An Itraq-Based Quantitative Proteomic Analysis of Plasma Proteins in Preterm Newborns with Retinopathy of Prematurity

Total Page:16

File Type:pdf, Size:1020Kb

An Itraq-Based Quantitative Proteomic Analysis of Plasma Proteins in Preterm Newborns with Retinopathy of Prematurity Retina An iTRAQ-Based Quantitative Proteomic Analysis of Plasma Proteins in Preterm Newborns With Retinopathy of Prematurity Magdalena Zasada,1 Maciej Suski,2 Renata Bokiniec,3 Monika Szwarc-Duma,3 Maria Katarzyna Borszewska-Kornacka,3 Jozef´ Madej,2 Beata Bujak-Giz˙ycka,2 Anna Madetko-Talowska,4 Cecilie Revhaug,5 Lars O. Baumbusch,5 Ola D. Saugstad,5 Jacek Jozef´ Pietrzyk,1 and Przemko Kwinta1 1Department of Pediatrics, Jagiellonian University Medical College, Krakow, Poland 2Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland 3Neonatal and Intensive Care Department, Medical University of Warsaw, Warsaw, Poland 4Department of Medical Genetics, Jagiellonian University Medical College, Krakow, Poland 5Department of Pediatric Research, Oslo University Hospital, University of Oslo, Oslo, Norway Correspondence: Przemko Kwinta, PURPOSE. Retinopathy of prematurity (ROP) is a vision-threatening complication of a Department of Pediatrics, Jagiello- premature birth, in which the etiology still remains unclear. Importantly, the molecular nian University Medical College, processes that govern these effects can be investigated in a perturbed plasma proteome Wielicka 265, Krakow 30-663, Po- composition. Thus, plasma proteomics may add new insights into a better understanding of land; the pathogenesis of this disease. [email protected]. Submitted: June 15, 2018 METHODS. The cord and peripheral blood of neonates (30 weeks gestational age) was drawn Accepted: August 9, 2018 at birth and at the 36th postmenstrual week (PMA), respectively. Blood samples were retrospectively subdivided into ROP(þ) and ROP(À) groups, according to the development of Citation: Zasada M, Suski M, Bokiniec ROP. R, et al. An iTRAQ-based quantitative proteomic analysis of plasma proteins RESULTS. The quantitative analysis of plasma proteome at both time points revealed 30 protein in preterm newborns with retinopa- abundance changes between ROP(þ) and ROP(À) groups. After standardization to gestational thy of prematurity. Invest Ophthalmol age, children who developed ROP were characterized by an increased C3 complement Vis Sci. 2018;59:5312–5319. https:// component and fibrinogen level at both analyzed time points. doi.org/10.1167/iovs.18-24914 CONCLUSIONS. Higher levels of the complement C3 component and fibrinogen, present in the cord blood and persistent to 36 PMA, may indicate a chronic low-grade systemic inflammation and hypercoagulable state that may play a role in the development of ROP. Keywords: retinopathy of prematurity, proteome, complement, fibrinogen etinopathy of prematurity (ROP) is a biphasic ocular disease enhance our understanding of the molecular process driving R occurring primarily in infants delivered before approxi- ROP but also explain the susceptibility of some preterm mately 28 weeks gestational age with immature retina.1 It newborns to ROP. Up to now, limited research has identified includes a delayed physiologic retinal blood vessels develop- several proteins (i.e., these from the insulin-like growth factor ment, followed by anarchic vessel proliferation and a potential pathway, mitochondrial superoxide dismutase, and chordin-like for succeeding retinal detachment.2 An initial vessel loss may protein 1), in which altered levels in plasma were related to the evoke ischemic events with detrimental effects on neuronal increased risk of ROP.10,11 A study dealing with vitreous homeostasis and functions.3 Although early detection and samples of children with ROP has also revealed some proteins treatment often result in a full recovery, severe cases may lead potentially involved in the pathomechanism of ROP.12 However, to long-lasting problems of reduced visual acuity, high myopia, the limited material availability makes these studies more strabismus, nystagmus, glaucoma, late retinal detachments, or relevant in basic science but not in routine clinical practice. even blindness.4–8 Until now, the pathogenesis of ROP has not In our previous publications, we described the comparison been completely understood. The various ROP risk factors between abundances of all plasma proteins and differences at include low gestational age and low birthweight, higher