Some Methods of Constructing Multivariate Distributions Abderrahmane Chakak Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Relationships Among Some Univariate Distributions
IIE Transactions (2005) 37, 651–656 Copyright C “IIE” ISSN: 0740-817X print / 1545-8830 online DOI: 10.1080/07408170590948512 Relationships among some univariate distributions WHEYMING TINA SONG Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan, Republic of China E-mail: [email protected], wheyming [email protected] Received March 2004 and accepted August 2004 The purpose of this paper is to graphically illustrate the parametric relationships between pairs of 35 univariate distribution families. The families are organized into a seven-by-five matrix and the relationships are illustrated by connecting related families with arrows. A simplified matrix, showing only 25 families, is designed for student use. These relationships provide rapid access to information that must otherwise be found from a time-consuming search of a large number of sources. Students, teachers, and practitioners who model random processes will find the relationships in this article useful and insightful. 1. Introduction 2. A seven-by-five matrix An understanding of probability concepts is necessary Figure 1 illustrates 35 univariate distributions in 35 if one is to gain insights into systems that can be rectangle-like entries. The row and column numbers are modeled as random processes. From an applications labeled on the left and top of Fig. 1, respectively. There are point of view, univariate probability distributions pro- 10 discrete distributions, shown in the first two rows, and vide an important foundation in probability theory since 25 continuous distributions. Five commonly used sampling they are the underpinnings of the most-used models in distributions are listed in the third row. -
A Test for Singularity 1
STATISTIII & PROBABIUTY Lk'TTERS ELSEVIER Statistics & Probability Letters 40 (1998) 215-226 A test for singularity 1 Attila Frigyesi *, Ola H6ssjer Institute for Matematisk Statistik, Lunds University, Box 118, 22100 Lund, Sweden Received March 1997; received in revised form February 1998 Abstract The LP-norm and other functionals of the kernel estimate of density functions (as functions of the bandwidth) are studied as means to test singularity. Given an absolutely continuous distribution function, the LP-norm, and the other studied functionals, will converge under some mild side-constraints as the bandwidth decreases. In the singular case, the functionals will diverge. These properties may be used to test whether data comes from an arbitrarily large class of absolutely continuous distributions or not. (~) 1998 Elsevier Science B.V. All rights reserved AMS classification." primary 60E05; secondary 28A99; 62G07 Keywords: Singularity; Absolute continuity; Kernel density estimation 1. Introduction In this paper we aim to test whether a given set of data (= {XI ..... X,}), with a marginal distribution #, stems from an absolutely continuous distribution function or from a singular one. A reference to this problem is by Donoho (1988). Consider a probability measure # on (g~P,~(~P)), where ~(~P) is the Borel a-algebra on R p. The measure tt is said to be singular with respect to the Lebesgue measure 2 if there exists a measurable set A such that /~(AC)=0 and 2(A)=0. If we only require #(A)>0 and 2(A)=0, then /~ is said to have a singular part. If tt does not have a singular part, then it is absolutely continuous with respect to 2. -
Vector Spaces
ApPENDIX A Vector Spaces This appendix reviews some of the basic definitions and properties of vectm spaces. It is presumed that, with the possible exception of Theorem A.14, all of the material presented here is familiar to the reader. Definition A.I. A set.A c Rn is a vector space if, for any x, y, Z E .A and scalars a, 13, operations of vector addition and scalar multiplication are defined such that: (1) (x + y) + Z = x + (y + z). (2) x + y = y + x. (3) There exists a vector 0 E.A such that x + 0 = x = 0 + x. (4) For any XE.A there exists y = -x such that x + y = 0 = y + x. (5) a(x + y) = ax + ay. (6) (a + f3)x = ax + f3x. (7) (af3)x = a(f3x). (8) 1· x = x. Definition A.2. Let .A be a vector space and let JV be a set with JV c .A. JV is a subspace of .A if and only if JV is a vector space. Theorem A.3. Let .A be a vector space and let JV be a nonempty subset of .A. If JV is closed under addition and scalar multiplication, then JV is a subspace of .A. Theorem A.4. Let .A be a vector space and let Xl' ••• , Xr be in .A. The set of all linear combinations of Xl' .•• ,xr is a subspace of .A. Appendix A. Vector Spaces 325 Definition A.S. The set of all linear combinations of Xl'OO',X, is called the space spanned by Xl' .. -
Impact of Multimodality of Distributions on Var and ES Calculations Dominique Guegan, Bertrand Hassani, Kehan Li
