Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S Rdna Sequences: a Response to Sun Et Al

Total Page:16

File Type:pdf, Size:1020Kb

Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S Rdna Sequences: a Response to Sun Et Al LETTERS TO THE EDITOR Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S rDNA Sequences: A Response to Sun et al. (2006) 1 2 3 T. HEATH OGDEN, MICHEL SARTORI, AND MICHAEL F. WHITING Sun et al. (2006) recently published an analysis of able on GenBank October 2003. However, they chose phylogenetic relationships of the major lineages of not to include 34 other mayßy 18S rDNA sequences mayßies (Ephemeroptera). Their study used partial that were available 18 mo before submission of their 18S rDNA sequences (Ϸ583 nucleotides), which were manuscript (sequences available October 2003; their analyzed via parsimony to obtain a molecular phylo- manuscript was submitted 1 March 2005). If the au- genetic hypothesis. Their study included 23 mayßy thors had included these additional taxa, they would species, representing 20 families. They aligned the have increased their generic and familial level sam- DNA sequences via default settings in Clustal and pling to include lineages such as Leptohyphidae, Pota- reconstructed a tree by using parsimony in PAUP*. manthidae, Behningiidae, Neoephemeridae, Epheme- However, this tree was not presented in the article, rellidae, and Euthyplociidae. Additionally, there were nor have they made the topology or alignment avail- 194 sequences available (as of 1 March 2005) for other able despite multiple requests. This molecular tree molecular markers, aside from 18S, that could have was compared with previous hypotheses based on been used to investigate higher level relationships. morphological data to “test” (but see below) which These include Cytochrome oxidase I, Elongation fac- morphology-based relationships were not signiÞ- tor I-␣, Histone 3, 28S rDNA, and 16S mitochondrial cantly different from the molecular topology. Al- rDNA. though molecular data can help shed light on many of The purpose of this short reply is to reexamine the the fundamental questions in insect phylogenetics, it Sun et al. (2006) analysis to investigate whether the is important to perform analyses correctly and to ac- data they present do in fact support 1) the monophyly curately report results in a way that allows subsequent of the suborders Setisura, Pisciforma, and Furcater- validation. galia; 2) the placement of Baetiscidae as the sister Sun et al. (2006) provided an adequate review of the lineage to all other represented clades; and 3) the major traditional hypotheses concerning higher level elevation of Pseudiron and Arthroplea as separate classiÞcation and relationships among mayßies. Some monophyletic families. We will then present an anal- of these hypotheses are based on cladistic analysis of ysis based on all the 18S mayßy data that were avail- morphology, but others are intuitive phylogenies that able to the authors to determine whether inclusion of were not derived from any formal repeatable and these additional data result in conclusions contrary to objective analysis. These authors failed to report pre- those reported. We further examine their analytical viously published molecular hypotheses that shed methodology and focus on their use of the Shimo- light on mayßy phylogeny, many of which disagree dairaÐHasegawa test to conclude that the groups de- with their results. For example, there have been pre- Þned via morphology are not signiÞcantly different viously published molecular studies investigating from the molecular topology. All of these results are higher level relationships among mayßies and relatives then discussed in light of a more comprehensive phy- (Hovmo¨ller et al. 2002, Ogden and Whiting 2003, Ball logenetic analysis of mayßies as presented in Ogden et al. 2005, Danforth et al. 2005) and investigating and Whiting (2005). relationships below the family level (Tojo and Mat- sukawa 2003, Monaghan et al. 2005, Rebora et al. 2005). All of these analyses include additional data and taxa Materials and Methods that could have been included in the Sun et al. (2006) Sun et al. (2006) have did not provide us their analysis to make a more robust estimate of mayßy original sequence alignment, molecular topologies, or phylogeny. details related to parameters used in the reconstruc- It is clear that the authors knew other ephemerop- tion of molecular topologies. Consequently, we down- teran sequences were deposited on GenBank, because loaded