June 2001, (Vol 11 No 4)

Total Page:16

File Type:pdf, Size:1020Kb

June 2001, (Vol 11 No 4) Vol. 11, No. 4 ● June 2001 EARTH SYSTEM MONITOR NOAA altimetry sorts out Atlantic Ocean seafloor A guide to Malvinas plate controversy resolved using altimetry NOAA's data and information Karen M. Marks altimetry data to form “plate reconstructions,” services Laboratory for Satellite Altimetry essentially winding plate tectonics backwards in NOAA/NESDIS time to reconstruct the geography ocean basins. INSIDE Here we show how seafloor features such as frac- According to the theory of plate tectonics, ture zones and mid-ocean spreading ridges, that the continents have drifted around the globe as are mapped in gravity derived from satellite al- 3 the shapes of the ocean basins have changed timetry, can be used to solve problems of how News briefs over time. As a result, the patterns of ocean cir- seafloor in the south Atlantic Ocean evolved. culation and climate were different in the past More than two decades ago, LaBrecque and 5 because the locations of land masses and oceans Hayes (1979) proposed that a tectonic plate (the Coastal Services basins were different. Understanding of this Malvinas) existed on the western side of the Center—Observing & “paleo-geography” is an important part of inter- Agulhas Basin (Figure 1) during the Late Creta- monitoring the coastal preting the fossil record of paleo-climate and ceous, between the times of magnetic anomalies environment paleo-ecology, and this history sets the frame- 34y and 31 (about 83 to 68 million years ago). work for discussions of current and future ocean The presence of this plate could explain why the 7 circulation and climate change. While the pri- orientation of magnetic anomaly lineations (i.e., Errata–West Florida mary purpose for NOAA’s Laboratory for Satellite past locations of spreading at times called chlorophyll Altimetry is to provide continuous monitoring chrons) in the Agulhas Basin differ significantly of sea level to detect weather and climate phe- from similar anomalies in the South Atlantic. 9 nomena active today, LSA scientists can also use However, this additional plate complicates what Integrated Taxonomic — continued on page 2 Information System 10 Forecast for 2001 hurricane activity 11 Data products and services 12 Severe weather forecasting NT OF C E OM TM M R E A R P C E E D ★ ★ U N A C IT I E R D E ST AM ATES OF ▲ Figure 1. Gray shaded-relief image of gravity anomalies computed from Geosat and ERS-1 satellite altimeter data (Sandwell and Smith, 1997) over the South Atlantic. Gravity anomaly amplitudes range between < -35 mGal (black) and > 35 mGal (white) and are ”illuminated” from the east. Features are U.S. DEPARTMENT the Agulhas rift (AR), Agulhas fracture zone (AFZ), and the Mid-Atlantic ridge (MAR). Chain-lines are OF COMMERCE Chron 34y, and white lines are Chron 33r. The white box outlines the Agulhas Basin study area. The National Oceanic and Atmospheric extinct Agulhas rift segments are offset dextrally by fracture zones trending southwest-northeast (both Administration the ridge segments and fracture zones are linear gravity anomaly lows that are centered roughly along 15˚ E. longitude). 2 EARTH SYSTEM MONITOR June 2001 NOAA Altimetry, from page 1 For a second test, we moved mag- would otherwise be a simple opening of netic anomalies 33r and 27 on the EARTH SYSTEM MONITOR the south Atlantic Ocean as South western flank of the Mid-Atlantic ridge (i.e., on the South American plate) to The Earth System Monitor (ISSN 1068- America separated from Africa along 2678) is published quarterly by the NOAA Africa using the South America-Africa the Mid-Atlantic spreading ridge. As a Environmental Information Services office. result, the existence of the Malvinas 33r and 27 finite rotation poles, respec- Past issues are available online at http:// plate, and its size, has remained contro- tively. North of the Agulhas fracture www.nodc.noaa.gov/General/NODCPubs/ versial. zone, these rotations bring the South We conducted simple tests that American magnetic anomalies into Questions, comments, or suggestions confirm a Late Cretaceous plate is re- alignment with their conjugates on the for articles, as well as requests for quired in the Agulhas Basin. First, we African plate (see Figure 2). South of subscriptions and changes of address, should be directed to the Editor, plotted the marine gravity field from the Agulhas fracture zone, where Roger Torstenson. NOAA’s satellite altimetry in an oblique spreading on the Agulhas rift ceased by Mercator projection (Figure 2), having — continued on page 4 The mailing address for the Earth System the South America-Africa 33r-27 stage Monitor is: pole (which describes the separation of National Oceanographic Data Center South America from NOAA/NESDIS E/OC1 Africa between 79 and SSMC3, 4th Floor 61 million years ago) 1315 East-West Highway as the projection