Brane Gas Cosmology, M-Theory and Little String Theory Provided by CERN Document Server

Total Page:16

File Type:pdf, Size:1020Kb

Brane Gas Cosmology, M-Theory and Little String Theory Provided by CERN Document Server View metadata,∗ citation and similar papers at core.ac.uk brought to you by CORE Brane Gas Cosmology, M-theory and Little String Theory provided by CERN Document Server Stephon H.S Alexander SLAC and Institute for Theoretical Physics, Stanford University, Stanford,CA 94305 We generalize the Brane Gas Cosmological Scenario to M-theory degrees of freedom, namely M5 and M2 branes. Without brane intersections, the Brandenberger Vafa(BV) arguments applied to M-theory degrees of freedom generically predict a large 6 dimensional spacetime. We show that intersections of M5andM2 branes can instead lead to a large 4 dimensional spacetime. One dimensional intersections in 11D is related to (2,0) little strings (LST) on NS5 branes in type IIA. The gas regime of membranes in M-theory corresponds to the thermodynamics of LST obtained from holography. We propose a mechanism whereby LST living on the worldvolume of NS5 (M5)-branes wrapping a five dimensional torus, annihilate most efficiently in 3+1 dimensions leading to a large 3+1 dimensional spacetime. We also show that this picture is consistent with the gas approximation in M-theory. I. INTRODUCTION where strings are not present as fundamental degrees of freedom†. We are also motivated to see how hologra- The Brane Gas Cosmological scenario (BGC) provides phy can play a role in describing the thermodynamics of a unification of Cosmology with String Theory [1–8]. the early universe. What we will discover is that these This is acheived by addressing the dimensionality prob- two motivations are intimately connected and leads to a lem present in String theory by a dynamical decompact- picture which dovetails the original proposal of Branden- ification mechanism which involves the unwinding of an- berger and Vafa on string gases in the early universe. nihilating D-branes. BGC also resolves the initial cur- The original paper on BGC examined a cosmological vature singularities which plague the standard big bang scenario where a gas of strings and branes were wrapped scenario by implementing T-duality of the space-time as over all cycles of T 9. While further research has ad- the radius of the Universe tends to zero∗. dressed more general background topologies such as orb- A key ingredient in BGC is that strings dominate the ifolds and inhomogenous space-times [5,7,9], no proce- dynamics of the universe leading to decompactification dure has yet emerged that generalizes brane gases in of 3 large spatial dimensions. The Brandenberger-Vafa which the dynamics of M2andM5 branes play a central (BV) mechanism which is central to BGC, posits that role. A related problem is that typical scenarios based on strings see each other most efficiently in 2(p +1)(p=1 string theory contain a plethora of extended objects. By for strings) dimensions [1,2,11]. Therefore, their winding reducing the dynamics to that of only two fundamental modes will annihilate most efficiently in 3 + 1 dimensions degrees of freedom, one hopes to obtain a clearer picture and this leads to a decompactification in those dimen- of the BGC mechanism. In an earlier version of BGC, sions. The strings moving in higher dimensions eventu- to evade the complications of dealing with complex con- ally cease to interact efficiently and will fall out of equi- figurations and interactions of brane gases, the authors librium. Their winding modes will prevent those higher of [3](ABE) only considered parallel interactions of D- dimensions from further expanding. branes with the same RR charges. The BV mechanism was originally analyzed in the con- It is the purpose of this paper to initiate an investi- text of perturbative string theory. We know that type II gation of some of the above mentioned outstanding is- string theories at strong coupling becomes M-theory in sues in BGC. We will show that, by going directly to the 11 dimensions. In this, M5andM2 branes play a funda- fundamental states of M-theory, the BGC scenario sim- mental role. It is, therefore, important to reconsider the plifies and also generalizes to intersections and a strong ubiquity of the BGC mechanism in all corners of mod- coupling regime. In this situation we can use 11D su- uli space and, in particular, the 11 dimensional corner pergravity and the worldvolume actions of M2andM5 branes to analyze BGC. ∗The issue of implementing T-duality for timelike singulari- ties is still under investigation and is not as yet resolved. In yBrane Gases in 11D Supergravity was recently investigated our case we assume that for each constant time slice one can by [6]. map winding states on small radius to momentum states on large radius. [10] 1 