their sequences from GenBank (Table 1) in an they downloaded and included sequence data for the attempt to reproduce their analysis. Because the au- genus Rallidens (Rallidentidae), which became avail- thors were brief in their description of some analytical details, certain analytical parameters had to be as- The authors of Sun et al. (2006) were notiÞed of this critique of their sumed. For example, we treated gaps as missing data paper, but did not submit a response. and all characters were equally weighted in our par- 1 Corresponding author: Department of Biological Sciences, Idaho simony analysis. We constructed a second data set that State University, Pocatello, ID 83209 (e-mail: [email protected]). consisted of these authorÕs data and all mayßy 18S 2 Museum of Zoology, P.O. Box, CH-1014, Lausanne, Switzerland. 3 Department of Integrative Biology, Brigham Young University, rDNA sequences that had been deposited on 401 WIDB, Provo, UT 84602. GenBank as of 1 October 2003, to gauge whether the 0013-8746/08/0001Ð0006$04.00/0 ᭧ 2008 Entomological Society of America 2ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA Vol. 101, no. 1 Table 1. Taxonomic sampling and GenBank accession addseq ϭ random nreps ϭ 5 nchuck ϭ 10 chuck- numbers score ϭ 1) in PAUP* version 4.0b10 (Swofford 2002). The Templeton (Templeton 1983, Larson 1994) and Family Genus species GenBank winning-sites tests (Prager and Wilson 1988) were Lepismatidae Lepisma sp. AF005458 used to compare Sun et al. (2006) accepted intuitive Acanthametropodidae Analetris eximia AY338697 Analetris eximia DQ648716 topologies to the most parsimonious tree (or consen- Ameletidae Ameletus sp. AY338712 sus tree) computed in our reanalysis of their se- Ameletus celer DQ648730 quences. Ameletopsidae Chaquihua sp. AY338715 Sun et al. (2006) chose to use the ShimodairaÐ Chiloporter sp. DQ648721 Ametropodidae Ametropus neavei AY338700 Hasegawa (S/H) test (Shimodaira and Hasegawa Ametropus neavei DQ648734 1999) to investigate whether their intuitive hypothe- Arthropleidae Arthroplea bipunctata DQ648727 ses of mayßy relationships were signiÞcantly different Baetidae Baetis bicaudatus DQ648719 from the tree they reconstructed from the molecular Baetis buceratus AF461248 Baetis sp. AY338695 data. Sun et al. (2006) compared their 18S molecular Callibaetis ferrugineus DQ648714 topology to each of their intuitive topologies one at a Callibaeits ferrugineus AF370791 time. When the test showed that their intuitive phy- Centroptilum luteolum AF461251 logeny was not signiÞcantly different from the 18S Cloeon dipterum AF461249 Baetiscidae Baetisca sp. AY338707 topology, they accepted the intuitive topologyÕs rela- Baetisca lacustris DQ648715 tionships as a credible estimate of mayßy phylogeny. Behningiidae Behningia sp. AY338703 However, the authors misused this test, because the Caenidae Caenis sp. AY338710 S/H test is only appropriate for likelihood analyses Caenis luctuosa AF461250 Caenis youngi DQ648717 when all a priori topologies are simultaneously com- Coloburiscidae Coloburiscoides giganteus DQ648723 pared (Goldman et al. 2000, Shimodaira 2002). More Coloburiscus humeralis AY338706 appropriate tests would have been the Templeton Ephemerellidae Drunella coloradensis AY338694 (Templeton 1983, Larson 1994) and winning-sites Ephemerella sp. U65107 Ephemeridae Ephemera sp. X89489 tests (Prager and Wilson 1988) for comparisons of Ephemera simulans DQ648733 their intuitive topologies to molecular topologies de- Hexagenia sp. AY121136 rived from parsimony analysis. We performed these Hexagenia rigida AF461253 latter tests on the three intuitive topologies deemed Euthyplociidae Polyplocia sp. AY338705 Heptageniidae Cinygmula sp. AY121137 credible by Sun et al. (2006) by comparing these Epeorus grandis DQ648729 topologies to trees generated from the 18S data. Heptagenia sp. AY338709 Heptagenia diabasia DQ648731 Leucrocuta aphrodite AF461254 Results Stenonema sp. AF461252 Isonychiidae Isonychia sp. AY338708 Reanalysis of Sun et al. (2006) Sequences (Fig. 1). Isonychia rufa DQ648728 The reanalysis of the Sun et al. (2006) sequences Leptohyphidae Leptohyphes apache AY338714 resulted in an alignment consisting of 616 aligned Leptophlebiidae Paraleptophlebia memorialis DQ648722 Choroterpes sp. AY555525 characters: 422 characters were constant, 113 variable Metretopodidae Metretopus borealis AY338698 characters were parsimony-uninformative, and 81 Metretopus borealis DQ648718 characters were parsimony-informative. The heuristic Neoephemeridae Neoephemera youngi AY338702 search (6,846,620 rearrangements tried) resulted in Nesameletidae Ameletoides lacusalbinae DQ648732 Oligoneuriidae Lachlania saskatchewanensis AY338701 117 most parsimonious trees with a length of 323 steps. Lachlania talea DQ648725 A 50% majority rule consensus topology is presented Oniscigastridae Tasmanophlebia sp. DQ648720 in Fig. 1. This topology does not support the mono- Polymitarcyidae Tortopus primus DQ648724 phyly of the suborders Furcatergalia, Pisciforma, or Potamanthidae Anthopotamus sp. AY338711 Anthopotamus sp. AF461255 Setisura as suggested by Sun et al. (2006), nor does it Pseudironidae Pseudiron centralis AY338699 support the position