pole. Silver Spring, MD 20910-3282 On this projection, fracture zones formed EDITOR by South America- R. Torstenson Africa motion during Telephone: 301-713-3281 ext.107 this time should be Fax: 301-713-3302 horizontal. Indeed, E-mail: [email protected] those lying north of the Agulhas fracture zone plot horizontally DISCLAIMER between magnetic Mention in the Earth System Monitor of anomalies 33r and 27, commercial companies or commercial products does not constitute an endorse- indicating they formed ment or recommendation by the National by South America- Oceanic and Atmospheric Administration Africa spreading. or the U.S. Department of Commerce. However, the Agulhas Use for publicity or advertising purposes of fracture zone and frac- information published in the Earth System ture zones generated Monitor concerning proprietary products on the Agulhas rift or the tests of such products is not between anomalies 33r authorized. and 27 do not lie hori- zontally on this pro- jection. Instead, they ATMOSPH ND ER A IC ° IC A make a ~10 angle to N D A M E I the horizontal. This C N O I S ▲ L T Figure 2. Monthly gravity anomalies plotted using demonstrates they were A R N A T O I an oblique Mercator projection, with the South America- I O not formed by South T N A Africa 33r-27 stage pole as the projection pole. Magnetic N America-Africa spreading U .S E anomalies are 33r (white circles), and 27 (squares), those . C during this time period. D R E E P M rotated from the western ridge flank are 33r (stars) and A M RT CO 27 (triangles). Black circles are fracture zone picks. MENT OF On this projection, fracture zones formed by South America-Africa motion during this period shold be U.S. DEPARTMENT OF COMMERCE horizontal. An independent Malvinas plate is required Donald Evans, Secretary NOAA/NESDIS because the Agulhas fracture zone and those generated 1315 East West Highway on the Agulhas rift are not horizontal, and the South National Oceanic and Silver Spring, Maryland 20910 America-Africa 33r-27 stage rotation does not bring Atmospheric Administration E-mail: Malvinas 33r anomalies into alignment with their conju- Scott Gudes, Acting Under Secretary and Administrator [email protected] gates on the African plate. June 2001 EARTH SYSTEM MONITOR 3 Space environmental papers GCOS activities published News briefs Under the United Nations Framework Helen E. Coffey of NOAA’s National Convention on Climate Change, countries Geophysical Data Center (NGDC) had Greatest measured solar flare are required to submit detailed reports on two papers published in refereed journals A monster solar active region NOAA their Global Climate Observing System recently. She is co-author of ”Comparison AR9393 crossed the solar disk in April. It (GCOS) activities. Howard Diamond, the of Sunspot Area Data Bases,” by T. grew to an area 14 times the Earth's sur- U.S. GCOS program manager, is coordi- Baranyi, L. Gyori, A. Ludmany and H.E. face and had a complex reversed-polarity nating the preparation of this report. The Coffey, that appears in the January 2001 magnetic configuration. The complexity effort is being supported by a subgroup, issue of Monthly Notices of the Royal Astro- warned of possible large eruptions in the chaired by NCDC’s Russ Vose, addressing nomical Society, Volume 323. This paper area. On April 2, 2001, the largest solar atmospheric monitoring systems in the resulted from a proposal in Solar Influ- X-ray flare ever recorded occurred when United States. The subgroup has com- ences on Global Change that she had the region was in the northwest quadrant pleted its chapter, describing surface, written for the Debrecen Heliophysical of the Sun. Luckily, the region had upper air, and atmospheric constituent Observatory, Hungary, to reduce sunspot rotated past central meridian and most observing networks operated by the U.S. blocking data in Total Solar Irradiance effects were directed to outer space. Earth models. The second paper entitled did receive high-energy protons from this Dark Sky Reserves ”When do the geomagnetic Aa and Ap eruption. Mr. Peter Goering of the Muskoka indices disagree?” by H.E. Coffey and E.H. An earlier flare on March 31, 2001 Heritage Foundations, in Canada, recently Erwin, both of NGDC, appears in a recent was more geo-effective, causing aurora as contacted NGDC about the development issue of the Journal of Atmospheric and far south as Mexico and power system of Dark Sky Reserves. He has been head- Solar-Terrestrial Physics. The paper was disturbances in New York. Fortunately, ing an effort to have a Dark Sky Park cre- originally presented at the 1999 Interna- this storm occurred over the weekend ated in Canada. Beneficiaries include tional Union of Geodesy and Geomag- when power system use is 50% lower amateur astronomers and anyone inter- netism (IUGG) meeting in Birmingham, than during the workweek; also, air con- ested in limiting the use of electrical England.
