Role of Sam68 in Dna Damage Responses and Tumorigenesis

Total Page:16

File Type:pdf, Size:1020Kb

Role of Sam68 in Dna Damage Responses and Tumorigenesis ROLE OF SAM68 IN DNA DAMAGE RESPONSES AND TUMORIGENESIS by Xin Sun A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland Dec 2016 © 2016 Xin Sun All Rights Reserved Abstract The ability to recognize and repair DNA damage through rapid and appropriate DNA damage responses is pivotal to safeguard genomic information, which is persistently challenged by internal and environmental offenses. DNA lesion initiated poly(ADP- ribosyl)ation (PARylation), catalyzed primarily by poly(ADP-ribose) polymerase 1 (PARP1), is one of the earliest post-translational modifications to orchestrate downstream DNA damage response (DDR) signaling. However, the precise mechanisms through which PARP1 is activated and poly(ADP-ribose) (PAR) is robustly synthesized are not fully understood. Converging evidence support the emerging role of RNA- binding proteins (RBPs) in promoting DNA damage repair at different stages of DDR. We discovered Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel- signaling molecule in DDR. In the absence of Sam68, DNA damage-triggered PARylation and PAR-dependent DNA repair signaling were dramatically diminished. With serial cellular and biochemical assays, we revealed that Sam68 is recruited to and significantly overlaps with PARP1 at DNA lesions and that the interaction between Sam68 and PARP1 is crucial for DNA damage-initiated and PARP1-conferred PARylation. Utilizing cell lines and knockout mice, we demonstrated that Sam68- deleted cells and animals are hypersensitive to genotoxicity caused by DNA-damaging agents. In addition, loss of Sam68 delays basal cell carcinoma (BCC) onset and progression in a mouse model for basal cell carcinoma (BCC) of the skin, suggesting Sam68 is required for BCC tumorigenesis, likely through promoting tumor cell survival. Together, our findings demonstrate that Sam68 plays a crucial role in DDR via ii regulating DNA damage-initiated PARylation, and that Sam68 is crucial in protecting normal cells from environmental genotoxic stress under physiological conditions and facilitating tumor cells to undergo malignant transformation in BCC. Thesis Readers Dr. Fengyi Wan Dr. Pierre Coulombe Dr. Alan Scott Dr. Luis Garza Dr. Michael Matunis Dr. Jay Bream Dr. Xuhang Li Preface My passion has always been applying new discoveries from the bench to the diagnosis and treatment of human tumors at bedside. There are six biological competencies acquired during the initiation and progression of human tumors, including ‘‘sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion iii and metastasis’‘, as summarized by Drs. Douglas Hanahan and Robert A. Weinberg in the prominent document ‘‘Hallmarks of Cancer: The Next Generation’‘ (Hanahan and Weinberg 2011). Remarkably, alteration of genomic information underlies all six hallmarks of cancer to generate mutations that promote every aspect of tumorigenesis and progression. With my thesis, I wanted to explore the underlying mechanisms of this multifaceted disease in relation to DNA damage responses (DDRs). I first examined the hypothesis that Src-associated substrate during mitosis of 68 kDa (Sam68), a previously known RNA binding protein (RBP), is a novel DNA damage-signaling molecule, governing poly(ADP-ribose) polymerase 1 (PARP1)-mediated poly(ADP-ribosyl)ation. Having made the observation that genetic ablation of Sam68 decreases tumor burden in the mouse colon (Fu, Sun et al. 2016), I then assessed whether Sam68 is also involved in skin basal cell carcinoma (BCC) tumorigenesis. In this dissertation, the main focus has been to investigate the role of Sam68 as a novel DNA damage response (DDR) protein. The resulting thesis is divided into six parts. Chapter 1 introduces the background information and our scientific questions. It first describes the concept of DDR, and then discusses the essential role of PARP1 and PARylation during DDR and the importance in its tight regulation. Lastly it introduces Sam68, our protein of interest, and our hypothesis that Sam68 may be a previously unappreciated DDR protein regulating PARylation. Chapter 2 reports on the approaches and observations in addressing our scientific questions. Chapter 3 discusses conclusions iv we drew from the study, the significance of identifying Sam68 as a regulator of PARP1 catalytic activity, the emerging of RBPs in different phases of DDR and the uniqueness of Sam68 that distinguishes it from other RBPs in the context of DDR. In addition, I reviewed what are the burning questions that are left unanswered, and proposed how we can further uncover the mechanism through which Sam68 is activated and the mechanism through which Sam68 regulate PARP1. Chapter 4 summarizes the unpublished data about