Rust Diseases of Wheat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jtudies Concerning Teliospore Germination 1And
JTUDIES CONCERNING TELIOSPORE GERMINATION 1AND THE SUBSEQUENT INFECTION OF CERTAIN PYCNIAL-AECIAL HOSTS OF PUCCINIA RE CONDIT A ROB . EX DESM. F . SP , TRITICI ERIKSS . BY DICKIE DON DA,, VIS Bachelor of Science University of Oklahoma Norman, Oklahoma 1960 Submitted to the Faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE June, 1963 comPiHU!Viit't .~u/l;\1lE rn~1:veJ11si1:0ir. ilJ~Fu~~v STUDIES CONCERNING TELIOSPORE GERMINATION AND THE SUBSEQUENT INFECTION OF CERTAIN PYCNIAL~AECIAL HOSTS OF PUCCINIA RijCONDIT A, ROB. EX PESM, F. SP. TRITICI ERIKSS, Thesis Approved: '"' ··-- ; 541894 ii ACKNOWLEDGMENTS The writer wishes to thank Dr. H. C. Young, Jr. for aid in sec1,1ring materials essential to these experiments and for 1;1,elpful suggestions during th,<;? course of the studies and in preparation of the manuscript. The writer is also indebted to Dr. J. E. Thomas for aid in clarifying tbe pr~sentation, and to Dr. W. W. Hansen for critical reading of the map.u SCl;'ipt. iii TABLE OF CONTENTS Page INTRODUCTION • • . 1 REVIEW OF LITERATURE . 3 MATERIALS AND METHODS 13 RESULTS • • . • • • • . 16 Experiment 1. Attempted Germination of Greenhouse-Grown Teliospores Under a Wide Range of Conditions for One Year. .. 16 Experiment 2. Attempted Germination of Greenhouse -Grown Teliospores Under an Arbitit'arily Chosen S~t of "Opti- mum" Conditions of Six Weeks Duration. • . • 22 Exgeriment 3. Environmental Conditions Resulting in Success- ful Germination of Field-Grown, Overwintered Telio- spores. 24 Experiment 4. Germination of Field-Grown Teliospores Under Carefully-Coo.trolled Environmental Conditions. -
By Thesis for the Degree of Doctor of Philosophy
COMPARATIVE ANATOMY AND HISTOCHEMISTRY OF TIIE ASSOCIATION OF PUCCIiVIA POARUM WITH ITS ALTERNATE HOSTS By TALIB aWAID AL-KHESRAJI Department of Botany~ Universiiy of SheffieZd Thesis for the degree of Doctor of Philosophy JUNE 1981 Vol 1 IMAGING SERVICES NORTH Boston Spa, Wetherby West Yorkshire, lS23 7BQ www.bl.uk BEST COpy AVAILABLE. VARIABLE PRINT QUALITY TO MY PARENTS i Ca.1PARATIVE ANATCl1Y AND HISTOCHEMISTRY OF THE ASSOCIATION OF PUCCINIA POARUM WITH ITS ALTERNATE HOSTS Talib Owaid Al-Khesraji Depaptment of Botany, Univepsity of Sheffield The relationship of the macrocyclic rust fungus PUccinia poarum with its pycnial-aecial host, Tussilago fapfaPa, and its uredial-telial host, Poa ppatensis, has been investigated, using light microscopy, electron microscopy and micro-autoradiography. Aspects of the morp hology and ontogeny of spores and sari, which were previously disputed, have been clarified. Monokaryotic hyphae grow more densely in the intercellular spaces of Tussilago leaves than the dikaryotic intercellular hyphae on Poa. Although ultrastructurally sbnilar, monokaryotic hyphae differ from dikaryotic hyphae in their interaction with host cell walls, often growing embedded in wall material which may project into the host cells. The frequency of penetration of Poa mesophyll cells by haustoria of the dikaryon is greater than that of Tussilago cells by the relatively undifferentiated intracellular hyphae of the monokaryon. Intracellular hyphae differ from haustoria in their irregular growth, septation, lack of a neck-band or markedly constricted neck, the deposition of host wall-like material in the external matrix bounded by the invaginated host plasmalemma and in the association of callose reactions \vith intracellular hyphae and adjacent parts of host walls. -
Mining of Leaf Rust Resistance Genes Content in Egyptian Bread Wheat Collection