Recommended publications
  • Indo-Atlantic Plate Accelerations Around the Cretaceous-Paleogene Boundary: a Time-Scale Error, Not a Plume-Push Signal L
    https://doi.org/10.1130/G47859.1 Manuscript received 30 April 2020 Revised manuscript received 25 June 2020 Manuscript accepted 1 July 2020 © 2020 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 31 July 2020 Indo-Atlantic plate accelerations around the Cretaceous-Paleogene boundary: A time-scale error, not a plume-push signal L. Pérez-Díaz1*, G. Eagles2 and K. Sigloch1 1 Department of Earth Sciences, University of Oxford, South Parks Road, OX1 3AN Oxford, UK 2 Alfred Wegener Institut, Am Handelshafen 12, 27570 Bremerhaven, Germany ABSTRACT 3 m.y.) evidence from the divergent IND-AFR It has been suggested that plume arrival at the base of the lithosphere introduces a push and IND-ANT plate boundaries, both recording force that overwhelms the balance of torques driving plate circuits, leading to plate-tectonic re- sharp increases in plate divergence rates at times organizations. Among the most compelling evidence in support of a “plume-push” mechanism coincident with plume arrival. They also used is the apparent coincidence between eruption of the Deccan flood basalts around 67–64 Ma lower-resolution (3–6 m.y.) models of seafloor and a short-lived increase in Indian (and decrease in African) plate speed. Using existing spreading data between Africa and Antarctica and newly calculated high-resolution plate-motion models, we show that plate divergence (AFR-ANT) and South America (AFR-SAM) rates briefly increased throughout the Indo-Atlantic circuit, contrary to the expected effects to show decelerations in the 70–45 Ma period.
    [Show full text]
  • Seismic Evidence for Bottom Current Activity at the Agulhas Ridge
    Global and Planetary Change 34 (2002) 185–198 www.elsevier.com/locate/gloplacha Seismic evidence for bottom current activity at the Agulhas Ridge Etienne Wildeboer Schut *, Gabriele Uenzelmann-Neben, Rainer Gersonde Alfred-Wegener-Institut fu¨r Polar-und Meeresforschung, Bremerhaven, Germany Received 12 August 2000; accepted 11 April 2001 Abstract In the South Atlantic water masses from the Atlantic and Indian Oceans meet Antarctic water masses. The Agulhas Ridge, a pronounced elevation of the ocean bottom in the eastern South Atlantic, has acted as a barrier for deep oceanic currents since the Cretaceous, such as the North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW), or water masses derived from AABW such as Circumpolar Deep Water (CDW). The history of these currents is recorded in the sedimentary sequence in the adjacent Cape and Agulhas Basins. Seismic profiles over the Agulhas Ridge show sediment packages in the Cape Basin which are interpreted as contourite sheets. These consist of thick sequences interrupted by widespread hiatuses, with a predominantly low seismic reflectivity. The seismic data shows prominent reflectors inside contourite drift bodies which, at the location of the drill-sites of Ocean Drilling Program (ODP) Leg 177, can be attributed to hiatuses in the Early Oligocene, the Middle Miocene, around the Miocene/Pliocene boundary and in the early Pleistocene. In this way, ODP Leg 177 cores were used to date an elongate contourite drift in the Cape Basin. This drift shows sediments deposited by a westward current, implying that the bottom current in the Oligocene followed the same trajectory as present-day CDW does.