II. BRANE GASES IN M-THEORY:GENERAL The general setting starts with all branes and their SETTING intersections wrapping cycles of all dimensions small with respect to the string length scale. In this case all branes 10;1 Brane Gases have been formulated in the weak string wrap T ‡ . The equilibrium condition coupling regime in Type IIA where g < 1 [3]. In this s * regime BGC was studied using IIA supergravity. The wp +¯wp ) loops; radiation (2) zero mode fluctuation of p-brane winding and momentum states that there is an equal number of branes and anti- states were obtained from linearized fluctuations of the branes in the system interacting. However, we expect Dira-Born-Infeld (DBI) action. In a toroidal geometry the system to fall out of equilibrium when the wind- ABE [3] were able to show that a hierarchy of dimensions ing degrees of freedom cease to interact. Moreover, the decompactify resulting in three large spatial dimensions breakdown of thermal equlibrium is suggested by exceed- with two smaller extra dimensions. However, the exact ing the Hagedorn temperature which is lower for higher scaling of the hierarchy was not determined. Can we dimensional branes, so they are expected to fall out of gain more information about the scaling in dimensions equilibrium faster than lower dimensional branes. Hence by going to strong coupling? we expect the five-branes to fall out of equilibrium faster The strong coupling limit of IIA is 11 dimensional than the membranes. supergravity(SUGRA), whose fundamental degrees of We are working in 11 dimensional supergravity and freedom are M2andM5 branes. We wish to study gases there is no dilaton which in ten dimensional string theory, of intersecting M2andM5 branes and generalize the na- plays a key role to dynamically prevent cycles from ex- ture of the intersection. While our philosophy is rooted in panding in the presence of winding modes. Therefore, in the standard big bang scenario where the early universe the 11 dimensional regime, it is necessary to to show that existed in a hot dense state with all degrees of freedom branes wrapped on cycles will keep the dimensions from excited, it is not a prediction of M-theory as to how extra expanding; in other words there exists a confining poten- spatial dimensions could start off small. tial for the modulus of the cycle. The most straightfor- Our starting point closely dovetails the standard hot ward way to show this is to work in a toroidal coordinate big bang where all fundamental degrees of freedom are system that is time dependent in an 11-d SUGRA back- excited and in thermal equilibrium with all dimensions ground. For simplicity we shall assume homogeneity of small and compact. While we do not know what the the background and adiabacity of the evolution. We will quantum version of M-theory is, 11-D SUGRA is ex- discover that these assumptions are to weak to explain pected to be the classical limit. We shall analyze our how membrane winding states can prevent expansion of cosmology with an interplay between 11-D SUGRA and the cycles they wrap. Nonetheless, one will be able to the effective worldvolume actions of M2andM5 branes. isolate exactly where the assumptions break down. The Let us start with the bosonic sector of 11D SUGRA. issue of the confining nature of wrapping membranes in 1 M-theory was resolved by [6]. S = d11x√ g(R + F 2 + F F A )(1) κ9 Z − [4] [4] ∧ [4] ∧ [3] We consider the wrapping of a membrane at rest along a two cycle. We want to find its equation of state which where dA = F is a four form field strength tensor. [3] [4] can be obtained from finding the energy-momemtum ten- The dual of F is a seven form which couples to the [4] sor of the membrane in its wrapped configuration. The worldvolume of the fivebrane. This state in 11-D is iden- relevant bosonic part of the membrane action is described tified with the M5 brane, which is the magnetic dual by the Nambu-Goto action of the M2 brane. The potential A is a threeform and therefore couples to a M2 brane. Now consider a gas T d3σ detg (3) of M5andM2 branes which are not interacting with 2 ab Z p− each other. Since the five branes are heavier they will fall out of equilibrium faster than the M2 branes and where T2 is the tension of the membrane. To find its their winding modes will cease to annihilate. Membranes energy momentum tensor with respect to the 11 dimen- will dominate the dynamics at later times and according sion space-time we will vary the membrane action with to the BV topological arguments, 6 larger space-time di- respect to the background metric Gµν defined as mensions will get big since the membrane winding modes a b Gµν = gabX X (4) annihilate most efficiently in these dimensions. At this ,µ ,ν point, it is still not clear to realize three large spatial di- The action is then mensions directly from M-theory dynamics.