the potential role of Sam68 in BCC as an appendix to further discuss the involvement of Sam68 in tumorigenesis. This dissertation represent an expanded and updated version of the recent by Sun, X., Fu, K., Hodgson, A., Wier, E. M., Wen, M. G., Kamenyeva, O., Xia, X., Koo, L.Y., and Wan, F., published in PLoS Biology in 2016. Sam68 Is Required for DNA Damage Responses via Regulating Poly(ADP- ribosyl)ation. PLoS Biol, 14(9), e1002543, with the addition of unpublished data. Figures 1.1, 1.3 and 1.5 were summaried from current literature and made by myself; Figures 1.2, 1.4 and 1.6 were adopted from the cited literature and remade by myself; Figures 2.1, 2.2, 2.3, 2.4, 2.5, 2.6B, 2.6D-E, 2.8, 2.11E-G, 2.13, 2.14, 2.15, 2.16, 2.18, 3.1, 4.1D-E and 4.3 were generated entirely by my own data; Figure 2.6A, 2.6C-D, 2.7, 2.11B, 2.11H-I, 2.12, 4.1A-B were generated entirely by Dr. Kai Fu; Figures 2.11A and 2.11C were generated in collaboration with Dr. Kai Fu; Figures 2.6F-G, 2.9, and 2.10 were generated by myself with help from Drs. Lily Y. Koo and Olena Kamenyeva; Figues 4.1C and 4.2 were generated by myself with help from Dr. Kai Fu, Mr. Matthew Wen and Ms. Xin Guo; Figure 3.3 was summarized from two of our published manuscripts and made by myself (Fu, Sun et al. 2016, Sun, Fu et al. 2016). v Acknowledgement Graduate school has been a long voyage with many obstacles along the way. But it is not a lonely journey. With the warm company and generous support from my amazing mentors, colleagues, friends and family, and with a determined mind, my thesis has become a reality, and I have been rewarded. It is all the laughers and tears that allow me to uncover my potential and keep moving forward in science and in life. Foremost, I would like to express my gratefulness to the great set of mentors that I have. I cannot thank my advisor Dr. Fengyi Wan enough for taking me into his lab and granting a first year graduate student plentiful trust to open a new field in the lab. He provided me not only the techniques, but also the intellect to tackle the scientific questions. He always gave me an opportunity to describe my plan, before offering suggestions and explaining how he would improve it. It is all the open discussions we had over the years that fostered my independent scientific thinking. Fengyi’s passion about science has driven everyone in the lab to always try our best. I feel lucky to have such an incredible advisor, and I appreciate his tremendous guidance and support during my graduate career. I also would like to thank members of my thesis committee, Drs. Pierre Coulombe, Michael Matunis, Alan Scott, and Luis Garza, who have encouraged, challenged and guided me to be faithful to science and myself. I want to thank Dr. Pierre Coulombe for mentoring me through our fruitful collaboration and our invaluable joint lab meetings. He showed me that a true scientist is one with broad knowledge, a talent who continuously ask insightful questions and a mentor who is vi always approachable for advise and help. My special thanks also goes to Dr. Michael Matunis. His great suggestions and substantial support through the whole duration of graduate school helped shape my thesis work and career. Conversations in his office or small talks in the hallway prepared me for my meetings and career development. I want to thank our collaborators Drs. Stephane Richard from McGill University, Johnny He from University of North Texas Health Science Center, Jeremy Stark from Beckman Research Institute of City of Hope, John Pascal from University of Montreal, Anthony Leung from Johns Hopkins University and Zhaoqi Wang from Fritz Lipmann Institut for sharing experimental material; Dr. Cory Brayton and Ms. Xin Guo from Johns Hopkins University for help with histological analyses; Drs. Owen Schwartz, Lily Y. Koo and Olena Kamenyeva from National Institutes of Health for help with laser micro-irradiation microscopy. Your help significantly improved my thesis project. Thank you to all my friends and colleagues inside and outside of school. I want to thank all the previous and current members of the Wan Lab, Dr. Kai Fu, Dr. Andrea Hodgson, Dr. Eric Wier, Xue (Summer) Xia, Yue (Harry) Liu, Matthew Wen, Dr. Wenxin Zheng and Jackline Lasola. You build such an incredible positive and collaborative working environment that I learned a lot from each of you. My graduate school would not be so rewarding without your friendship and support. I especially want to thank Kai for our fruitful and enjoyable collaboration on so many projects over the years. Kai is so knowledgable with hands on bench techniques that he is the MASTER of western blotting and immunoprecipitation in our lab. He is always willing to lend a helping vii hand. His contribution to my thesis project significantly enhanced our understanding of the molecular mechasim.