or the transcriptional level (mRNA) from prematurely born fluctuating oxygen levels during oxygen therapy, hyperglyce- children with different gestational ages, both from cord blood mia, insulin use, inadequate postnatal nutrition, improper as well as at the 36th postmenstrual week (36 PMA).13–15 We insulin-like growth factor 1 concentration, poor postnatal presented that protein abundance differences are highly growth, pre- and postnatal infection, and genetic factors.9 dependent on gestation age. However, we still know too little about why some infants The goal of this study was to identify potential ROP plasma develop this complication of prematurity while others, born at biomarkers and provide a more molecular-based understanding the same age and with similar clinical characteristics, do not. of ROP by comparing a proteome profile at the two time points Studies on protein abundance profiling may not only broaden (at birth and at 36 PMA) in groups of infants with and without our knowledge about potential achievable biomarkers and help ROP. However, as our previous studies revealed, the level of Copyright 2018 The Authors iovs.arvojournals.org j ISSN: 1552-5783 5312 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. Downloaded from iovs.arvojournals.org on 09/28/2021 Proteomic Analysis of Plasma Proteins in Newborns With ROP IOVS j November 2018 j Vol. 59 j No. 13 j 5313 prematurity has a profound impact on the plasma protein riched, trypsin-digested, randomly assigned to iTRAQ reagents, quantitative changes. Therefore, we performed a standardiza- labeled, and, finally, combined to corresponding 8plex tion of the obtained results to the gestational age. Our assemblies. For data normalization, each 8plex assembly secondary aim was to corroborate the protein level by a contained an internal common reference generated by complementary gene expression study. combining equal amounts of protein from all of the samples included in the measurements. Next, labeled peptides were fractionated by strong cation exchange chromatography, after METHODS which flow-through fraction and 11 consecutive injections of the elution buffer (5–500 mM ammonium acetate) were This study is an analysis of data collected as part of a multisite collected. Thus, the labeled peptides from each 8plex assembly study to investigate the transcriptome and proteome in 13–15 were distributed across 12 strong cation exchange fractions. preterm infants. The study was approved by the Jagiello- Each fraction was then separated by reversed-phase liquid nian University Bioethical Committee and adheres to the tenets chromatography and applied on-line to a Velos Pro (Thermo of the Declaration of Helsinki. Scientific, Waltham, MA, USA) mass spectrometer through a nanoelectrospray ion source. Spectra were collected in full Enrolled Patients scan mode (400–1500 Da), followed by five pairs of collisional- induced dissociation (CID) and higher energy collisional All preterm newborns with a gestational age of 30 weeks were consecutively enrolled into the study between September dissociation (HCD) tandem mass spectrometry (MS/MS) scans 1, 2013, and November 30, 2015, at the Warsaw Medical of the five most intense precursor ions from the survey full University Neonatal Intensive Care Unit (NICU), Warsaw, scan and, subsequently, merged to hybrid HCD-CID spectra by EasierMGF software.20 These were analyzed by the X!Tandem Poland. Informed consent was obtained antenatally from the 21 22 parents with an explanation of the nature and possible (The GPM Organization) and Comet search engines, consequences of the study. statistically validated with PeptideProphet, and integrated with iProphet23 under the Trans-Proteomic Pipeline (TPP) suite of software (Institute for Systems Biology, Seattle, WA, USA).24 Monitoring During Hospitalization The peptide false discovery rate (FDR) was estimated by 25 All the subjects enrolled in the study underwent careful clinical Mayu (TPP), and peptide identifications with an FDR below monitoring for symptoms of ROP, as the standard of care. The 1% were considered to be correct matches. Imputation of the 16 missing values in peptide abundances was performed in a screening of infants for ROP followed standard guidelines. 