Recommended publications
  • Symmetries of String Theory and Early Universe Cosmology
    String Cosmology R. Branden- berger Introduction Symmetries of String Theory and Early T-Duality: Key Symmetry of Universe Cosmology String Theory String Gas Cosmology Structure Robert Brandenberger Perturbations Overview Physics Department, McGill University Analysis DFT Conclusions Yukawa Institute, Kyoto University, Feb. 26, 2018 1 / 61 Outline String Cosmology 1 Introduction R. Branden- berger 2 T-Duality: Key Symmetry of String Theory Introduction T-Duality: Key 3 String Gas Cosmology Symmetry of String Theory String Gas 4 String Gas Cosmology and Structure Formation Cosmology Review of the Theory of Cosmological Perturbations Structure Perturbations Overview Overview Analysis Analysis DFT 5 Double Field Theory as a Background for String Gas Conclusions Cosmology 6 Conclusions 2 / 61 Plan String Cosmology 1 Introduction R. Branden- berger 2 T-Duality: Key Symmetry of String Theory Introduction T-Duality: Key 3 String Gas Cosmology Symmetry of String Theory String Gas 4 String Gas Cosmology and Structure Formation Cosmology Review of the Theory of Cosmological Perturbations Structure Perturbations Overview Overview Analysis Analysis DFT 5 Double Field Theory as a Background for String Gas Conclusions Cosmology 6 Conclusions 3 / 61 Inflation: the Standard Model of Early Universe Cosmology String Cosmology R. Branden- berger Introduction Inflation is the standard paradigm of early universe T-Duality: Key cosmology. Symmetry of String Theory Inflation solves conceptual problems of Standard Big String Gas Bang Cosmology. Cosmology Structure Inflation predicts an almost scale-invariant spectrum of Perturbations Overview primordial cosmological perturbations with a small red Analysis tilt (Chibisov & Mukhanov, 1981). DFT Conclusions Fluctuations are nearly Gaussian and nearly adiabatic. 4 / 61 Map of the Cosmic Microwave Background (CMB) String Cosmology R.
    [Show full text]
  • String-Inspired Running Vacuum—The ``Vacuumon''—And the Swampland Criteria
    universe Article String-Inspired Running Vacuum—The “Vacuumon”—And the Swampland Criteria Nick E. Mavromatos 1 , Joan Solà Peracaula 2,* and Spyros Basilakos 3,4 1 Theoretical Particle Physics and Cosmology Group, Physics Department, King’s College London, Strand, London WC2R 2LS, UK; [email protected] 2 Departament de Física Quàntica i Astrofísica, and Institute of Cosmos Sciences (ICCUB), Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona, Catalonia, Spain 3 Academy of Athens, Research Center for Astronomy and Applied Mathematics, Soranou Efessiou 4, 11527 Athens, Greece; [email protected] 4 National Observatory of Athens, Lofos Nymfon, 11852 Athens, Greece * Correspondence: [email protected] Received: 15 October 2020; Accepted: 17 November 2020; Published: 20 November 2020 Abstract: We elaborate further on the compatibility of the “vacuumon potential” that characterises the inflationary phase of the running vacuum model (RVM) with the swampland criteria. The work is motivated by the fact that, as demonstrated recently by the authors, the RVM framework can be derived as an effective gravitational field theory stemming from underlying microscopic (critical) string theory models with gravitational anomalies, involving condensation of primordial gravitational waves. Although believed to be a classical scalar field description, not representing a fully fledged quantum field, we show here that the vacuumon potential satisfies certain swampland criteria for the relevant regime of parameters and field range. We link the criteria to the Gibbons–Hawking entropy that has been argued to characterise the RVM during the de Sitter phase. These results imply that the vacuumon may, after all, admit under certain conditions, a rôle as a quantum field during the inflationary (almost de Sitter) phase of the running vacuum.