Recommended publications
  • Self-Catalyzed Site-Specific Depurination of Guanine Residues Within Gene Sequences
    Self-catalyzed site-specific depurination of guanine residues within gene sequences Olga Amosova*, Richard Coulter, and Jacques R. Fresco* Department of Molecular Biology, Princeton University, Princeton, NJ 08544 Edited by Jack W. Szostak, Massachusetts General Hospital, Boston, MA, and approved January 19, 2006 (received for review September 28, 2005) A self-catalyzed, site-specific guanine-depurination activity has been found to occur in short gene sequences with a potential to form a stem-loop structure. The critical features of that catalytic intermediate are a 5؅-G-T-G-G-3؅ loop and an adjacent 5؅-T⅐A-3؅ base pair of a short duplex stem stable enough to fix the loop structure required for depurination of its 5؅-G residue. That residue is uniquely depurinated with a rate some 5 orders of magnitude faster than that of random ‘‘spontaneous’’ depurination. In con- trast, all other purine residues in the sequence depurinate at the spontaneous background rate. The reaction requires no divalent cations or other cofactors and occurs under essentially physiolog- ical conditions. Such stem-loops can form in duplex DNA under superhelical stress, and their critical sequence features have been found at numerous sites in the human genome. Self-catalyzed stem-loop-mediated depurination leading to flexible apurinic sites may therefore serve some important biological role, e.g., in nu- cleosome positioning, genetic recombination, or chromosome su- perfolding. ͉ ͉ DNA self-catalysis guanine depurination stem-loop structure Fig. 1. Localization of the cleavage site. A 32P-labeled 8-nt oligomer com- plementary to the 3Ј end of D-1 was used as a primer in a Sanger sequencing epurination in DNA has been recognized as a spontaneous reaction.
    [Show full text]
  • DNA REPLICATION, REPAIR, and RECOMBINATION Figure 5–1 Different Proteins Evolve at Very Different Rates
    5 THE MAINTENANCE OF DNA DNA REPLICATION, SEQUENCES DNA REPLICATION MECHANISMS REPAIR, AND THE INITIATION AND COMPLETION OF DNA REPLICATION IN RECOMBINATION CHROMOSOMES DNA REPAIR GENERAL RECOMBINATION SITE-SPECIFIC RECOMBINATION The ability of cells to maintain a high degree of order in a chaotic universe depends upon the accurate duplication of vast quantities of genetic information carried in chemical form as DNA. This process, called DNA replication, must occur before a cell can produce two genetically identical daughter cells. Main- taining order also requires the continued surveillance and repair of this genetic information because DNA inside cells is repeatedly damaged by chemicals and radiation from the environment, as well as by thermal accidents and reactive molecules. In this chapter we describe the protein machines that replicate and repair the cell’s DNA. These machines catalyze some of the most rapid and accu- rate processes that take place within cells, and their mechanisms clearly demon- strate the elegance and efficiency of cellular chemistry. While the short-term survival of a cell can depend on preventing changes in its DNA, the long-term survival of a species requires that DNA sequences be changeable over many generations. Despite the great efforts that cells make to protect their DNA, occasional changes in DNA sequences do occur. Over time, these changes provide the genetic variation upon which selection pressures act during the evolution of organisms. We begin this chapter with a brief discussion of the changes that occur in DNA as it is passed down from generation to generation. Next, we discuss the cellular mechanisms—DNA replication and DNA repair—that are responsible for keeping these changes to a minimum.