Recommended publications
  • Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S Rdna Sequences: a Reply to Sun Et Al
    Utah Valley University From the SelectedWorks of T. Heath Ogden 2008 Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) are not monophyletic based on 18S rDNA sequences: A Reply to Sun et al. (2006) T. Heath Ogden, Utah Valley University Available at: https://works.bepress.com/heath_ogden/9/ LETTERS TO THE EDITOR Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S rDNA Sequences: A Response to Sun et al. (2006) 1 2 3 T. HEATH OGDEN, MICHEL SARTORI, AND MICHAEL F. WHITING Sun et al. (2006) recently published an analysis of able on GenBank October 2003. However, they chose phylogenetic relationships of the major lineages of not to include 34 other mayßy 18S rDNA sequences mayßies (Ephemeroptera). Their study used partial that were available 18 mo before submission of their 18S rDNA sequences (Ϸ583 nucleotides), which were manuscript (sequences available October 2003; their analyzed via parsimony to obtain a molecular phylo- manuscript was submitted 1 March 2005). If the au- genetic hypothesis. Their study included 23 mayßy thors had included these additional taxa, they would species, representing 20 families. They aligned the have increased their generic and familial level sam- DNA sequences via default settings in Clustal and pling to include lineages such as Leptohyphidae, Pota- reconstructed a tree by using parsimony in PAUP*. manthidae, Behningiidae, Neoephemeridae, Epheme- However, this tree was not presented in the article, rellidae, and Euthyplociidae. Additionally, there were nor have they made the topology or alignment avail- 194 sequences available (as of 1 March 2005) for other able despite multiple requests. This molecular tree molecular markers, aside from 18S, that could have was compared with previous hypotheses based on been used to investigate higher level relationships.
    [Show full text]
  • A Cladistic Insight Into the Higher Level Classification Of
    Systematic Entomology (2020), DOI: 10.1111/syen.12446 A cladistic insight into the higher level classification of Baetidae (Insecta: Ephemeroptera) PAULO VILELA CRUZ1,2 , CAROLINA NIETO3, JEAN-LUC GATTOLLIAT4, FREDERICO FALCÃO SALLES5 andNEUSA HAMADA2 1Universidade Federal de Rondônia - UNIR, Programa de Pós-Graduação em Ciências Ambientais - PPGCA, Programa de Pós-Graduação em Ensino de Ciências da Natureza - PPGECN, Laboratório de Biodiversidade e Conservação - LABICON, CEP 76940-000, Rolim de Moura, Rondônia, Brazil, 2Instituto Nacional de Pesquisas da Amazônia - INPA, Coordenação de Pesquisas em Biodiversidade, Laboratório de Citotaxonomia e Insetos Aquáticos, CEP 69067-375, Manaus, Amazonas, Brazil, 3Instituto de Biodiversidad Neotropical, CONICeT, Universidad Nacional de Tucumán, Facultad de Ciencias Naturales, Ciudad Universitaria, 4107, Horco Molle, Tucumán, Argentina, 4Musée Cantonal de Zoologie, Palais de Rumine, 1015 Lausanne, Switzerland. Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland and 5Museu de Entomologia, Departamento de Entomologia, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP 36570-900, Viçosa, Minas Gerais, Brazil Abstract. Baetidae was one of the first families established for mayflies (Ephemeroptera). After more than 200 years of progressive research, Baetidae is now known as the most species-rich family in the order. Two competing proposals of family division were proposed: Cloeoninae and Baetinae, or Protopatellata and Anteropatellata. Both classifications were established without cladistic support. The purpose of this paper is to investigate the phylogenetic relationships of the family Baeti- dae using morphological evidence and evaluate these classification schemes. The matrix included 245 morphological characters derived from larval and adult stages across 164 species in 98 genera.