plants Article Mining of Leaf Rust Resistance Genes Content in Egyptian Bread Wheat Collection Mohamed A. M. Atia 1,* , Eman A. El-Khateeb 2, Reem M. Abd El-Maksoud 3 , Mohamed A. Abou-Zeid 4 , Arwa Salah 1 and Amal M. E. Abdel-Hamid 5 1 Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 2 Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt; [email protected] 3 Department of Nucleic Acid & Protein Structure, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 4 Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 5 Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Roxy, Cairo 11341, Egypt; [email protected] * Correspondence: [email protected]; Tel.: +20-1000164922 Abstract: Wheat is a major nutritional cereal crop that has economic and strategic value worldwide. The sustainability of this extraordinary crop is facing critical challenges globally, particularly leaf rust disease, which causes endless problems for wheat farmers and countries and negatively affects humanity’s food security. Developing effective marker-assisted selection programs for leaf rust Citation: Atia, M.A.M.; El-Khateeb, resistance in wheat mainly depends on the availability of deep mining of resistance genes within the E.A.; Abd El-Maksoud, R.M.; germplasm collections. This is the first study that evaluated the leaf rust resistance of 50 Egyptian Abou-Zeid, M.A.; Salah, A.; wheat varieties at the adult plant stage for two successive seasons and identified the absence/presence Abdel-Hamid, A.M.E. -
Diagnosing Maize Diseases in Latin America
Diagnosing Maize Diseases in Latin America Carlos Casela, Bobby (R.B.) Renfro, Anatole F. Krattiger Editors Published in collaboration with PIONEER HI-BRED INTERNATIONAL, INC. No. 9-1998 Diagnosing Maize Diseases in Latin America Carlos Casela, Bobby (R.B.) Renfro, Anatole F. Krattiger Editors Published in collaboration with PIONEER HI-BRED INTERNATIONAL, INC. No. 9-1998 Published by: The International Service for the Acquisition of Agri-biotech Applications (ISAAA). Copyright: (1998) International Service for the Acquisition of Agri-biotech Applications (ISAAA). Reproduction of this publication for educational or other non-commercial purposes is authorized without prior permission from the copyright holder, provided the source is properly acknowledged. Reproduction for resale or other commercial purposes is prohibited without the prior written permission from the copyright holder. Citation: Diagnosing Maize Diseases in Latin America. C.Casela, R.Renfro and A.F. Krattiger (eds). 1998. ISAAA Briefs No. 9. ISAAA: Ithaca, NY and EMBRAPA, Brasilia. pp. 57. Cover pictures: Pictures taken during the field visits and the diagnostics training workshop in Brazil by ISAAA (K.V. Raman). Available from: The ISAAA Centers listed below. For a list of other ISAAA publications, contact the nearest Center: ISAAA AmeriCenter ISAAA AfriCenter ISAAA EuroCenter ISAAA SEAsiaCenter 260 Emerson Hall c/o CIP John Innes Centre c/o IRRI Cornell University PO 25171 Colney Lane PO Box 933 Ithaca, NY 14853 Nairobi Norwich NR4 7UH 1099 Manila USA Kenya United Kingdom The Philippines [email protected] Also on: www.isaaa.cornell.edu Cost: Cost US$ 10 per copy. Available free of charge for developing countries. Contents Introduction and Overview: Diagnosing Maize Diseases with Proprietary Biotechnology Applications Transferred from Pioneer Hi-Bred International to Brazil and Latin America................................................................1 Anatole Krattiger, Ellen S. -
Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts Sarah Blecha University of Nebraska - Lincoln, [email protected]