    [Show full text]
  • Syllabus 2020
    Amrita Center For Nanosciences and Molecular Medicine Program in the Bachelor of Science (B.Sc.) Molecular Medicine 2020 Amrita Vishwa Vidyapeetham 1 2 B.Sc-Molecular Medicine Syllabus 20BIC102 Biophysics and Bioenergetics. Preamble Connecting Physics to biology is an essential factor which eventually determines quantifying primary factors in a physical process that occur at cell level. Physics serves as a nanoscopic visualization tool to dissect such processes to reveal the information to students. This course introduces applications of Physics into Biology. Unit 1 (5 lectures) Physics: general overview, Does Physics treats disease? Why Physics for Biology and Molecular Medicine? Concepts in Physics to apply in Biology, Methods in Physics to elucidate Biology. Unit 2 (10 lectures) Bioenergetics: Laws of thermodynamics. Concept of state functions, free energy change, equilibrium constant, coupled reactions, energy charge, ATP cycle, phosphorylation potential, and phosphoryl group transfers. Electron transport in membrane for oxidative phosphorylation, Chemical basis of hydrolysis of ATP and thioesters. Redox reactions, standard redox potentials and Nernst equation. Unit 3 (10lectures) Biophysics in Medicine: Applications of physical principles in biology and its significance in the development of various biophysical methods for analysing the complexity of biological system. Principles of Medical-imaging, Image analysis, Instrumentation and Working principles, Medical applications of X-ray: Imaging, Introduction to Fluoroscopy. Unit 4 (10 lectures) Nuclear medicine and Radiotherapy: Pros and cons, Nano-bioelectronics: Monitoring and recording bioelectric signals, Transducers in physiology, Diagnostic and Therapeutic Techniques: Cardiac pace makers, Blood flow monitors, Pulmonary function analyzers, Hemodialysis machines, Defibrillators, Short/ wave diathermy, Electrically stimulated pain management, Laser: operating principles, types, Biomedical applications in surgery.
    [Show full text]
  • Role of Depurination in Mutagenesis by Chemical Carcinogens1
    [CANCER RESEARCH 42, 3480-3485, September 1982] 0008-5472/82/0042-0000$02.00 Role of Depurination in Mutagenesis by Chemical Carcinogens1 Roeland M. Schaaper,2 Barry W. Glickman, and Lawrence A. Loeb3 The Joseph Gottstein Memoria/ Cancer Research Laboratory, Department of Pathology, School of Medicine, University of Washington, Seattle, Washington 98195 {R. M. S., L. A. L.], and Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709 [B. W.G.] ABSTRACT significant extent during the presumably modified mode of replication in SOS-induced bacteria. In these experiments, The effect of modifying <f>x"174viral DMA by the chemical apurinic sites were introduced by a combined acid-heat treat carcinogens /?-propiolactone, A/-acetoxyacetylaminofluorene ment. Although a role for other heat-acid-induced lesions can and anf/-benzo[a]pyrene diol-epoxide was investigated by not be rigorously excluded, the mutagenicity of apurinic sites transfecting the modified DMA into Escherichia coli sphero- is strongly supported by the abolition of mutagenesis by alkali plasts. Modification of the DMA in vitro by each of these agents (20) and by purified apurinic endonuclease.4 Apurinic sites was mutagenic for the <(>x174amber mutants am3 and am86. could also be important for mutagenesis by chemical carcino Mutagenicity depended on the induction of the "SOS" re gens. Modification of purines at A/3 and A/7 and of pyrimidines sponse in the host spheroplasts. Heating ß-propiolactone- at O2 positions labilizes the /V-glycosylic bond, leading to treated DNA at neutral pH caused strong inactivation such that sharply increased spontaneous depurination rates (2, 11, 22).
    [Show full text]
  • Depurination of Nucleosides and Induced by 2-Bromopropane At
    Depurination of Nucleosides and Calf Thymus DNA by 2-BP Bull. Korean Chem. Soc. 2009, Vol. 30, No. 10 2309 Depurination of Nucleosides and C이 f Thymus DNA Induced by 2-Bromopropane at the Physiological Condition Jyoti Sherchan, Hoyoung Choi, and Eung-Seok Lee* College of Pharmacy, Yeungnam University, Kyongsan 712-749, Korea. * E-mail: [email protected] Received July 28, 2009, Accepted August 25, 2009 Depurination, the release of purine bases from nucleic acids by hydrolysis of the N-glycosidic bond, gives rise to alterations of the cell genome. Though cells have evolved mechanisms to repair these lesions, unrepaired apurinic sites have been shown to have two biological consequences: lethality and base substitution errors. 2-Bromopropane (2-BP) is used as an intermediate in the synthesis of pharmaceuticals, dyes, and other organics. In addition, 2-BP has been used as a replacement for chloroflurocarbons and 1,1,1-trichloroethane as a cleaning solvent in electronics industry. However, 2-BP was found to cause reproductive and hematopoietic disorders in local workers exposed to it. Owing to the toxicity of 2-BP, there has been a tendency to use 1-BP as an alternative cleaning solvent to 2-BP. However, 1-BP has also been reported to be neurotoxic in rats. Though N-guanine adduct of 2-BP has been reported previously, massive depurination of the nucleosides and calf thymus DNA was observed in this study.腿 incubated the nucleosides (ddG, dG, guanosine, ddA, dA and adenosine) with excess amount 2-BP at the physiological condition (pH 7.4, 37 oC), which were analyzed by HPLC and LC-MS/MS.