    [Show full text]
  • Aquatic Macroinvertebrate and Physical Habitat Monitoring for the Mancos River in Mesa Verde National Park 2008 Summary Report
    National Park Service U.S. Department of the Interior Natural Resource Program Center Aquatic Macroinvertebrate and Physical Habitat Monitoring for the Mancos River in Mesa Verde National Park 2008 Summary Report Natural Resource Data Series NPS/SCPN/NRDS—2010/033 ON THE COVER Aquatic macroinvertebrate sampling on the Mancos River in Mesa Verde National Park Photograph by Stacy Stumpf Aquatic Macroinvertebrate and Physical Habitat Monitoring for the Mancos River in Mesa Verde National Park 2008 Summary Report Natural Resource Technical Report NPS/SCPN/NRDS—2010/033 Stacy E. Stumpf Stephen A. Monroe National Park Service Southern Colorado Plateau Network Northern Arizona University P.O. Box 5765 Flagstaff, AZ 86011-5765 February 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service Natural Resource Program Center publishes a range of reports that ad- dress natural resource topics of interest and are applicable to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environ- mental constituencies, and the public. The Natural Resource Data Series is intended for timely release of basic data sets and data summa- ries. Care has been taken to ensure the accuracy of raw data values, for which a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the informa- tion is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • The Mayfly Newsletter
    The Mayfly Newsletter Volume 16 Issue 1 Article 1 3-1-2010 The Mayfly Newsletter Peter M. Grant Southwestern Oklahoma State University, [email protected] Follow this and additional works at: https://dc.swosu.edu/mayfly Recommended Citation Grant, Peter M. (2010) "The Mayfly Newsletter," The Mayfly Newsletter: Vol. 16 : Iss. 1 , Article 1. Available at: https://dc.swosu.edu/mayfly/vol16/iss1/1 This Article is brought to you for free and open access by the Newsletters at SWOSU Digital Commons. It has been accepted for inclusion in The Mayfly Newsletter by an authorized editor of SWOSU Digital Commons. An ADA compliant document is available upon request. For more information, please contact [email protected]. AYFLY NEWSLETTER Vol. 16 No. 1 Southwestern Oklahoma State University, Weatherford, Oklahoma 73096-3098 USA March 2010 A Summary Description of the ‘freshwaterecology.info’Autecological Database with Focus on European Mayflies (Ephemeroptera) D. G. Armanini1 & A. Buffagni2 'Department of Biology, NWRI/Environment Canada - Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada, [email protected] 2 CNR - IRSA National Research Council, Water Research Institute, Via Della Momera 25, 1-20047 Brugherio (MI), Italy Since the approval of the European Water Framework (e.g. rheophily) to find out which species show a specific Directive (EC, 2000/60; WFD), a unique effort was ecological preference. oriented to the harmonization of knowledge on freshwater ecosystems at the European scale. During the EU co-funded Mayfly Literature Review AQEM (Hering et al., 2004; www.aqem.de) and STAR The Ephemeroptera order was one of the taxonomic groups (Furse et al., 2006; www.eu-star.at) projects, with the direct selected for in-depth study in the three mentioned projects.
