Deep-Sea Basins of the Atlantic Ocean: the Structure, Time and Mechanisms of Their Formation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indo-Atlantic Plate Accelerations Around the Cretaceous-Paleogene Boundary: a Time-Scale Error, Not a Plume-Push Signal L
https://doi.org/10.1130/G47859.1 Manuscript received 30 April 2020 Revised manuscript received 25 June 2020 Manuscript accepted 1 July 2020 © 2020 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 31 July 2020 Indo-Atlantic plate accelerations around the Cretaceous-Paleogene boundary: A time-scale error, not a plume-push signal L. Pérez-Díaz1*, G. Eagles2 and K. Sigloch1 1 Department of Earth Sciences, University of Oxford, South Parks Road, OX1 3AN Oxford, UK 2 Alfred Wegener Institut, Am Handelshafen 12, 27570 Bremerhaven, Germany ABSTRACT 3 m.y.) evidence from the divergent IND-AFR It has been suggested that plume arrival at the base of the lithosphere introduces a push and IND-ANT plate boundaries, both recording force that overwhelms the balance of torques driving plate circuits, leading to plate-tectonic re- sharp increases in plate divergence rates at times organizations. Among the most compelling evidence in support of a “plume-push” mechanism coincident with plume arrival. They also used is the apparent coincidence between eruption of the Deccan flood basalts around 67–64 Ma lower-resolution (3–6 m.y.) models of seafloor and a short-lived increase in Indian (and decrease in African) plate speed. Using existing spreading data between Africa and Antarctica and newly calculated high-resolution plate-motion models, we show that plate divergence (AFR-ANT) and South America (AFR-SAM) rates briefly increased throughout the Indo-Atlantic circuit, contrary to the expected effects to show decelerations in the 70–45 Ma period. -
Preliminary Catalog of the Sedimentary Basins of the United States
Preliminary Catalog of the Sedimentary Basins of the United States By James L. Coleman, Jr., and Steven M. Cahan Open-File Report 2012–1111 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Coleman, J.L., Jr., and Cahan, S.M., 2012, Preliminary catalog of the sedimentary basins of the United States: U.S. Geological Survey Open-File Report 2012–1111, 27 p. (plus 4 figures and 1 table available as separate files) Available online at http://pubs.usgs.gov/of/2012/1111/. iii Contents Abstract ...........................................................................................................................................................1 -
Bottom Water and Bottom Configuration of the Great Atlantic Deeps. (1) (2)
bOTTOM WATER AND bOTTOM CONFIGURATION OF THE GREAT ATLANTIC DEEPS. (1) (2). (Extract from the Results of the German Atlantic Expedition) by G e o r g WUST. The problem of the origin and distribution of bottom water has been discussed from early times, and often. This results from the fact that more abundant materials of observation exist for the bottom than for the deep layers, because measurements of bottom temperature have been taken not only by exploring vessels, but also by hydro- graphic and cable-laying ships. The remarkably low temperatures of nearly o° C. on the bottom, which were confirmed on each occasion, also early served as the principal foun dation of the hypothesis of the polar origin of the bottom water. The polar bottom currents are consequently members of the deep oceanic circulation, the existence of which had been deduced from the distribution of the temperature before the Challenger expedi tion. If it had been thought before that time that the Arctic and Antarctic currents showed roughly the same development and met at the equator, it became clear, after the Challenger and Gazelle observations, that the principal mass of the bottom waters of the great oceans comes from the Antarctic Basin ; that in the Atlantic Ocean this bottom current chiefly leads into the western trough ; and that it can still be detected in the form of a cold stream as far as the equator (in its last ramifications it even passes the equator and reaches the North Atlantic). These expeditions have also shown the value of bottom temperatures for revealing the first magnitude shapes of the ocean bottom, a value which has been proved for the Atlantic Ocean by two examples which have become classic. -
Kinematics and Extent of the Piemont-Liguria Basin
