthe raxonomy ofAttalea (Arecaceae) Una visión general de la taxonomía de Attalea (Arecaceae) Jean-Christopbe Pintaud 65 Novelties in the genus Ceroxylon (Arecaceae) from Peru, with description ofa new species Novedades en el género Ceroxylon (Arecaceae) del Perú, con la descripción de una nueva especie Gloria Galeano, MariaJosé Sanín, Kember Mejía, Jean-Cbristopbe Pintaud and Betty MiJJán '73 Estatus taxonómico
    [Show full text]