    [Show full text]
  • Joint Geological Survey/University of Cape Town MARINE GEOSCIENCE UNIT TECHNICAL ^REPORT NO. 13 PROGRESS REPORTS for the YEARS 1
    Joint Geological Survey/University of Cape Town MARINE GEOSCIENCE UNIT TECHNICAL ^REPORT NO. 13 PROGRESS REPORTS FOR THE YEARS 1981-1982 Marine Geoscience Group Department of Geology University of Cape Town December 1982 NGU-Tfc—Kh JOINT GEOLOGICAL SURVEY/UNIVERSITY OF CAPE TOWN MARINE GEOSCIENCE UNIT TECHNICAL REPORT NO. 13 PROGRESS REPORTS FOR THE YEARS 1981-1982 Marine Geoscience Group Department of Geology University of Cape Town December 1982 The Joint Geological Survey/University of Cape Town Marine Geoscience Unit is jointly funded by the two parent organizations to promote marine geoscientific activity in South Africa. The Geological Survey Director, Mr L.N.J. Engelbrecht, and the University Research Committee are thanked for their continued generous financial and technical support for this work. The Unit was established in 1975 by the amalgamation of the Marine Geology Programme (funded by SANCOR until 1972) and the Marine Geophysical Unit. Financial ?nd technical assistance from the South African National Committee for Oceanographic Research, and the National Research Institute for Oceanology (Stellenbosch) are also gratefully acknowledged. It is the policy of the Geological Survey and the University of Cape Town that the data obtained may be presented in the form of theses for higher degrees and that completed projects shall be published without delay in appropriate media. The data and conclusions contained in this report are made available for the information of the international scientific community with tl~e request that they be not published in any manner without written permission. CONTENTS Page INTRODUCTION by R.V.Dingle i PRELIMINARY REPORT ON THE BATHYMETRY OF PART OF 1 THE TRANSKEI BASIN by S.H.
    [Show full text]
  • Thermal Development and Rejuvenation of the Marginal Plateaus Along the Transtensional Volcanic Margins of the Norwegian- Greenland Sea
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 1995 Thermal Development and Rejuvenation of the Marginal Plateaus Along the Transtensional Volcanic Margins of the Norwegian- Greenland Sea Nilgun Okay The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/3901 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.
    [Show full text]
  • A Global Isochron Chart
    A global isochron chart by J.-Y. Royer, R.D. Müller, L.M. Gahagan, L.A. Lawver, C.L. Mayes, D. Nürnberg and J.G. Sclater Reference as: Royer, J.-Y., R.D. Müller, L.M. Gahagan, L.A. Lawver, C.L. Mayes, D. Nürnberg and J.G. Sclater, A global isochron chart, University of Texas Institute for Geophysics Technical Report No. 117, pp. 38, 1992. The Paleoceanographic Mapping Project (POMP) began in 1984 as a global, plate reconstruction project at the University of Texas at Austin Institute for Geophysics (UTIG). Sponsored by a consortium of oil companies, the original goals of POMP were to: * build a digital, global data base of coastlines, plate boundaries, and marine magnetic and tectonic data, * develop software for digitizing, manipulating, and reconstructing the data, * develop a global model of plate motions through time based on the data base. By the end of the project in April, 1991, POMP had succeeded in achieving these goals. POMP had provided its sponsors with both the data base and a comprehensive, self-consistent plate motion model which described the Mesozoic and Cenozoic evolution of the world's major ocean basins. The data base included tectonic lineations interpreted from Seasat and Geosat altimeter data, which permitted greatly improved reconstructions. The accuracy of the reconstructions exceeded original expectations, and a well-constrained plate model of the major ocean basins was developed. In July of 1989, members of the POMP research team presented the POMP database and plate model at the 28th International Geological Congress in Washington, D.C. Included in their presentation was a series of isochrons constructed using the data base and plate model.