https://doi.org/10.5194/se-2020-161 Preprint. Discussion started: 8 October 2020 c Author(s) 2020. CC BY 4.0 License. Kinematics and extent of the Piemont-Liguria Basin – implications for subduction processes in the Alps Eline Le Breton1, Sascha Brune2,3, Kamil Ustaszewski4, Sabin Zahirovic5, Maria Seton5, R. Dietmar Müller5 5 1Department of Earth Sciences, Freie Universität Berlin, Germany 2Geodynamic Modelling Section, German Research Centre for Geosciences, GFZ Potsdam, Germany 3Institute of Geosciences, University of Potsdam, Potsdam, Germany 4Institute for Geological Sciences, Friedrich-Schiller-Universität Jena, Germany 10 5EarthByte Group, School of Geosciences, The University of Sydney, NSW 2006, Australia Correspondence to: Eline Le Breton ([email protected]) Abstract. Assessing the size of a former ocean, of which only remnants are found in mountain belts, is challenging but crucial to understand subduction and exhumation processes. Here we present new constraints on the opening and width of the Piemont- Liguria (PL) Ocean, known as the Alpine Tethys together with the Valais Basin. We use a regional tectonic reconstruction of 15 the Western Mediterranean-Alpine area, implemented into a global plate motion model with lithospheric deformation, and 2D thermo-mechanical modelling of the rifting phase to test our kinematic reconstructions for geodynamic consistency. Our model fits well with independent datasets (i.e. ages of syn-rift sediments, rift-related fault activity and mafic rocks) and shows that the PL Basin opened in four stages: (1) Rifting of the proximal continental margin in Early Jurassic (200-180 Ma), (2) Hyper- extension of the distal margin in Early-Middle Jurassic (180-165 Ma), (3) Ocean-Continent Transition (OCT) formation with 20 mantle exhumation and MORB-type magmatism in Middle-Late Jurassic (165-154 Ma), (4) Break-up and “mature” oceanic spreading mostly in Late Jurassic (154-145 Ma). -
Seismic Evidence for Bottom Current Activity at the Agulhas Ridge
Global and Planetary Change 34 (2002) 185–198 www.elsevier.com/locate/gloplacha Seismic evidence for bottom current activity at the Agulhas Ridge Etienne Wildeboer Schut *, Gabriele Uenzelmann-Neben, Rainer Gersonde Alfred-Wegener-Institut fu¨r Polar-und Meeresforschung, Bremerhaven, Germany Received 12 August 2000; accepted 11 April 2001 Abstract In the South Atlantic water masses from the Atlantic and Indian Oceans meet Antarctic water masses. The Agulhas Ridge, a pronounced elevation of the ocean bottom in the eastern South Atlantic, has acted as a barrier for deep oceanic currents since the Cretaceous, such as the North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW), or water masses derived from AABW such as Circumpolar Deep Water (CDW). The history of these currents is recorded in the sedimentary sequence in the adjacent Cape and Agulhas Basins. Seismic profiles over the Agulhas Ridge show sediment packages in the Cape Basin which are interpreted as contourite sheets. These consist of thick sequences interrupted by widespread hiatuses, with a predominantly low seismic reflectivity. The seismic data shows prominent reflectors inside contourite drift bodies which, at the location of the drill-sites of Ocean Drilling Program (ODP) Leg 177, can be attributed to hiatuses in the Early Oligocene, the Middle Miocene, around the Miocene/Pliocene boundary and in the early Pleistocene. In this way, ODP Leg 177 cores were used to date an elongate contourite drift in the Cape Basin. This drift shows sediments deposited by a westward current, implying that the bottom current in the Oligocene followed the same trajectory as present-day CDW does. -
Joint Geological Survey/University of Cape Town MARINE GEOSCIENCE UNIT TECHNICAL ^REPORT NO. 13 PROGRESS REPORTS for the YEARS 1
Joint Geological Survey/University of Cape Town MARINE GEOSCIENCE UNIT TECHNICAL ^REPORT NO. 13 PROGRESS REPORTS FOR THE YEARS 1981-1982 Marine Geoscience Group Department of Geology University of Cape Town December 1982 NGU-Tfc—Kh JOINT GEOLOGICAL SURVEY/UNIVERSITY OF CAPE TOWN MARINE GEOSCIENCE UNIT TECHNICAL REPORT NO. 13 PROGRESS REPORTS FOR THE YEARS 1981-1982 Marine Geoscience Group Department of Geology University of Cape Town December 1982 The Joint Geological Survey/University of Cape Town Marine Geoscience Unit is jointly funded by the two parent organizations to promote marine geoscientific activity in South Africa. The Geological Survey Director, Mr L.N.J. Engelbrecht, and the University Research Committee are thanked for their continued generous financial and technical support for this work. The Unit was established in 1975 by the amalgamation of the Marine Geology Programme (funded by SANCOR until 1972) and the Marine Geophysical Unit. Financial ?nd technical assistance from the South African National Committee for Oceanographic Research, and the National Research Institute for Oceanology (Stellenbosch) are also gratefully acknowledged. It is the policy of the Geological Survey and the University of Cape Town that the data obtained may be presented in the form of theses for higher degrees and that completed projects shall be published without delay in appropriate media. The data and conclusions contained in this report are made available for the information of the international scientific community with tl~e request that they be not published in any manner without written permission. CONTENTS Page INTRODUCTION by R.V.Dingle i PRELIMINARY REPORT ON THE BATHYMETRY OF PART OF 1 THE TRANSKEI BASIN by S.H. -