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Doctoral Documents from Doctor of Plant Health Plant Health Program, Doctor of Program 5-2019 Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts Sarah Blecha University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/planthealthdoc Part of the Agronomy and Crop Sciences Commons, Apiculture Commons, Biosecurity Commons, Genetics Commons, and the Plant Breeding and Genetics Commons Blecha, Sarah, "Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts" (2019). Doctoral Documents from Doctor of Plant Health Program. 14. https://digitalcommons.unl.edu/planthealthdoc/14 This Doctoral Document is brought to you for free and open access by the Plant Health Program, Doctor of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Doctoral Documents from Doctor of Plant Health Program by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ADDRESSING THE CHALLENGES FACING WHEAT PRODUCTION: NEBRASKA AND INTERNATIONAL BREEDING EFFORTS by Sarah Blecha A Doctoral Document Presented to the Faculty of The College of Agricultural Sciences and Natural Resources In Partial Fulfillment of Requirements For the Degree of Doctor of Plant Health Under the Supervision of Professor Gary L. Hein Lincoln, Nebraska May, 2019 ADDRESSING THE CHALLENGES FACING WHEAT PRODUCTION: NEBRASKA AND INTERNATIONAL BREEDING EFFORTS Sarah Blecha, D. P. H. University of Nebraska, 2019 Advisor: Gary L. Hein Bread wheat, Triticum aestivum L., provides 20 percent of the global daily calorie intake. It is the third most important food crop, after rice and corn. -
RIS) Categories Approved by Recommendation 4.7 of the Conference of the Contracting Parties
Information Sheet on Ramsar Wetlands (RIS) Categories approved by Recommendation 4.7 of the Conference of the Contracting Parties Note: It is important that you read the accompanying Explanatory Note and Guidelines document before completing this form. 1. Date this sheet was completed/updated: 28th March 2002 2. Country: Slovakia 3. Name of wetland: Latorica 4. Geographical coordinates: 48º 28' N, 022º 00' E 5. Elevation: (average and/or maximum and minimum) 100 m (99 – 103 m) 6. Area: (in hectares) 4 404,7 ha (refined estimation) 7. Overview: (general summary, in two or three sentences, of the wetland's principal characteristics) The site includes a part of the floodplain area of the Latorica River defined by levees, from the Ukrainian borders to the confluence with the Laborec River in the Latorica Protected Landscape Area, in S part of the East Slovakian Lowland. It is characterized by a well-developed system of branches, seasonally inundated habitats with adjacent floodplain forests and grasslands. Threatened and rare aquatic and swamp biocoenoses of lowland, flooded habitats are represented. Several nature reserves are included in the site. 8. Wetland Type: (please circle the applicable codes for wetland types as listed in Annex I of the Explanatory Note and Guidelines document) marine-coastal: AB CDE FGH I J KZk(a) inland: L MNO PQRSpSs Tp Ts UVaVtW Xf Xp Y Zg Zk(b) human-made: 1 2 3 45 678 9 Zk(c) Please now rank these wetland types by listing them from the most to the least dominant: P, Tp, M, Xf, O, 4, Ts, W, 9, 7 9. -
Induced Resistance in Wheat
https://doi.org/10.35662/unine-thesis-2819 Induced resistance in wheat A dissertation submitted to the University of Neuchâtel for the degree of Doctor in Naturel Science by Fares BELLAMECHE Thesis direction Prof. Brigitte Mauch-Mani Dr. Fabio Mascher Thesis committee Prof. Brigitte Mauch-Mani, University of Neuchâtel, Switzerland Prof. Daniel Croll, University of Neuchâtel, Switzerland Dr. Fabio Mascher, Agroscope, Changins, Switzerland Prof. Victor Flors, University of Jaume I, Castellon, Spain Defense on the 6th of March 2020 University of Neuchâtel Summary During evolution, plants have developed a variety of chemical and physical defences to protect themselves from stressors. In addition to constitutive defences, plants possess inducible mechanisms that are activated in the presence of the pathogen. Also, plants are capable of enhancing their defensive level once they are properly stimulated with non-pathogenic organisms or chemical stimuli. This phenomenon is called induced resistance (IR) and it was widely reported in studies with dicotyledonous