    [Show full text]
  • Restoration of Burrow Laurentian Great Lakes an Example in Western
    Restoration of burrowrowing mayflies in the Laurentian Great Lakes: an example in western Lake Erie BURROWING MAYFLIES are aquatic insects that are classified in various ways, live in the mud, and are important because they are indicators of moderately productive water. Order = Ephemeroptera Suborder Furcatergalia Infraorder = Palpotarsa (primitive burrowing mayflies) Infraorder = Scapphodonta (burrowing mayflies) Family Potamanthidae Family Polymitarcyidae Family Ephemeridae In the Great Lakes, there are three genera of burrowing mayflies. Today’s discussion is about Hexagenia . Adult ca. 48 hours Eggs ca. 4-6 weeks ca. 22 months Hexagenia nymphs in the Great Lakes grow to about 35 mm in length. Nymphs rise the water’s surface, shed a skin, and fly to shore as sub -adults called subimagos. Subimagoes shed theireir skins and transform into mature adults. Male Female Adults mate in flight and females return to the water to deposit eggs. Burrowing mayflies are good organisms to assess some forms of habitat restoration because they respond to pollution abatement! the Mississippi River Hungngary The Netherlands In the Great Lakes, wee bbelieve mayflies were common many years agago in most large bays and harbors (i.e., areas of concern) and…. ….in shallow water arereas outside rivers and harbors. Mayflies disappeared in many areas because of urban and industrial pollution associated primarily with World Wars I and II . The Rouge River as it enters the Detroit River and western Lake Erie of the Great Lakes, circa 1950. Our example today, is western Lake Erie where mayflies disappeared in the 1950s. Phosphorus was the primary pollutant that led to the disappearance of mayflies because it caused excexcessive plant growth….
    [Show full text]
  • A Comparative Study of Spermatozoa of Some Central European
    Acta entomologica bohemoslovaca, 76: 223-230, 1979 ISSN 0001 - 5601 A comparative study of spermatozoa of some Central European Ephemeroptera TOMAS SOLDAN Department of Developmental Morphology, Institute of Entomology, Czechoslovak Academy of Sciences, Praha Morphology, smears, staining, measurements, light microscopy, 25 genera Abstract. The spermatozoa of species from 25 genera (11 families, 51 species) representative of Central European mayflies were investigated. Squashes and smears of seminal vesicles of adult testes fixed in osmium tetroxide vapours were stained by Pappenheim's method. There are four principal groups of spermatozoa: (i) rod-shaped spermatozoa with relatively short head ( 3-8 µm in length) and with flagellum, these subdivide into two distinct types: smaller, well stainable, rod-shaped spermatozoa (about 75-90%) and large, less well stainable, usually spindle-shaped spermatozoa (about 25-10%) (Siphlonuridae, Ephoron, Ephemera, Potamanthus); (ii) rod-shaped, elongated spermatozoa with relatively long (8-20 µm in length) head and with flagellum similar in shape, these also differentiated into two staining types (Baetidae); (iii) rod-shaped spermatozoa with shorter or longer head and well developed flagellum equal in both length and shape, these all of well staining type (Heptageniidae, Arthroplea, Ephemerella, Caenidae); (iv) rounded spermatozoa differentiated into two staining types as in groups (i) and (ii) but flagellum not discernible under light microscope (Leptophlebiidae). The arrangement of the morphological characters of mayfly spermatozoa is supposed to be related to the main phylogenetic trends within the order. Our knowledge of mayfly eggs and mipecially of chorion structure, micro­ pyle and sperm guide is n hctivcly very extensive. The eggs of most of the European gcnerr~ were c:('alt with by DEGRANGE ( 19CO) who also studied the fecundity offomaleG.
    [Show full text]
  • Refinement of the Basin-Wide Index of Biotic Integrity for Non-Tidal Streams and Wadeable Rivers in the Chesapeake Bay Watershed
    Refinement of the Basin-Wide Index of Biotic Integrity for Non-Tidal Streams and Wadeable Rivers in the Chesapeake Bay Watershed APPENDICES Appendix A: Taxonomic Classification Appendix B: Taxonomic Attributes Appendix C: Taxonomic Standardization Appendix D: Rarefaction Appendix E: Biological Metric Descriptions Appendix F: Abiotic Parameters for Evaluating Stream Environment Appendix G: Stream Classification Appendix H: HUC12 Watershed Characteristics in Bioregions Appendix I: Index Methodologies Appendix J: Scoring Methodologies Appendix K: Index Performance, Accuracy, and Precision Appendix L: Narrative Ratings and Maps of Index Scores Appendix M: Potential Biases in the Regional Index Ratings Appendix Citations Appendix A: Taxonomic Classification All taxa reported in Chessie BIBI database were assigned the appropriate Phylum, Subphylum, Class, Subclass, Order, Suborder, Family, Subfamily, Tribe, and Genus when applicable. A portion of the taxa reported were reported under an invalid name according to the ITIS database. These taxa were subsequently changed to the taxonomic name deemed valid by ITIS. Table A-1. The taxonomic hierarchy of stream macroinvertebrate taxa included in the Chesapeake Bay non-tidal database.