UNIVERSITY of CALIFORNIA, SAN DIEGO Marine Geophysical Study
UNIVERSITY OF CALIFORNIA, SAN DIEGO Marine Geophysical Study of Cyclic Sedimentation and Shallow Sill Intrusion in the Floor of the Central Gulf of California A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Jared W. Kluesner Committee in Charge: Professor Peter Lonsdale, Chair Professor Paterno Castillo Professor Graham Kent Professor Falko Kuester Professor Michael Tryon Professor Edward Winterer 2011 Copyright Jared Kluesner, 2011 All rights reserved. The Dissertation of Jared W. Kluesner is approved, and it is acceptable in quality and in form for publication on microfilm and electronically: Chair University of California, San Diego 2011 iii To my parents, Tony and Donna Kluesner and my grandfather James Kluesner iv "...Let us go, we said, into the Sea of Cortez, realizing that we become forever a part of it" The Log from the Sea of Cortez John Steinbeck v TABLE OF CONTENTS Signature Page ...................................................................................... iii Dedication.............................................................................................. iv Epigraph ................................................................................................ v Table of Contents .................................................................................. vi List of Figures ........................................................................................ ix Acknowledgments ................................................................................ -
The 18.6Year Lunar Nodal Cycle and Surface Temperature Variability In
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, C02002, doi:10.1029/2006JC003671, 2007 The 18.6-year lunar nodal cycle and surface temperature variability in the northeast Pacific Stewart M. McKinnell1 and William R. Crawford2 Received 27 April 2006; revised 24 August 2006; accepted 21 September 2006; published 2 February 2007. [1] The 18.6-year lunar nodal cycle (LNC) is a significant feature of winter (January) air and sea temperatures along the North American west coast over a 400-year period. Yet much of the recent temperature variation can also be explained by wind patterns associated with the PNA teleconnection. At Sitka, Alaska, (57°N) and nearby stations in northern British Columbia, the January PNA index accounts for over 70% of average January air temperatures in lengthy meteorological records. It appears that the LNC signal in January air temperatures in this region is not independent of the PNA, but is a component of it. The Sitka air temperature record, along with SSTs along the British Columbia coast and the PNA index have significant cross-correlations with the LNC that appear at a 2-year lag, LNC leading. The influence of the PNA pattern declines in winter with decreasing latitude but the LNC component does not. It appears as a significant feature of long-term SST variation at Scripps Pier and the California Current System. The LNC also appears over centennial-scales in proxy temperatures along western North America. The linkage of LNC-moderated surface temperatures to processes involving basin-scale teleconnections expands the possibility that the proximate mechanism may be located remotely from its expression in the northeast Pacific. -
OCEAN SUBDUCTION Show That Hardly Any Commercial Enhancement Finney B, Gregory-Eaves I, Sweetman J, Douglas MSV Program Can Be Regarded As Clearly Successful
1982 OCEAN SUBDUCTION show that hardly any commercial enhancement Finney B, Gregory-Eaves I, Sweetman J, Douglas MSV program can be regarded as clearly successful. and Smol JP (2000) Impacts of climatic change and Model simulations suggest, however, that stock- Rshing on PaciRc salmon over the past 300 years. enhancement may be possible if releases can be Science 290: 795}799. made that match closely the current ecological Giske J and Salvanes AGV (1999) A model for enhance- and environmental conditions. However, this ment potentials in open ecosystems. In: Howell BR, Moksness E and Svasand T (eds) Stock Enhancement requires improvements of assessment methods of and Sea Ranching. Blackwell Fishing, News