    [Show full text]
  • Polymerase Chain Reaction (PCR)
    Polymerase Chain Reaction Secondary article (PCR) Article Contents . Polymerase Chain Reaction: Overall Description Michael L Metzker, Baylor College of Medicine, Houston, Texas, USA . DNA Polymerase Reaction Thomas C Caskey, Cogene Biotech Ventures, Houston, Texas, USA . Sensitivity and Contamination of PCR . PCR Introduces Mutations . PCR is a rapid in vitro DNA synthesis process, which can amplify up to a billion copies of a PCR Length Limitations . given nucleic acid target. It has been extensively applied for the identification, detection Creation of Novel Recombinant Molecules by PCR . and diagnosis of genetic and infectious disease. PCR as a Detection System . Degenerate PCR . Ancient DNA Polymerase Chain Reaction: Overall . Quantitative PCR Description . Related Nucleic Acid Amplification Procedures . Ligation Chain Reaction Few techniques rival the impact that the polymerase chain . Summary reaction (PCR) has made in the age of molecular biology. Cloning and deoxyribonucleic acid (DNA) sequencing are other such techniques that have become embedded into synthesis fidelities, respectively. PCR is an elegant but everyday life on the molecular biologist’s bench. Over 60 simple technique for the in vitro amplification of target books alone (not to mention the tens of thousands of DNA utilizing DNA polymerase and two specific oligo- research articles) have been devoted to the strategies, nucleotide or primer sequences flanking the region of methods and applications of PCR for the identification, interest. PCR is a cyclic process of double-strand separa- detection and diagnosis of genetic and infectious diseases. tion of DNA by heat denaturation, specific hybridization Rightfully so, the inventor of PCR, Kary B. Mullis, was or annealing of short oligonucleotide primers to single- awarded the Nobel Prize in Chemistry for his discovery of stranded DNA, and synthesis by DNA polymerase (Saiki the technique in 1993.
    [Show full text]
  • Synthesis of Oligodeoxynucleotides Using Fully Protected
    Molecules 2010, 15, 7509-7531; doi:10.3390/molecules15117509 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Synthesis of Oligodeoxynucleotides Using Fully Protected Deoxynucleoside 3′-Phosphoramidite Building Blocks and Base Recognition of Oligodeoxynucleotides Incorporating N3-Cyano-Ethylthymine Hirosuke Tsunoda, Tomomi Kudo, Akihiro Ohkubo, Kohji Seio and Mitsuo Sekine * Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan; E-Mails: [email protected] (H.T.); [email protected] (T.K.); [email protected] (A.O.); [email protected] (K.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-45-924-5706; Fax: +81-45-924-5772. Received: 27 August 2010; in revised form: 8 October 2010 / Accepted: 14 October 2010 / Published: 27 October 2010 Abstract: Oligodeoxynucleotide (ODN) synthesis, which avoids the formation of side products, is of great importance to biochemistry-based technology development. One side reaction of ODN synthesis is the cyanoethylation of the nucleobases. We suppressed this reaction by synthesizing ODNs using fully protected deoxynucleoside 3′-phosphoramidite building blocks, where the remaining reactive nucleobase residues were completely protected with acyl-, diacyl-, and acyl-oxyethylene-type groups. The detailed analysis of cyanoethylation at the nucleobase site showed that N3-protection of the thymine base efficiently suppressed the Michael addition of acrylonitrile. An ODN incorporating N3-cyanoethylthymine was synthesized using the phosphoramidite method, and primer extension reactions involving this ODN template were examined. As a result, the modified thymine produced has been proven to serve as a chain terminator.