    [Show full text]
  • Classification and Phylogeny of the Baetidae (Ephemeroptera) with Description of the New Species from the Upper Cretaceous Resins of Taimyr
    CLASSIFICATION AND PHYLOGENY OF THE BAETIDAE (EPHEMEROPTERA) WITH DESCRIPTION OF THE NEW SPECIES FROM THE UPPER CRETACEOUS RESINS OF TAIMYR NIKITA Ju. KLUGE Department of Entomology, Biological Faculty, St-Petersburg State University, St-Petersburg, 1990343, Russia Male and female imagines and subimagines of the extinct Upper Cretaceous species Palaeocloeon taimyricum sp. n. are described and placed in the new subfamily Palaeocloeoninae subfam. n. The existant baetid subfamilies are united into the holophyletic group of subfamilies Turbanoculata. Palaeocloeoninae with Turbanoculata form the holophyletic taxon Liberevenata. Liberevenata with Siphlaenigmatidae form the holophyletic taxon Tetramerotarsata. The group of subfamilies Turbanoculata is divided into the subfamily Afroptilinae subfam. n. and the subgroup of subfamilies Anteropatellata. Apomorphies and plesiomorphies of all these taxa are discussed, as well as the problems of nomenclature. INTRODUCTION would belong to a single taxon only. But in the situation when different opinions concerning the classification are present, the unified names of the taxa in some cases can Until now, no fossils reliably belonging to become useless. Different classifications suggested for the Baetidae have been described. The genus same organisms, taxa with quite diverse diagnoses and Mesobaetis BRAUER, REDTENBACHER ET diversifications can have the same type specimens and the GANGLBAUER, 1889 which is known as larvae same rank. For example, the name «Baetoidea» (with the type specimen - neotype of Bae tis juscatus L. and the rank from Mesozoic deposits, was initially placed in of superfamily) in different recent papers is accepted as the Baetidae, then erroneously placed in Lepto­ taxon which includes all Pisciforma + Setisura, as only a phlebiidae, and now it is regarded as belonging part of them, only as Pisciforma, or only as Baetidae s.
    [Show full text]
  • Insecta, Ephemeroptera: New and Additional Records from New York (U.S.A.)
    Check List 4(4): 415–423, 2008. ISSN: 1809-127X NOTES ON GEOGRAPHIC DISTRIBUTION Insecta, Ephemeroptera: New and additional records from New York (U.S.A.) Luke W. Myers 1 Luke M. Jacobus 2 Boris C. Kondratieff 1 1 Colorado State University. Department of Bioagricultural Sciences and Pest Management. Fort Collins, Colorado 80523. E-mail: [email protected] 2 Indiana University. Department of Biology. Bloomington, Indiana 47405. Jacobus and McCafferty (2001b) listed 173 E. pleuralis, in that the posterior margin of the species of mayflies from New York, including 42 subgenital plate is distinctly indented. Epeorus new state species records, of which 170 were pleuralis is known to show morphological considered valid taxa. Herein, we augment that variability, but the population that was list with nine new state species records (indicated misidentified as E. frisoni may require further by an asterisk, "*") and new collection data for investigation (S. Burian, pers. comm.). species seldomly reported from the state. We also Heptagenia marginalis Banks was reported as a note recent changes to the taxonomy of New York new state record by Jacobus and McCafferty Ephemeroptera and note other necessary (2001b), but in fact Traver (1935) reported it emendations to the list of species records. previously. Taxa impacted by nomenclature changes since Thus, the number of presumably correctly Jacobus and McCafferty’s (2001b) list include all identified and valid nominal species reported from species formerly included in Stenonema Traver, New York before this study was 167. We note excluding S. femoratum (Say), that are now part of that reports of Centroptilum triangulifer the genus Maccaffertium Bednarik (McDunnough) should be considered tentative as (Heptageniidae); Heterocloeon amplum (Traver), they might represent that species, C.