26 The examination and the qualification for laser therapy were MaxQuant environment on the log2-transformed normalized provided by an experienced specialist in ophthalmology and iTRAQ, which reports intensities with a criterion of at least retina diseases. Laser photocoagulation was performed on 75% of the values present for a peptide in the dataset by children who developed any stage ROP with plus disease in drawing the values from the normal distribution, with parameters optimized to mimic a typical low-abundance zone I, stage 3 ROP without plus disease in zone I, or stage 2 or 27 3 ROP with plus disease in zone II. In the case of ROP measurement. DanteR software was used for protein progression despite laser treatment, the patient might have quantitation and the statistical analysis of iTRAQ-labeled been qualified to receive anti-vascular endothelial growth peptides. ANOVA was performed at the peptide level by using factor therapy. a linear model with the Benjamini and Hochberg FDR correction used to adjust P values. Protein fold change
Recommended publications
  • Factor XIII and Fibrin Clot Properties in Acute Venous Thromboembolism
    International Journal of Molecular Sciences Review Factor XIII and Fibrin Clot Properties in Acute Venous Thromboembolism Michał Z ˛abczyk 1,2 , Joanna Natorska 1,2 and Anetta Undas 1,2,* 1 John Paul II Hospital, 31-202 Kraków, Poland; [email protected] (M.Z.); [email protected] (J.N.) 2 Institute of Cardiology, Jagiellonian University Medical College, 31-202 Kraków, Poland * Correspondence: [email protected]; Tel.: +48-12-614-30-04; Fax: +48-12-614-21-20 Abstract: Coagulation factor XIII (FXIII) is converted by thrombin into its active form, FXIIIa, which crosslinks fibrin fibers, rendering clots more stable and resistant to degradation. FXIII affects fibrin clot structure and function leading to a more prothrombotic phenotype with denser networks, characterizing patients at risk of venous thromboembolism (VTE). Mechanisms regulating FXIII activation and its impact on fibrin structure in patients with acute VTE encompassing pulmonary embolism (PE) or deep vein thrombosis (DVT) are poorly elucidated. Reduced circulating FXIII levels in acute PE were reported over 20 years ago. Similar observations indicating decreased FXIII plasma activity and antigen levels have been made in acute PE and DVT with their subsequent increase after several weeks since the index event. Plasma fibrin clot proteome analysis confirms that clot-bound FXIII amounts associated with plasma FXIII activity are decreased in acute VTE. Reduced FXIII activity has been associated with impaired clot permeability and hypofibrinolysis in acute PE. The current review presents available studies on the role of FXIII in the modulation of fibrin clot properties during acute PE or DVT and following these events.
    [Show full text]
  • BIOINFORMATICS DOI: 10.1093/Bioinformatics/Btg1030
    Vol. 19 Suppl. 1 2003, pages i222–i224 BIOINFORMATICS DOI: 10.1093/bioinformatics/btg1030 GeneLoc: exon-based integration of human genome maps Naomi Rosen, Vered Chalifa-Caspi, Orit Shmueli, Avital Adato, Michal Lapidot, Julie Stampnitzky, Marilyn Safran ∗ and Doron Lancet Weizmann Institute of Science, Rehovot, Israel Received on January 6, 2003; accepted on February 20, 2003 ABSTRACT to provide a comprehensive gene list, NCBI’s LocusLink Motivation: Despite the numerous available whole- contains thousands of model genes, categorized by level genome mapping resources, no comprehensive, inte- and type of support. Even known genes appearing in every grated map of the human genome yet exists. database may have different names in each database. The Results: GeneLoc, software adjunct to GeneCards and biologist must move among databases to figure out which UDB, integrates gene lists by comparing genomic coordi- genes are the same, and which could be a novel gene nates at the exon level and assigns unique and meaningful sought. UCSC’s Genome Browser website maps genes identifiers to each gene. from several sources on the same scale, but the maps are Availability: http://bioinfo.weizmann.ac.il/genecards and not integrated, making it difficult to relate genes from http://genecards.weizmann.ac.il/udb different sources. As stated (Jongeneel, 2000),‘there is an Supplementary information: http://bioinfo.weizmann.ac. urgent need for a human gene index that can be used to il/cards-bin/AboutGCids.cgi, http://genecards.weizmann. identify transcripts unambiguously.’ The author contends ac.il/GeneLocAlg.html that this index should have, among others, the following Contact: [email protected] qualities: comprehensiveness, uniqueness, and stability.