    [Show full text]
  • Pitp Lectures
    MIFPA-10-34 PiTP Lectures Katrin Becker1 Department of Physics, Texas A&M University, College Station, TX 77843, USA [email protected] Contents 1 Introduction 2 2 String duality 3 2.1 T-duality and closed bosonic strings .................... 3 2.2 T-duality and open strings ......................... 4 2.3 Buscher rules ................................ 5 3 Low-energy effective actions 5 3.1 Type II theories ............................... 5 3.1.1 Massless bosons ........................... 6 3.1.2 Charges of D-branes ........................ 7 3.1.3 T-duality for type II theories .................... 7 3.1.4 Low-energy effective actions .................... 8 3.2 M-theory ................................... 8 3.2.1 2-derivative action ......................... 8 3.2.2 8-derivative action ......................... 9 3.3 Type IIB and F-theory ........................... 9 3.4 Type I .................................... 13 3.5 SO(32) heterotic string ........................... 13 4 Compactification and moduli 14 4.1 The torus .................................. 14 4.2 Calabi-Yau 3-folds ............................. 16 5 M-theory compactified on Calabi-Yau 4-folds 17 5.1 The supersymmetric flux background ................... 18 5.2 The warp factor ............................... 18 5.3 SUSY breaking solutions .......................... 19 1 These are two lectures dealing with supersymmetry (SUSY) for branes and strings. These lectures are mainly based on ref. [1] which the reader should consult for original references and additional discussions. 1 Introduction To make contact between superstring theory and the real world we have to understand the vacua of the theory. Of particular interest for vacuum construction are, on the one hand, D-branes. These are hyper-planes on which open strings can end. On the world-volume of coincident D-branes, non-abelian gauge fields can exist.
    [Show full text]
  • From Vibrating Strings to a Unified Theory of All Interactions
    Barton Zwiebach From Vibrating Strings to a Unified Theory of All Interactions or the last twenty years, physicists have investigated F String Theory rather vigorously. The theory has revealed an unusual depth. As a result, despite much progress in our under- standing of its remarkable properties, basic features of the theory remain a mystery. This extended period of activity is, in fact, the second period of activity in string theory. When it was first discov- ered in the late 1960s, string theory attempted to describe strongly interacting particles. Along came Quantum Chromodynamics— a theoryof quarks and gluons—and despite their early promise, strings faded away. This time string theory is a credible candidate for a theoryof all interactions—a unified theoryof all forces and matter. The greatest complication that frustrated the search for such a unified theorywas the incompatibility between two pillars of twen- tieth century physics: Einstein’s General Theoryof Relativity and the principles of Quantum Mechanics. String theory appears to be 30 ) zwiebach mit physics annual 2004 the long-sought quantum mechani- cal theory of gravity and other interactions. It is almost certain that string theory is a consistent theory. It is less certain that it describes our real world. Nevertheless, intense work has demonstrated that string theory incorporates many features of the physical universe. It is reasonable to be very optimistic about the prospects of string theory. Perhaps one of the most impressive features of string theory is the appearance of gravity as one of the fluctuation modes of a closed string. Although it was not discov- ered exactly in this way, we can describe a logical path that leads to the discovery of gravity in string theory.
