Splitting Models for Multivariate Count Data Jean Peyhardi, Pierre Fernique, Jean-Baptiste Durand
Splitting models for multivariate count data Jean Peyhardi, Pierre Fernique, Jean-Baptiste Durand To cite this version: Jean Peyhardi, Pierre Fernique, Jean-Baptiste Durand. Splitting models for multivariate count data. Journal of Multivariate Analysis, Elsevier, 2021, 181, pp.104677. 10.1016/j.jmva.2020.104677. hal- 02962877 HAL Id: hal-02962877 https://hal.inria.fr/hal-02962877 Submitted on 9 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Splitting models for multivariate count data Jean Peyhardia,∗, Pierre Ferniqueb, Jean-Baptiste Durandc aIMAG, Universit´ede Montpellier, place Eug`eneBataillon, 34090 Montpellier, France bCIRAD, UMR AGAP, 34098 Montpellier cLaboratoire Jean Kuntzmann, 38058 Grenoble, France Abstract We introduce the class of splitting distributions as the composition of a singular multivariate distribution and an uni- variate distribution. This class encompasses most common multivariate discrete distributions (multinomial, negative multinomial, multivariate hypergeometric, multivariate negative hypergeometric, . ) and contains several new ones. We highlight many probabilistic properties deriving from the compound aspect of splitting distributions and their un- derlying algebraic properties. These simplify the study of their characteristics, inference methods, interpretation and extensions to regression models. Parameter inference and model selection are thus reduced to two separate problems, preserving time and space complexity of the base models.
[Show full text]