Impact of multimodality of distributions on VaR and ES calculations Dominique Guegan, Bertrand Hassani, Kehan Li To cite this version: Dominique Guegan, Bertrand Hassani, Kehan Li. Impact of multimodality of distributions on VaR and ES calculations. 2017. halshs-01491990 HAL Id: halshs-01491990 https://halshs.archives-ouvertes.fr/halshs-01491990 Submitted on 17 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Documents de Travail du Centre d’Economie de la Sorbonne Impact of multimodality of distributions on VaR and ES calculations Dominique GUEGAN, Bertrand HASSANI, Kehan LI 2017.19 Maison des Sciences Économiques, 106-112 boulevard de L'Hôpital, 75647 Paris Cedex 13 http://centredeconomiesorbonne.univ-paris1.fr/ ISSN : 1955-611X Impact of multimodality of distributions on VaR and ES calculations Dominique Gu´egana, Bertrand Hassanib, Kehan Lic aUniversit´eParis 1 Panth´eon-Sorbonne, CES UMR 8174. 106 bd l'Hopital 75013, Paris, France. Labex ReFi, Paris France. IPAG, Paris, France. bGrupo Santander and Universit´eParis 1 Panth´eon-Sorbonne, CES UMR 8174. Labex ReFi. cUniversit´eParis 1 Panth´eon-Sorbonne, CES UMR 8174. 106 bd l'Hopital 75013, Paris, France. Labex ReFi. -
Severity Models - Special Families of Distributions
Severity Models - Special Families of Distributions Sections 5.3-5.4 Stat 477 - Loss Models Sections 5.3-5.4 (Stat 477) Claim Severity Models Brian Hartman - BYU 1 / 1 Introduction Introduction Given that a claim occurs, the (individual) claim size X is typically referred to as claim severity. While typically this may be of continuous random variables, sometimes claim sizes can be considered discrete. When modeling claims severity, insurers are usually concerned with the tails of the distribution. There are certain types of insurance contracts with what are called long tails. Sections 5.3-5.4 (Stat 477) Claim Severity Models Brian Hartman - BYU 2 / 1 Introduction parametric class Parametric distributions A parametric distribution consists of a set of distribution functions with each member determined by specifying one or more values called \parameters". The parameter is fixed and finite, and it could be a one value or several in which case we call it a vector of parameters. Parameter vector could be denoted by θ. The Normal distribution is a clear example: 1 −(x−µ)2=2σ2 fX (x) = p e ; 2πσ where the parameter vector θ = (µ, σ). It is well known that µ is the mean and σ2 is the variance. Some important properties: Standard Normal when µ = 0 and σ = 1. X−µ If X ∼ N(µ, σ), then Z = σ ∼ N(0; 1). Sums of Normal random variables is again Normal. If X ∼ N(µ, σ), then cX ∼ N(cµ, cσ). Sections 5.3-5.4 (Stat 477) Claim Severity Models Brian Hartman - BYU 3 / 1 Introduction some claim size distributions Some parametric claim size distributions Normal - easy to work with, but careful with getting negative claims. -
Package 'Distributional'
Package ‘distributional’ February 2, 2021 Title Vectorised Probability Distributions Version 0.2.2 Description Vectorised distribution objects with tools for manipulating, visualising, and using probability distributions. Designed to allow model prediction outputs to return distributions rather than their parameters, allowing users to directly interact with predictive distributions in a data-oriented workflow. In addition to providing generic replacements for p/d/q/r functions, other useful statistics can be computed including means, variances, intervals, and highest density regions. License GPL-3 Imports vctrs (>= 0.3.0), rlang (>= 0.4.5), generics, ellipsis, stats, numDeriv, ggplot2, scales, farver, digest, utils, lifecycle Suggests testthat (>= 2.1.0), covr, mvtnorm, actuar, ggdist RdMacros lifecycle URL https://pkg.mitchelloharawild.com/distributional/, https: //github.com/mitchelloharawild/distributional BugReports https://github.com/mitchelloharawild/distributional/issues Encoding UTF-8 Language en-GB LazyData true Roxygen list(markdown = TRUE, roclets=c('rd', 'collate', 'namespace')) RoxygenNote 7.1.1 1 2 R topics documented: R topics documented: autoplot.distribution . .3 cdf..............................................4 density.distribution . .4 dist_bernoulli . .5 dist_beta . .6 dist_binomial . .7 dist_burr . .8 dist_cauchy . .9 dist_chisq . 10 dist_degenerate . 11 dist_exponential . 12 dist_f . 13 dist_gamma . 14 dist_geometric . 16 dist_gumbel . 17 dist_hypergeometric . 18 dist_inflated . 20 dist_inverse_exponential . 20 dist_inverse_gamma -
Methods to Analyze Likert-Type Data in Educational Technology Research