    [Show full text]
  • Development of a Quantitative RT-PCR Assay to Examine The
    Downloaded from rnajournal.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press METHOD Development of a quantitative RT-PCR assay to examine the kinetics of ribosome depurination by ribosome inactivating proteins using Saccharomyces cerevisiae as a model MICHAEL PIERCE, JENNIFER NIELSEN KAHN, JIACHI CHIOU, and NILGUN E. TUMER Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520, USA ABSTRACT Ricin produced by the castor bean plant and Shiga toxins produced by pathogenic Escherichia coli (STEC) and Shigella dysenteriae are type II ribosome inactivating proteins (RIPs), containing an enzymatically active A subunit that inhibits protein synthesis by removing an adenine from the a-sarcin/ricin loop (SRL) of the 28S rRNA. There are currently no known antidotes to Shiga toxin or ricin, and the ability to screen large chemical libraries for inhibitors has been hindered by lack of quantitative assays for catalytic activity that can be adapted to a high throughput format. Here, we describe the development of a robust and quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay that can directly measure the toxins’ catalytic activity on ribosomes and can be used to examine the kinetics of depurination in vivo. The qRT-PCR assay exhibited a much wider dynamic range than the previously used primer extension assay (500-fold vs. 16-fold) and increased sensitivity (60 pM vs. 0.57 nM). Using this assay, a 400-fold increase in ribosome depurination was observed in yeast expressing ricin A chain (RTA) relative to uninduced cells.
    [Show full text]
  • Avoiding Depurination During Trityl-On Purification Author: Greg Scott
    Application Note: TN-0008 Avoiding Depurination During Trityl-on Purification Author: Greg Scott Introduction epurination in DNA and RNA sequences whether in nature or through fabrication is an alteration of the sugar- Dphosphate backbone in which hydrolysis of a purine base (adenine or guanine) occurs. In the typical mammalian cell, depurination is a rather common event as nearly one thousand purines are lost daily due to endogenous chemical reactions. [1] Systemic mechanisms, notably enzymes and amines, are in place that can effectively cleave voided fragments to prevent errant and potentially damaging transcriptions. [2] As in nature, synthetic oligonucleotides suffer from similar errors during the assembly process resulting in unwanted and harmful contaminants. Contemporary Depurination Avoiding DNA and RNA synthesis utilizes solid-phase phosphoramidite chemistry to construct nucleotide sequences through a succession of phosphodiester linkages. By incorporating an acid labile 5’ protecting group, dimethoxytrityl (DMT), nucleotide assembly is accomplished through sequential automated cycles of deprotection, coupling, capping, and oxidation. The greatest potential for damage to the sequence occurs during the deprotection stage (detritylation) where the oligonucleotide is exposed to dilute acid that may induce purine hydrolysis. Adding further complexity, the depurination rate of single stranded DNA (as synthetically produced) is four-fold greater than native double stranded DNA. [3] Unlike nature, the synthetic process lacks the necessary mechanism to selectively clear apurinic sites from the full-length sequence. Consequently, to deliver a pure and error-free product, purification techniques are required to remove depurinated fragments and other remnant impurities. Crude synthetic oligonucleotides are purified by either trityl-on or trityl-off methodologies.
    [Show full text]
  • Of a Short-Chain Oligonucleotide Without Inert Atmosphere
    applied sciences Article A Simple and Efficient Microfluidic System for Reverse Chemical Synthesis (50-30) of a Short-Chain Oligonucleotide Without Inert Atmosphere Rahul Bhardwaj *, Phan T. Tue, Manish Biyani and Yuzuru Takamura * Department of Bioscience and Biotechnology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi city, Ishikawa 923-1211, Japan; [email protected] (P.T.T.), [email protected] (M.B.) * Correspondence: [email protected] (R.B.); [email protected] (Y.T.); Tel.: +81-761-51-1661 Received: 7 February 2019; Accepted: 28 March 2019; Published: 31 March 2019 Abstract: Reverse DNA synthesis (50-30) plays diverse functional roles in cellular biology, biotechnology, and nanotechnology. However, current microfluidic systems for synthesizing single-stranded DNAs at a laboratory scale are limited. In this work, we develop a simple and efficient polydimethylsiloxane- (PDMS-) based microfluidic system for the reverse chemical synthesis of short-chain oligonucleotides (in the 50-30 direction) under ambient conditions. The use of a microfluidics device and anhydrous conditions effectively surpass the problem of moisture sensitivity during oligonucleotide synthesis. With optimized microfluidic synthesis conditions, the system is able to synthesize up to 21 bases-long oligonucleotides in air atmosphere. The as-synthesized oligonucleotides, without further purification, are characterized using matrix-assisted laser desorption ionization–time of flight (MALDI-TOF/TOF) mass spectroscopy (MS) supported by the denatured polyacrylamide gel electrophoresis (PAGE) analysis. This developed system is highly promising for producing the desired sequence at the nanomolar scale on-chip and on-demand in the near future. Keywords: reverse oligonucleotide synthesis (50-30), PDMS chip; on-chip and on-demand; air atmosphere 1.