    [Show full text]
  • Geographic/Site Index
    OCEAN DRILLING PROGRAM CUMULATIVE INDEX GEOGRAPHIC AND SITE INDEX AABW • Africa SW 1 A Aeolian Islands morphology, 107A2:9 AABW. See Antarctic Bottom Water obsidian, 152B7:85–91 AAIW. See Antarctic Intermediate Water Afanasiy-Nikitin Seamount (Indian Ocean equatorial) Abaco event, geology, 101B27:428–430; 29:467 comparison to Ninetyeast and Chagos-Laccadive Abakaliki uplift ridges, 116B23:28 sedimentary instability, 159B10:95 deformation effects, 116B22:272 thermal history, 159B10:97–99 emplacement, 116B23:281, 283 ABC system. See Angola-Benguela Current system gravity anomalies, 116B23:281–283, 286–288 Abrakurrie limestone (Great Australian Bight) load models, 116B23:283–289 biostratigraphy, 182B3:17 location, 116A7:197–198 equivalents, 182A2:8; 182B1:6; 4:11 sediment source, 116B17:208 Absecon Inlet Formation (New Jersey coastal plain) seismic reflection profiling, 116B23:282–283 biostratigraphy, 150X_B10:118–120, 122; Afar hotspot, Red Sea, 123B42:797 174AX_A1:38; 174AXS_A2:38, 40 Afar Triangle-Bay of Aden rift system, volcanism, clay mineralogy, 150X_B5:60–63 123B10:210 lithostratigraphy, 150X_B2:19–20; 174AX_A1:22, 24; Afghanistan. See Zhob Valley 174AXS_A2:29–31, 53 Africa stratigraphy, 150X_B1:8–10; 18:243–266; aridification, 108B1:3 174AXS_A2:3 biostratigraphy, 120B(2)62:1083 Abu Madi sands (Egypt), sediments, 160B38:496 clast lithology, 160B45:585–586 Acadian orogeny climate cycles, 108B14:221 muscovite, 210B4:4 geodynamics, 159B5:46–47 tectonics, 103B1:10 glacial boundary changes, 108B14:222; 117B19:339 ACC. See Antarctic Circumpolar Current mass accumulation rates, 159B43:600 ACGS unit (New Jersey coastal plain), lithology, paleoclimatology, 160B19:327–328 150X_A1:23–24 paleopoles, 159B20:203 ACGS#4 borehole sandstone, 160B45:584 biofacies, 150X_B16:207–228 seafloor spreading, 120B(2)50:920 Oligocene, 150X_B8:81–86 See also Kalahari region (Africa); North Africa paleoenvironment, 150X_B17:239 Africa E, active rifting, 121A1:8 ACZ.
    [Show full text]
  • Aquatic Sciences and Fisheries Information System: Geographic
    ASFIS-7 (Rev. 3) AQUATIC SCIENCES AND FISHERIES INFORMATION SYSTEM GEOGRAPHIC AUTHORITY LIST ASFIS REFERENCE SERIES, No. 7 Revision 3 ASFIS-7 (Rev. 3) AQUATIC SCIENCES AND FISHERIES INFORMATION SYSTEM GEOGRAPHIC AUTHORITY LIST edited by David S Moulder Plymouth Marine Laboratory Plymouth, United Kingdom revised by Ian Pettman and Hardy Schwamm Freshwater Biological Association Ambleside, Cumbria, United Kingdom Food and Agriculture Organization of the United Nations Rome, 2019 Required citation: FAO. 2019. Aquatic sciences and fisheries information system. Geographic authority list. ASFIS-7 (Rev. 3) Rome. Licence: CC BY-NC-SA 3.0 IGO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-131173-8 © FAO, 2019 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode/legalcode).