    [Show full text]
  • Quantum Symmetries and Stringy Instantons
    PUPT–1464 hep-th@xxx/9406091 Quantum Symmetries and Stringy Instantons ⋆ Jacques Distler and Shamit Kachru† Joseph Henry Laboratories Princeton University Princeton, NJ 08544 USA The quantum symmetry of many Landau-Ginzburg orbifolds appears to be broken by Yang-Mills instantons. However, isolated Yang-Mills instantons are not solutions of string theory: They must be accompanied by gauge anti-instantons, gravitational instantons, or topologically non-trivial configurations of the H field. We check that the configura- tions permitted in string theory do in fact preserve the quantum symmetry, as a result of non-trivial cancellations between symmetry breaking effects due to the various types arXiv:hep-th/9406091v1 14 Jun 1994 of instantons. These cancellations indicate new constraints on Landau-Ginzburg orbifold spectra and require that the dilaton modulus mix with the twisted moduli in some Landau- Ginzburg compactifications. We point out that one can find similar constraints at all fixed points of the modular group of the moduli space of vacua. June 1994 †Address after June 30: Department of Physics, Harvard University, Cambridge, MA 02138. ⋆ Email: [email protected], [email protected] . Research supported by NSF grant PHY90-21984, and the A. P. Sloan Foundation. 1. Introduction Landau-Ginzburg orbifolds [1,2] describe special submanifolds in the moduli spaces of Calabi-Yau models, at “very small radius.” New, stringy features of the physics are therefore often apparent in the Landau-Ginzburg theories. For example, these theories sometimes manifest enhanced gauge symmetries which do not occur in the field theory limit, where the large radius manifold description is valid.
    [Show full text]
  • 8. Compactification and T-Duality
    8. Compactification and T-Duality In this section, we will consider the simplest compactification of the bosonic string: a background spacetime of the form R1,24 S1 (8.1) ⇥ The circle is taken to have radius R, so that the coordinate on S1 has periodicity X25 X25 +2⇡R ⌘ We will initially be interested in the physics at length scales R where motion on the S1 can be ignored. Our goal is to understand what physics looks like to an observer living in the non-compact R1,24 Minkowski space. This general idea goes by the name of Kaluza-Klein compactification. We will view this compactification in two ways: firstly from the perspective of the spacetime low-energy e↵ective action and secondly from the perspective of the string worldsheet. 8.1 The View from Spacetime Let’s start with the low-energy e↵ective action. Looking at length scales R means that we will take all fields to be independent of X25: they are instead functions only on the non-compact R1,24. Consider the metric in Einstein frame. This decomposes into three di↵erent fields 1,24 on R :ametricG˜µ⌫,avectorAµ and a scalar σ which we package into the D =26 dimensional metric as 2 µ ⌫ 2σ 25 µ 2 ds = G˜µ⌫ dX dX + e dX + Aµ dX (8.2) Here all the indices run over the non-compact directions µ, ⌫ =0 ,...24 only. The vector field Aµ is an honest gauge field, with the gauge symmetry descend- ing from di↵eomorphisms in D =26dimensions.Toseethisrecallthatunderthe transformation δXµ = V µ(X), the metric transforms as δG = ⇤ + ⇤ µ⌫ rµ ⌫ r⌫ µ This means that di↵eomorphisms of the compact direction, δX25 =⇤(Xµ), turn into gauge transformations of Aµ, δAµ = @µ⇤ –197– We’d like to know how the fields Gµ⌫, Aµ and σ interact.