Books. these factors beyond present knowledge. Marine Howell BR, Moksness E and Svasand T (1999) Stock systems tend to have strong nonlinear dynamics, Enhancement and Sea Ranching. Blackwell Fishing, and unless one is able to predict these dynamics News Books. over a relevant time horizon, release efforts are Kareiva P, Marvier M and McClure M (2000) Recovery not likely to increase the abundance of the target and management options for spring/summer chinnook population. salmon in the Columbia River basin. Science 290: 977}979. Mills D (1989) Ecology and Management of Atlantic See also Salmon. London: Chapman & Hall. Ricker WE (1981) Changes in the average size and Mariculture, Environmental, Economic and Social average age of PaciRc salmon. Canadian Journal of Impacts of. Salmonid Farming. Salmon Fisheries: Fisheries and Aquatic Science 38: 1636}1656. Atlantic; Paci\c. Salmonids. Salvanes AGV, Aksnes DL, FossaJH and Giske J (1995) Simulated carrying capacities of Rsh in Norwegian Further Reading fjords. -
Glacial Isostatic Adjustment and Sea-Level Change – State of the Art Report Technical Report TR-09-11
Glacial isostatic adjustment and sea-level change – State of the art report Glacial isostatic adjustment and sea-level change Technical Report TR-09-11 Glacial isostatic adjustment and sea-level change State of the art report Pippa Whitehouse, Durham University April 2009 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Phone +46 8 459 84 00 TR-09-11 ISSN 1404-0344 CM Gruppen AB, Bromma, 2009 Tänd ett lager: P, R eller TR. Glacial isostatic adjustment and sea-level change State of the art report Pippa Whitehouse, Durham University April 2009 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author and do not necessarily coincide with those of the client. A pdf version of this document can be downloaded from www.skb.se. Preface This document contains information on the process of glacial isostatic adjustment (GIA) and how this affects sea-level and shore-line displacement, and the methods which are employed by researchers to study and understand these processes. The information will be used in e.g. the report “Climate and climate-related issues for the safety assessment SR-Site”. Stockholm, April 2009 Jens-Ove Näslund Person in charge of the SKB climate programme Contents 1 Introduction 7 1.1 Structure and purpose of this report 7 1.2 A brief introduction to GIA 7 1.2.1 Overview/general description 7 1.2.2 Governing factors 8 1.2.3 Observations of glacial isostatic adjustment 9 1.2.4 Time scales 9 2 Glacial -
Thermal Development and Rejuvenation of the Marginal Plateaus Along the Transtensional Volcanic Margins of the Norwegian- Greenland Sea
City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 1995 Thermal Development and Rejuvenation of the Marginal Plateaus Along the Transtensional Volcanic Margins of the Norwegian- Greenland Sea Nilgun Okay The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/3901 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. -
The Subduction Initiation Stage of the Wilson Cycle
Downloaded from http://sp.lyellcollection.org/ by guest on February 20, 2018 The subduction initiation stage of the Wilson cycle ROBERT HALL SE Asia Research Group, Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK [email protected] R.H., 0000-0003-1693-6914 Abstract: In the Wilson cycle, there is a change from an opening to a closing ocean when subduction begins. Subduction initiation is commonly identified as a major problem in plate tectonics and is said to be nowhere observable, yet there are many young subduction zones at the west Pacific margins and in eastern Indonesia. Few studies have considered these examples. Banda subduction developed by the eastwards propagation of the Java trench into an oceanic embayment by tearing along a former ocean–continent boundary. The earlier subducted slab provided the driving force to drag down unsubducted oceanic lithosphere. Although this process may be common, it does not account for young subduction zones near Sulawesi at different stages of develop- ment. Subduction began there at the edges of ocean basins, not at former spreading centres or transforms. It initiated at a point where there were major differences in elevation between the ocean floor and the adjacent hot, weak and thickened arc/continental crust. The age of the ocean crust appears to be unimportant. A close relationship with extension is marked by the dramatic elevation of land, the exhumation of deep crust and the spectacular subsidence of basins, raising questions about the time required to move from no subduction to active subduction, and how initiation can be identified in the geological record.