    [Show full text]
  • ABSTRACT 1 Unclds
    Magnetization of the oceanic crust: TRM or CRM? fl by C.A. Raymond* and J.L. LaBrecque Lament-Doherty Geological Observatory of Columbia University Palisades, New York 10964 ABSTRACT We propose a model in which chemical remanent magnetization (CRM) acquired within the first 20 Ma of crustal evolution may account for 80% of the bulk natural remanent magnetization (NRM) of older basalts. The chemical remanent magnetization of the crust is acquired as the original thermoremanent magnetization (TRM) is lost through low temperature a1 teration. The CRM intensity and direction are control led by the post-emplacement polarity history. This model explains several independent observations concerning the magnetization of the oceanic crust. The model accounts for amplitude and skewness discrepancies observed in both the intermediate wavelength sate1 lite field and the short wavelength sea surface magnetic anomaly pattern. It also explains the decay of magnetization away from the spreading axis, and the enhanced magnetization of the Cretaceous Quiet Zones while predicting other systematic variations with age in the bulk magnetization of the oceanic crust. The model also explains discrepancies in the anomaly skewness parameter observed for anomalies of Cretaceous age. Further, our study indicates varying rates of TRM decay in very young crust which depicts the advance of low temperature alteration through the magnetized layer. 1 (hASB-Ch-179~396) BAGhET12AZICh CF 'IilE Nd7-17429 OCEAIIC CRUST: 1ki4 CR ChM? (Idmcnt-Doherty Geological Cbsorvatory) 5C F CSCL 08C Unclds G3/4d 43325 4* also at Department of Geological Sciences, Columbia University, New York, New York 10025 LDGO Contribution 10000 2 INTRODUCTION Since the advent of the theory of seafloor spreading, studies of the oceanic magnetic anomaly pattern have concentrated on determining the plate tectonic history of ocean basins, and characterizing the source layer for the anomalies.
    [Show full text]
  • The Late Palaeozoic Gondwana Glaciation by HENNO MARTIN,G6ttingen *) with 4 Figures
    The late Palaeozoic Gondwana glaciation By HENNO MARTIN,G6ttingen *) With 4 figures Zusammenfassung Die glazialen Ablagerungen vou Gondwana sind heute fiber eine ganze Hemisph~ire verteih. Aueh auf dem rekonstruierten Gondwana nehmen sie noeh ein Gebiet ein, welches das der pleistoziinen Vereisung iibertrifft. Die friihesten, unter- und mittelkarbonen Ver- eisungsspuren linden sich im Anden-Gtirtel und im Tasman-Belt in Ostaustralien, wo zu dieser Zeit hohe Gebirgsketten existiert haben k6nnen. W~ihrend des Stephan und Sak- mar, als der Pol sich auf der Antarktis befand, erreichten groBe Inlandeis-Decken den See- spiegel in allen gr613eren Ablagerungsbeeken. Paliiotopographische Rekonstruktionen er- lauben die SchluBfolgemng, dab einige der Eiszentren sich auf Hochliindern mit H6hen yon bis zu 1500 m befanden. Die glazialen Sedimente zeigen, abhangig von ihrer pal~io- topographischen Position, alle zu erwartenden Faziestypen. Es gibt Hinweise, dab Eis von Afrika in das ParanA-Beeken und von Antarktika in das Grof3e Karoo-Beeken und nach Australien geflossen sein k6nnte. Wenigstens 12 VorstN3e und Rfiekzfige sind im Pa- ran~t-Beeken erkannt worden. In der N~ihe der Eiszentren ist die Zahl geringer. Die Riiek- ziige batten wahrscheinlich mehr die Natur von Interstadialen als von Interglazialen. Es gibt Hinweise, dab das finale Abschmelzen im unteren Perm in mehreren Phasen yon Sfidamerika fiber Affika nach Antarktika fortgesehritten sein k6nnte. Die Eiszentren wur- den durch feuchte Luftmassen vom Pazifischen Ozean und der Tethys gen~ihrt. Abstract The glacial deposits of Gondwana are today spread over one whole herrfisphere. On the re-assembled Gondwana eontinents they still occupy an area exceeding that of the Pleistocene glaciation.