    [Show full text]
  • Fossil Perspectives on the Evolution of Insect Diversity
    FOSSIL PERSPECTIVES ON THE EVOLUTION OF INSECT DIVERSITY Thesis submitted by David B Nicholson For examination for the degree of PhD University of York Department of Biology November 2012 1 Abstract A key contribution of palaeontology has been the elucidation of macroevolutionary patterns and processes through deep time, with fossils providing the only direct temporal evidence of how life has responded to a variety of forces. Thus, palaeontology may provide important information on the extinction crisis facing the biosphere today, and its likely consequences. Hexapods (insects and close relatives) comprise over 50% of described species. Explaining why this group dominates terrestrial biodiversity is a major challenge. In this thesis, I present a new dataset of hexapod fossil family ranges compiled from published literature up to the end of 2009. Between four and five hundred families have been added to the hexapod fossil record since previous compilations were published in the early 1990s. Despite this, the broad pattern of described richness through time depicted remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter term patterns. Corrections for rock record and sampling effort change some of the patterns seen. The time series produced identify several features of the fossil record of insects as likely artefacts, such as high Carboniferous richness, a Cretaceous plateau, and a late Eocene jump in richness. Other features seem more robust, such as a Permian rise and peak, high turnover at the end of the Permian, and a late-Jurassic rise.
    [Show full text]
  • Relationships of Edmunds/Us Day (Ephemeroptera: Siphlonuridae), with Notes on Early Instar Larvae and Eggs 1 1 2 M
    PAN-PACIFIC ENTOMOLOGIST 79(2): 112-118, (2003) RELATIONSHIPS OF EDMUNDS/US DAY (EPHEMEROPTERA: SIPHLONURIDAE), WITH NOTES ON EARLY INSTAR LARVAE AND EGGS 1 1 2 M. D. MEYER , w. P. McCAFFERTY , & E. L. SILLDORFF 1Department of Entomology, Purdue University, West Lafayette, Indiana 47907 2Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106 Abstract.-The presence of the synapomorphic copulatory pouch in the alate females of the California genus Edmundsius Day confirms its placement in the Siphlonuridae sensu stricto. Superficially similar larval maxillae in Edmundsius and the Japanese genus Dipteromimus McLachlan (Dipteromimidae) are apparently convergent. The presence of the synapomorphic double gills I and 2 in the mature larvae of Edmundsius furthermore indicates placement in the Siphlonurinae sensu stricto. Young larvae can only be distinguished from those of Siphlonurus Eaton by the key character involving relative lengths of the claws, and the first description of the egg of Edmundsius shows it to be similar to those of Siphlonurus. Key Words.-Edmundsius, higher classification, egg, copulatory pouch. Many of the traditional subfamilies of Siphlonuridae and certain generic complexes within Siphlonurinae have recently been placed as separate families in the suborder Pisciforma (McCafferty 1991 b ), or superfamily Siphlonuroidea (Kluge et al. I 995). For example, in the Holarctic Region, Ameletidae and Acanthametropodidae previously constituted a generic complex in Siphlonuridae and a separate subfamily of Siphlonuridae, respectively (e.g., see Edmunds et al. 1963). The previous siphlonurid subfamily Isonychiinae, however, is now recognized as the family Isonychiidae in the suborder Setisura, or superfamily Heptagenioidea (McCafferty 1991 a, b ).
    [Show full text]
  • Insecta, Ephemeroptera, Ephemerelloidea)
    Zootaxa 1957: 1–51 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) A revision of Oriental Teloganodidae (Insecta, Ephemeroptera, Ephemerelloidea) MICHEL SARTORI1, JANICE G. PETERS2 & MICHAEL D. HUBBARD2 1 Museum of zoology, Palais de Rumine, Place Riponne 6, CH-1014 Lausanne, Switzerland. E-mail: [email protected] 2 Laboratory of Aquatic Entomology, Florida A&M University, Tallahassee, FL 32307, USA Table of contents Abstract ............................................................................................................................................................................... 2 Introduction ......................................................................................................................................................................... 2 Redescription of Cloe tristis Hagen, 1858 .......................................................................................................................... 3 Cladistic analysis................................................................................................................................................................. 4 Teloganodes Eaton, 1882 .................................................................................................................................................... 9 Teloganodes tristis (Hagen, 1858) ..............................................................................................................................
    [Show full text]