    [Show full text]
  • Inflation in String Theory: - Towards Inflation in String Theory - on D3-Brane Potentials in Compactifications with Fluxes and Wrapped D-Branes
    1935-6 Spring School on Superstring Theory and Related Topics 27 March - 4 April, 2008 Inflation in String Theory: - Towards Inflation in String Theory - On D3-brane Potentials in Compactifications with Fluxes and Wrapped D-branes Liam McAllister Department of Physics, Stanford University, Stanford, CA 94305, USA hep-th/0308055 SLAC-PUB-9669 SU-ITP-03/18 TIFR/TH/03-06 Towards Inflation in String Theory Shamit Kachru,a,b Renata Kallosh,a Andrei Linde,a Juan Maldacena,c Liam McAllister,a and Sandip P. Trivedid a Department of Physics, Stanford University, Stanford, CA 94305, USA b SLAC, Stanford University, Stanford, CA 94309, USA c Institute for Advanced Study, Princeton, NJ 08540, USA d Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, INDIA We investigate the embedding of brane inflation into stable compactifications of string theory. At first sight a warped compactification geometry seems to produce a naturally flat inflaton potential, evading one well-known difficulty of brane-antibrane scenarios. Care- arXiv:hep-th/0308055v2 23 Sep 2003 ful consideration of the closed string moduli reveals a further obstacle: superpotential stabilization of the compactification volume typically modifies the inflaton potential and renders it too steep for inflation. We discuss the non-generic conditions under which this problem does not arise. We conclude that brane inflation models can only work if restric- tive assumptions about the method of volume stabilization, the warping of the internal space, and the source of inflationary energy are satisfied. We argue that this may not be a real problem, given the large range of available fluxes and background geometries in string theory.
    [Show full text]
  • Some Comments on Equivariant Gromov-Witten Theory and 3D Gravity (A Talk in Two Parts) This Theory Has Appeared in Various Interesting Contexts
    Some comments on equivariant Gromov-Witten theory and 3d gravity (a talk in two parts) This theory has appeared in various interesting contexts. For instance, it is a candidate dual to (chiral?) supergravity with deep negative cosmologicalShamit constant. Kachru Witten (Stanford & SLAC) Sunday, April 12, 15 Tuesday, August 11, 15 Much of the talk will be review of things well known to various parts of the audience. To the extent anything very new appears, it is based on two recent collaborative papers: * arXiv : 1507.00004 with Benjamin, Dyer, Fitzpatrick * arXiv : 1508.02047 with Cheng, Duncan, Harrison Some slightly older work with other (also wonderful) collaborators makes brief appearances. Tuesday, August 11, 15 Today, I’d like to talk about two distinct topics. Each is related to the general subjects of this symposium, but neither has been central to any of the talks we’ve heard yet. 1. Extremal CFTs and quantum gravity ...where we see how special chiral CFTs with sparse spectrum may be important in gravity... II. Equivariant Gromov-Witten & K3 ...where we see how certain enumerative invariants of K3 may be related to subjects we’ve heard about... Tuesday, August 11, 15 I. Extremal CFTs and quantum gravity A fundamental role in our understanding of quantum gravity is played by the holographic correspondence between conformal field theories and AdS gravity. In the basic dictionary between these subjects conformal symmetry AdS isometries $ primary field of dimension ∆ bulk quantum field of mass m(∆) $ ...... Tuesday, August 11, 15
    [Show full text]
  • M-Theory Solutions and Intersecting D-Brane Systems
    M-Theory Solutions and Intersecting D-Brane Systems A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy in the Department of Physics and Engineering Physics University of Saskatchewan Saskatoon By Rahim Oraji ©Rahim Oraji, December/2011. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Postgrad- uate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Physics and Engineering Physics 116 Science Place University of Saskatchewan Saskatoon, Saskatchewan Canada S7N 5E2 i Abstract It is believed that fundamental M-theory in the low-energy limit can be described effectively by D=11 supergravity.
    [Show full text]
  • Dilaton and Off-Shell (Non-Critical String) Effects in Boltzmann Equation for Species Abundances AB Lahanas1, NE Mavromatos2 and DV Nanopoulos3,4,5
    Research article Open Access Dilaton and off-shell (non-critical string) effects in Boltzmann equation for species abundances AB Lahanas1, NE Mavromatos2 and DV Nanopoulos3,4,5 Address: 1University of Athens, Physics Department, Nuclear and Particle Physics Section, GR157 71, Athens, Greece., 2King's College London, University of London, Department of Physics, Strand WC2R 2LS, London, UK., 3George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A&M University, College Station, TX 77843, USA., 4Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381, USA. and 5Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679, Greece. Email: AB Lahanas - [email protected]; NE Mavromatos - [email protected]; DV Nanopoulos - [email protected] Published: 2 October 2007 Received: 3 June 2007 Accepted: 2 October 2007 PMC Physics A 2007, 1:2 doi:10.1186/1754-0410-1-2 This article is available from: http://www.physmathcentral.com/1754-0410/1/2 © 2007 Lahanas et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this work we derive the modifications to the Boltzmann equation governing the cosmic evolution of relic abundances induced by dilaton dissipative-source and non-critical-string terms in dilaton-driven non-equilibrium string Cosmologies. We also discuss briefly the most important phenomenological consequences, including modifications of the constraints on the available parameter space of cosmologically appealing particle physics models, imposed by recent precision data of astrophysical measurements.