    [Show full text]
  • Physical Modelling of Structural Features of the Agulhas Basin and Its Evolution (South Atlantic)
    EGU21-15906, updated on 28 Sep 2021 https://doi.org/10.5194/egusphere-egu21-15906 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Physical modelling of structural features of the Agulhas Basin and its evolution (South Atlantic) Anastasiia Tolstova1, Eugene Dubinin1,2, and Andrey Groholsky2 1Lomonosov Moscow State University, Faculty of Geology, Moscow, Russia ([email protected]) 2Lomonosov Moscow State University, Museum of Earth Science, Moscow, Russia The evolution of the Agulhas oceanic basin was influenced by the formation of the southern part of the Mid-Atlantic Ridge (MAR) as a result of the jump of the spreading axis. This sector of the South Atlantic began to open up as a result of the breakup of Gondwana about 135-140 million years ago. The process of opening was accompanied by kinematic rearrangements in the movement of the lithospheric plates. According to some evolutionary models, the jumps of the spreading axis in the area of the Agulhas basin occurred under the influence of hot spots. The hot spots of Shona, Bouvet, and Discovery played an important role in the evolutionary process of plate boundaries. The previously active Agulhas spreading ridge is located in the central part of basin. From the east, the basin is framed by the Agulhas plateau, from the west is the Meteor rise. On the north the basin is bounded by the Agulhas transform fault, and on the south by the Southwest Indian Ridge. Using the method of physical modeling, the formation of volcanic provinces that influenced the formation of the Agulhas basin was modeled.
    [Show full text]
  • The Agulhas Plateau: Structure and Evolution of a Large Igneous Province
    Geophys. J. Int. (2008) 174, 336–350 doi: 10.1111/j.1365-246X.2008.03808.x The Agulhas Plateau: structure and evolution of a Large Igneous Province N. Parsiegla, K. Gohl and G. Uenzelmann-Neben Alfred Wegener Institute for Polar and Marine Research, PO Box 12161, 27515 Bremerhaven, Germany. E-mail: [email protected] Accepted 2008 March 28. Received 2008 March 13; in original form 2008 January 5 SUMMARY Large Igneous Provinces (LIP) are of great interest due to their role in crustal generation, magmatic processes and environmental impact. The Agulhas Plateau in the southwest Indian Ocean off South Africa has played a controversial role in this discussion due to unclear evidence for its continental or oceanic crustal affinity. With new geophysical data from seismic refraction and reflection profiling, we are able to present improved evidence for its crustal structure and composition. The velocity–depth model reveals a mean crustal thickness of 20 km with a maximum of 24 km, where three major units can be identified in the crust. In our seismic reflection records, evidence for volcanic flows on the Agulhas Plateau can be observed. The middle crust is thickened by magmatic intrusions. The up to 10 km thick lower crustal body is characterized by high seismic velocities of 7.0–7.6 km s−1. The velocity–depth distribution suggests that the plateau consists of overthickened oceanic crust similar to other oceanic LIPs such as the Ontong-Java Plateau or the northern Kerguelen Plateau. The total volume of the Agulhas Plateau was estimated to be 4 × 106 km3 of which about 10 per cent consists of extruded igneous material.
    [Show full text]
  • Deep-Sea Basins of the Atlantic Ocean: the Structure, Time and Mechanisms of Their Formation
    RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 6, NO. 2, PAGES 133–152, APRIL 2004 Deep-sea basins of the Atlantic ocean: The structure, time and mechanisms of their formation Yu. M. Pushcharovskii Geological Institute of the Russian Academy of Sciences, Moscow Abstract. The aim of this project was to study the deep-sea basins of the Atlantic Ocean. Described in this paper are the morphology and deep crustal structure of the Argentine, Brazil, Cape, Angola, North American, Newfoundland, Canary, Sierra Leone, Iberia, and West-European basins. It is shown that they differ substantially in geological history. Also different are their internal structures. The subsidence of the respective segments of the Earth’s crust took place not only following the spreading model, but also as a result of crustal extension between the spreading ridge and the continental margin, caused by the pulling apart of the continental blocks. Introduction The ocean began to form in the Central region somewhat earlier than in the Southern one. The oceanic crust be- gan to form, in both regions, in the south , and propagated The deep-sea basins occupy huge spaces in the oceans. later to the north [Pushcharovskii, 1994]. The Southern and In the Atlantic Ocean they are developed on both sides of Northern oceans were connected only in the Albian, that the Mid-Atlantic Ridge producing a kind of symmetry in the is, 100 million years ago, their isolated development lasting general structure of the ocean floor. In reality, however, as more than 50 million years. will be demonstrated below, each of the basins is individ- One more important fact need be mentioned.
    [Show full text]