Journal of Educational Technology Development and Exchange (JETDE) Volume 13 Issue 2 3-25-2021 Methods to Analyze Likert-Type Data in Educational Technology Research Li-Ting Chen University of Nevada, Reno, [email protected] Leping Liu University of Nevada, Reno, [email protected] Follow this and additional works at: https://aquila.usm.edu/jetde Part of the Educational Technology Commons Recommended Citation Chen, Li-Ting and Liu, Leping (2021) "Methods to Analyze Likert-Type Data in Educational Technology Research," Journal of Educational Technology Development and Exchange (JETDE): Vol. 13 : Iss. 2 , Article 3. DOI: 10.18785/jetde.1302.04 Available at: https://aquila.usm.edu/jetde/vol13/iss2/3 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Journal of Educational Technology Development and Exchange (JETDE) by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Chen, L.T., & Liu, L.(2020). Methods to Analyze Likert-Type Data in Educational Technology Research. Journal of Educational Technology Development and Exchange, 13(2), 39-60 Methods to Analyze Likert-Type Data in Educational Technology Research Li-Ting Chen University of Nevada, Reno Leping Liu University of Nevada, Reno Abstract: Likert-type items are commonly used in education and related fields to measure attitudes and opinions. Yet there is no consensus on how to analyze data collected from these items. In this paper, we first provided a synthesis of the existing literature on methods to analyze Likert-type data and computing tools for these methods. -
Bivariate Burr Distributions by Extending the Defining Equation
DECLARATION This thesis contains no material which has been accepted for the award of any other degree or diploma in any university and to the best ofmy knowledge and belief, it contains no material previously published by any other person, except where due references are made in the text ofthe thesis !~ ~ Cochin-22 BISMI.G.NADH June 2005 ACKNOWLEDGEMENTS I wish to express my profound gratitude to Dr. V.K. Ramachandran Nair, Professor, Department of Statistics, CUSAT for his guidance, encouragement and support through out the development ofthis thesis. I am deeply indebted to Dr. N. Unnikrishnan Nair, Fonner Vice Chancellor, CUSAT for the motivation, persistent encouragement and constructive criticism through out the development and writing of this thesis. The co-operation rendered by all teachers in the Department of Statistics, CUSAT is also thankfully acknowledged. I also wish to express great happiness at the steadfast encouragement rendered by my family. Finally I dedicate this thesis to the loving memory of my father Late. Sri. C.K. Gopinath. BISMI.G.NADH CONTENTS Page CHAPTER I INTRODUCTION 1 1.1 Families ofDistributions 1.2· Burr system 2 1.3 Present study 17 CHAPTER II BIVARIATE BURR SYSTEM OF DISTRIBUTIONS 18 2.1 Introduction 18 2.2 Bivariate Burr system 21 2.3 General Properties of Bivariate Burr system 23 2.4 Members ofbivariate Burr system 27 CHAPTER III CHARACTERIZATIONS OF BIVARIATE BURR 33 SYSTEM 3.1 Introduction 33 3.2 Characterizations ofbivariate Burr system using reliability 33 concepts 3.3 Characterization ofbivariate -
Resonance-Induced Multimodal Body-Size Distributions in Ecosystems
Resonance-induced multimodal body-size distributions in ecosystems Adam Lamperta,1,2 and Tsvi Tlustya,b aDepartment of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel; and bSimons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ 08540 Edited by Andrea Rinaldo, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, and approved November 12, 2012 (received for review July 31, 2012) The size of an organism reflects its metabolic rate, growth rate, classic metapopulation framework, we assume each patch is mortality, and other important characteristics; therefore, the distri- either empty or occupied by a single species (15–17). In our bution of body size is a major determinant of ecosystem structure model, each species is specified by its maximal growth rate q, and function. Body-size distributions often are multimodal, with which is negatively correlated with its body size. The higher several peaks of abundant sizes, and previous studies suggest that growth rate of smaller individuals results in more migrants sent this is the outcome of niche separation: species from distinct peaks to other patches. Larger individuals, on the other hand, are ad- avoid competition by consuming different resources, which results vantageous in interference and exclude the smaller individuals in selection of different sizes in each niche. However, this cannot during within-patch competitions. explain many ecosystems with several peaks competing over the Specifically, we considered the following processes (Fig. 1): same niche. Here, we suggest an alternative, generic mechanism First, occupied patches are emptied at a rate m. This may occur underlying multimodal size distributions, by showing that the size- because of mortality or because of path destruction and creation dependent tradeoff between reproduction and resource utilization in which occupied patches vanish and new patches enter the entails an inherent resonance that may induce multiple peaks, all system. -
Loss Distributions