plants. However, mechanisms governing IR in monocots are still poorly investigated. Hence, the aim of this thesis was to study the efficacy of IR to control wheat diseases such leaf rust and Septoria tritici blotch. In this thesis histological and transcriptomic analysis were conducted in order to better understand mechanisms related to IR in monocots and more specifically in wheat plants. Successful use of beneficial rhizobacteria requires their presence and activity at the appropriate level without any harmful effect to host plant. In a first step, the interaction between Pseudomonas protegens CHA0 (CHA0) and wheat was assessed. Our results demonstrated that CHA0 did not affect wheat seed germination and was able to colonize and persist on wheat roots with a beneficial effect on plant growth. -
Image-Based Wheat Fungi Diseases Identification by Deep
plants Article Image-Based Wheat Fungi Diseases Identification by Deep Learning Mikhail A. Genaev 1,2,3, Ekaterina S. Skolotneva 1,2, Elena I. Gultyaeva 4 , Elena A. Orlova 5, Nina P. Bechtold 5 and Dmitry A. Afonnikov 1,2,3,* 1 Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; [email protected] (M.A.G.); [email protected] (E.S.S.) 2 Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia 3 Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia 4 All Russian Institute of Plant Protection, Pushkin, 196608 St. Petersburg, Russia; [email protected] 5 Siberian Research Institute of Plant Production and Breeding, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630501 Krasnoobsk, Russia; [email protected] (E.A.O.); [email protected] (N.P.B.) * Correspondence: [email protected]; Tel.: +7-(383)-363-49-63 Abstract: Diseases of cereals caused by pathogenic fungi can significantly reduce crop yields. Many cultures are exposed to them. The disease is difficult to control on a large scale; thus, one of the relevant approaches is the crop field monitoring, which helps to identify the disease at an early stage and take measures to prevent its spread. One of the effective control methods is disease identification based on the analysis of digital images, with the possibility of obtaining them in field conditions, Citation: Genaev, M.A.; Skolotneva, using mobile devices. In this work, we propose a method for the recognition of five fungal diseases E.S.; Gultyaeva, E.I.; Orlova, E.A.; of wheat shoots (leaf rust, stem rust, yellow rust, powdery mildew, and septoria), both separately Bechtold, N.P.; Afonnikov, D.A. -
The Phytochemistry of Cherokee Aromatic Medicinal Plants
medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs. -
Wheat Leaf Rust
Marcia McMullen Jack Rasmussen Plant Pathologist Plant Pathologist PP589 (Revised) NDSU Extension Service Agricultural Experiment Station WHEAT LEAF RUST Wheat leaf rust, caused by the fungus Puccinia triticina (formerly recondita f. sp. tritici), reduces wheat yields in susceptible varieties when weather conditions favor rust development and spread. The most notable signs of leaf rust infection are the reddish-orange spore masses of the fungus breaking through the leaf surface (Figure 1). These spore masses, called pus- tules or uredinia, are first detected on wheat in North Dakota in late May or early June, generally in the Figure 1. Top: Resistant reaction; Center: Moderately resistant reac- southern-most counties. Normally, tion; Bottom: Susceptible reaction. only a few pustules are visible on susceptible varieties in early June because spore numbers are still low. The disease develops prior to this period on susceptible winter or spring wheat crops grown in states farther south. The leaf rust spores are carried by wind currents, and the disease advances progressively northward across the Great Plains as the wheat crops develop (Figure 2). The leaf rust pathogen has only occasionally over-wintered in North Dakota, during a mild winter or when protected by deep snow. Figure 2. Leaf rust disease cycle. North Dakota State University, Fargo, North Dakota 58105 JULY 2002 The Disease The following factors must be present for wheat leaf rust infection to occur: viable spores; susceptible or moder- ately susceptible wheat plants; moisture on the leaves (six to eight hours of dew); and favorable temperatures (60 to 80 degrees Fahrenheit). Relatively cool nights combined with warm days are excellent conditions for disease development. -