    [Show full text]
  • What Lattice Theorists Can Do for Superstring/M-Theory
    July 26, 2016 0:28 WSPC/INSTRUCTION FILE review˙2016July23 International Journal of Modern Physics A c World Scientific Publishing Company What lattice theorists can do for superstring/M-theory MASANORI HANADA Yukawa Institute for Theoretical Physics Kyoto University, Kyoto 606-8502, JAPAN The Hakubi Center for Advanced Research Kyoto University, Kyoto 606-8501, JAPAN Stanford Institute for Theoretical Physics Stanford University, Stanford, CA 94305, USA [email protected] The gauge/gravity duality provides us with nonperturbative formulation of superstring/M-theory. Although inputs from gauge theory side are crucial for answering many deep questions associated with quantum gravitational aspects of superstring/M- theory, many of the important problems have evaded analytic approaches. For them, lattice gauge theory is the only hope at this moment. In this review I give a list of such problems, putting emphasis on problems within reach in a five-year span, including both Euclidean and real-time simulations. Keywords: Lattice Gauge Theory; Gauge/Gravity Duality; Quantum Gravity. PACS numbers:11.15.Ha,11.25.Tq,11.25.Yb,11.30.Pb Preprint number:YITP-16-28 1. Introduction During the second superstring revolution, string theorists built a beautiful arXiv:1604.05421v2 [hep-lat] 23 Jul 2016 framework for quantum gravity: the gauge/gravity duality.1, 2 It claims that superstring/M-theory is equivalent to certain gauge theories, at least about certain background spacetimes (e.g. black brane background, asymptotically anti de-Sitter (AdS) spacetime). Here the word ‘equivalence’ would be a little bit misleading, be- cause it is not clear how to define string/M-theory nonperturbatively; superstring theory has been formulated based on perturbative expansions, and M-theory3 is defined as the strong coupling limit of type IIA superstring theory, where the non- perturbative effects should play important roles.
    [Show full text]
  • Non-Higgsable Clusters for 4D F-Theory Models
    Non-Higgsable clusters for 4D F-theory models The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Morrison, David R., and Washington Taylor. “Non-Higgsable Clusters for 4D F-Theory Models.” J. High Energ. Phys. 2015, no. 5 (May 2015). As Published http://dx.doi.org/10.1007/jhep05(2015)080 Publisher Springer-Verlag Version Final published version Citable link http://hdl.handle.net/1721.1/98237 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/4.0/ Published for SISSA by Springer Received: January 6, 2015 Accepted: April 18, 2015 Published: May 18, 2015 Non-Higgsable clusters for 4D F-theory models JHEP05(2015)080 David R. Morrisona and Washington Taylorb aDepartments of Mathematics and Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, U.S.A. bCenter for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A. E-mail: [email protected], [email protected] Abstract: We analyze non-Higgsable clusters of gauge groups and matter that can arise at the level of geometry in 4D F-theory models. Non-Higgsable clusters seem to be generic features of F-theory compactifications, and give rise naturally to structures that include the nonabelian part of the standard model gauge group and certain specific types of potential dark matter candidates. In particular, there are nine distinct single nonabelian gauge group factors, and only five distinct products of two nonabelian gauge group factors with matter, including SU(3) × SU(2), that can be realized through 4D non-Higgsable clusters.
    [Show full text]