Munich Personal RePEc Archive Loss Distributions Burnecki, Krzysztof and Misiorek, Adam and Weron, Rafal 2010 Online at https://mpra.ub.uni-muenchen.de/22163/ MPRA Paper No. 22163, posted 20 Apr 2010 10:14 UTC Loss Distributions1 Krzysztof Burneckia, Adam Misiorekb,c, Rafał Weronb aHugo Steinhaus Center, Wrocław University of Technology, 50-370 Wrocław, Poland bInstitute of Organization and Management, Wrocław University of Technology, 50-370 Wrocław, Poland cSantander Consumer Bank S.A., Wrocław, Poland Abstract This paper is intended as a guide to statistical inference for loss distributions. There are three basic approaches to deriving the loss distribution in an insurance risk model: empirical, analytical, and moment based. The empirical method is based on a sufficiently smooth and accurate estimate of the cumulative distribution function (cdf) and can be used only when large data sets are available. The analytical approach is probably the most often used in practice and certainly the most frequently adopted in the actuarial literature. It reduces to finding a suitable analytical expression which fits the observed data well and which is easy to handle. In some applications the exact shape of the loss distribution is not required. We may then use the moment based approach, which consists of estimating only the lowest characteristics (moments) of the distribution, like the mean and variance. Having a large collection of distributions to choose from, we need to narrow our selection to a single model and a unique parameter estimate. The type of the objective loss distribution can be easily selected by comparing the shapes of the empirical and theoretical mean excess functions. -
A Unified View on Skewed Distributions Arising from Selections
The Canadian Journal of Statistics 581 Vol. 34, No. 4, 2006, Pages 581–601 La revue canadienne de statistique A unified view on skewed distributions arising from selections Reinaldo B. ARELLANO-VALLE, Marcia´ D. BRANCO and Marc G. GENTON Key words and phrases: Kurtosis; multimodal distribution; multivariate distribution; nonnormal distribu- tion; selection mechanism; skew-symmetric distribution; skewness; transformation. MSC 2000: Primary 60E05; secondary 62E10. Abstract: Parametric families of multivariate nonnormal distributions have received considerable attention in the past few decades. The authors propose a new definition of a selection distribution that encompasses many existing families of multivariate skewed distributions. Their work is motivated by examples that involve various forms of selection mechanisms and lead to skewed distributions. They give the main prop- erties of selection distributions and show how various families of multivariate skewed distributions, such as the skew-normal and skew-elliptical distributions, arise as special cases. The authors further introduce several methods of constructing selection distributions based on linear and nonlinear selection mechanisms. Une perspective integr´ ee´ des lois asymetriques´ issues de processus de selection´ Resum´ e´ : Les familles parametriques´ de lois multivariees´ non gaussiennes ont suscite´ beaucoup d’inter´ etˆ depuis quelques decennies.´ Les auteurs proposent une nouvelle definition´ du concept de loi de selection´ qui englobe plusieurs familles connues de lois asymetriques´ multivariees.´ Leurs travaux sont motives´ par diverses situations faisant intervenir des mecanismes´ de selection´ et conduisant a` des lois asymetriques.´ Ils mentionnent les principales propriet´ es´ des lois de selection´ et montrent comment diverses familles de lois asymetriques´ multivariees´ telles que les lois asymetriques´ normales ou elliptiques emergent´ comme cas particuliers. -
General Solution of the Chemical Master Equation and Modality of Marginal Distributions for Hierarchic first-Order Reaction Networks
J. Math. Biol. (2018) 77:377–419 https://doi.org/10.1007/s00285-018-1205-2 Mathematical Biology General solution of the chemical master equation and modality of marginal distributions for hierarchic first-order reaction networks Matthias Reis1 · Justus A. Kromer2 · Edda Klipp1 Received: 7 April 2017 / Revised: 10 October 2017 / Published online: 20 January 2018 © The Author(s) 2018. This article is an open access publication Abstract Multimodality is a phenomenon which complicates the analysis of sta- tistical data based exclusively on mean and variance. Here, we present criteria for multimodality in hierarchic first-order reaction networks, consisting of catalytic and splitting reactions. Those networks are characterized by independent and dependent subnetworks. First, we prove the general solvability of the Chemical Master Equa- tion (CME) for this type of reaction network and thereby extend the class of solvable CME’s. Our general solution is analytical in the sense that it allows for a detailed analysis of its statistical properties. Given Poisson/deterministic initial conditions, we then prove the independent species to be Poisson/binomially distributed, while the dependent species exhibit generalized Poisson/Khatri Type B distributions. General- ized Poisson/Khatri Type B distributions are multimodal for an appropriate choice of parameters. We illustrate our criteria for multimodality by several basic models, as well as the well-known two-stage transcription–translation network and Bateman’s model from nuclear physics. For both examples, multimodality was previously not reported. Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00285- 018-1205-2) contains supplementary material, which is available to authorized users.