    [Show full text]
  • Depurination of Da and Dg Induced by 2-Bromopropane at the Physiological Condition
    The Journal of Applied Pharmacology, 15, 224-229(2007) Depurination of dA and dG Induced by 2-bromopropane at the Physiological Condition Pritam THAPA, Jyoti SHERCHAN, Radha KARKI, Tae Cheon JEONG, and Eung-Seok LEE* College of Pharmacy, Yeungnam University, Kyongsan 712-749, Korea (Received November 19, 2007; Accepted December 3, 2007) Abstract − Depurination, the release of purine bases from nucleosides by hydrolysis of the N-glycosidic bond, gives rise to alterations of the cell genome. Although, cells have evolved mechanisms to repair these lesions, unrepaired apurinic sites have been shown to have two biological consequences: lethality and base substitution errors. 2-Bromopropane (2-BP) is used as an intermediate in the synthesis of pharmaceuticals, dyes, and other organics. In addition, 2-BP has been used as a cleaning solvent in electronics industry. But, 2-BP was found to cause reproductive and hematopoietic disorders in local workers exposed to it. We observed massive depurination after incubation of 2’-deoxyadenosine (dA) and 2’-deoxyguanosine (dG) with the excess amount 2-BP at the physiological condition (pH 7.4, 37oC), which were analyzed by HPLC and LC-MS/MS. In addition, time and dose response relationship of depurination in dA and dG induced by 2-BP at the physiological condition were investigated. Keywords □ depurination, 1-bromopropane, 2-bromopropane, time and dose response relationship INTRODUCTION form tumor-intitiating H-ras mutations (Chakravarti et al., 2001) by inducing pre-replication repair that is error-prone and Depurination of nucleic acids, the release of purine bases forms mismatched heteroduplexes leading to transforming from nucleosides by hydrolysis of the N-glycosidic bond (Fig.
    [Show full text]
  • Depurination Causes Mutations in SOS-Induced Cells (Chemical Carcinogenesis/Mutagenesis/Fidelity of DNA Replication/SOS Repair) ROELAND M
    Proc. Nati. Acad. Sci. USA Vol. 78, No. 3, pp. 1773-1777, March 1981 Genetics Depurination causes mutations in SOS-induced cells (chemical carcinogenesis/mutagenesis/fidelity of DNA replication/SOS repair) ROELAND M. SCHAAPER AND LAWRENCE A. LOEB The Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, SM-30, University of Washington, Seattle, Washington 98195 Communicated by Earl P. Benditt, November 17, 1980 ABSTRACT Introduction of apurinic sites into dX174 am3 the apurinic sites. We show that, in accord with previous re- DNA leads to loss of biological activity when measured in a trans- ports, depurination is strongly inactivating but that, under cer- fection assay. For single-stranded DNA, approximately one apu- tain can indeed be rinic site constitutes a lethal hit; for double-stranded (RFI) DNA, conditions, depurination mutagenic. approximately 3.5 hits per strand are lethal. When the reversion frequency of am3 DNA is measured, no increase due to depuri- MATERIALS AND METHODS nation is observed above the background level. However, a large Bacteria and Bacteriophage. E. coli W6, obtained from M. increase in reversion frequency is observed when the same DNA Edgell (University of North Carolina) was used for the prepa- is assayed by using spheroplasts derived from bacteria previously ration of spheroplasts. E. HF4704 HF4714 exposed to UV light. The results suggest that apurinic sites are coli (su-) and (su1l) impediments to a replicating DNA polymerase; however, nucleo- were used to determine titers and reversion frequencies of tides can be incorporated opposite these sites under SOS-induced 4)X174 am3 DNA. The preparation of bacteriophage 4.X174 conditions.
    [Show full text]