Colonial Garden Plants
COLONIAL GARD~J~ PLANTS I Flowers Before 1700 The following plants are listed according to the names most commonly used during the colonial period. The botanical name follows for accurate identification. The common name was listed first because many of the people using these lists will have access to or be familiar with that name rather than the botanical name. The botanical names are according to Bailey’s Hortus Second and The Standard Cyclopedia of Horticulture (3, 4). They are not the botanical names used during the colonial period for many of them have changed drastically. We have been very cautious concerning the interpretation of names to see that accuracy is maintained. By using several references spanning almost two hundred years (1, 3, 32, 35) we were able to interpret accurately the names of certain plants. For example, in the earliest works (32, 35), Lark’s Heel is used for Larkspur, also Delphinium. Then in later works the name Larkspur appears with the former in parenthesis. Similarly, the name "Emanies" appears frequently in the earliest books. Finally, one of them (35) lists the name Anemones as a synonym. Some of the names are amusing: "Issop" for Hyssop, "Pum- pions" for Pumpkins, "Mushmillions" for Muskmellons, "Isquou- terquashes" for Squashes, "Cowslips" for Primroses, "Daffadown dillies" for Daffodils. Other names are confusing. Bachelors Button was the name used for Gomphrena globosa, not for Centaurea cyanis as we use it today. Similarly, in the earliest literature, "Marygold" was used for Calendula. Later we begin to see "Pot Marygold" and "Calen- dula" for Calendula, and "Marygold" is reserved for Marigolds. -
Cereal Rye Section 9 Diseases
SOUTHERN SEPTEMBER 2018 CEREAL RYE SECTION 9 DISEASES TOOLS FOR DIAGNOSING CEREAL DISEASE | ERGOT | TAKE-ALL | RUSTS | YELLOW LEAF SPOT (TAN SPOT) | FUSARIUM: CROWN ROT AND FHB | COMMON ROOT ROT | SMUT | RHIZOCTONIA ROOT ROT | CEREAL FUNGICIDES | DISEASE FOLLOWING EXTREME WEATHER EVENTS SOUTHERN JANUARY 2018 SECTION 9 CEREAL rye Diseases Key messages • Rye has good tolerance to cereal root diseases. • The most important disease of rye is ergot (Claviceps purpurea). It is important to realise that feeding stock with ergot infested grain can result in serious losses. Grain with three ergots per 1,000 kernels can be toxic. 1 • Stem and leaf rusts can usually be seen on cereal rye in most years, but they are only occasionally a serious problem. 2 • All commercial cereal rye varieties have resistance to the current pathotypes of stripe rust. However, the out-crossing nature of the species will mean that under high disease pressure, a proportion of the crop (approaching 15–20% of the plant population) may show evidence of the disease. Other diseases are usually insignificant. • Cereal rye has tolerance to take-all, making it a useful break crop following grassy pastures. 3 • Bevy is a host for the root disease take-all and this should be carefully monitored. 4 General disease management strategies: • Use resistant or partially resistant varieties. • Use disease-free seed. • Use fungicidal seed treatments to kill fungi carried on the seed coat or in the seed. • Have a planned in-crop fungicide regime. • Conduct in-crop disease audits to determine the severity of the disease. This can be used as a tool to determine what crop is grown in what paddock the following year.