    [Show full text]
  • Exome Sequencing and Clot Lysis Experiments Demonstrate the R458C Mutation of the Alpha Chain of Fibrinogen to Be Associated
    Journal of Atherosclerosis and Thrombosis Vol.23, No.4 431 Original Article Exome Sequencing and Clot Lysis Experiments Demonstrate the R458C Mutation of the Alpha Chain of Fibrinogen to be Associated with Impaired Fibrinolysis in a Family with Thrombophilia Israel Fernández-Cadenas1, 2, Anna Penalba2, Cristina Boada2, Caty Carrerra MsC2, Santiago Rodriguez Bueno3, Adoración Quiroga4, Jasone Monasterio4, Pilar Delgado2, Eduardo Anglés-Cano5 and Joan Montaner2 1Stroke pharmacogenomics and genetics laboratory, Fundació Docencia i Recerca MutuaTerrassa, Hospital Mutua de Terrassa, Terrassa, Spain 2Neurovascular Research Laboratory and Neurovascular Unit. Neurology and Medicine Departments-Universitat Autònoma de Barcelona. Vall d’Hebrón Hospital, Barcelona, Spain 3Servicio de Hematología. Hospitals “Vall d’Hebron”, Barcelona, Spain 4Vascular Biology and Haemostasis Research Unit, Vall d’Hebrón Hospital, Barcelona, Spain 5Inserm UMRS 1140, Therapeutic Innovations in Haemostasis, Université Paris Descartes, Paris, France Aim: We report the study of a familial rare disease with recurrent venous thromboembolic events that remained undiagnosed for many years using standard coagulation and hemostasis techniques. Methods: Exome sequencing was performed in three familial cases with venous thromboembolic dis- ease and one familial control using NimbleGen exome array. Clot lysis experiments were performed to analyze the reasons of the altered fibrinolytic activity caused by the mutation found. Results: We found a mutation that consists of a R458C substitution on the fibrinogen alpha chain (FGA) gene confirmed in 13 new familial subjects that causes a rare subtype of dysfibrinogenemia characterized by venous thromboembolic events. The mutation was already reported to be associated with a fibrinogen variant called fibrinogen Bordeaux. Clot-lysis experiments showed a decreased and slower fibrinolytic activity in carriers of this mutation as compared to normal subjects, thus demon- strating an impaired fibrinolysis of fibrinogen Bordeaux.
    [Show full text]
  • Anti-FIBRINOGEN (Human Plasma) (GOAT) Antibody Peroxidase Conjugated - 200-103-240S
    Anti-FIBRINOGEN (Human Plasma) (GOAT) Antibody Peroxidase Conjugated - 200-103-240S Code: 200-103-240S Size: 25 µL Product Description: Anti-FIBRINOGEN (Human Plasma) (GOAT) Antibody Peroxidase Conjugated - 200-103-240S Concentration: 1.0 mg/mL by UV absorbance at 280 nm PhysicalState: Liquid (sterile filtered) Label Peroxidase (Horseradish) Host Goat Species Reactivity human Buffer 0.02 M Potassium Phosphate, 0.15 M Sodium Chloride, pH 7.2 Stabilizer 10 mg/mL Bovine Serum Albumin (BSA) - Immunoglobulin and Protease free Preservative 0.01% (w/v) Gentamicin Sulfate. Do NOT add Sodium Azide! Storage Condition Store vial at -20° C or below prior to opening. This vial contains a relatively low volume of reagent (25 µL). To minimize loss of volume dilute 1:10 by adding 225 µL of the buffer stated above directly to the vial. Recap, mix thoroughly and briefly centrifuge to collect the volume at the bottom of the vial. Use this intermediate dilution when calculating final dilutions as recommended below. Store the vial at -20°C or below after dilution. Avoid cycles of freezing and thawing. Synonyms FGA antibody, FGA protein antibody, FGB antibody, FGG antibody, Fib2 antibody, Fibrinogen A alpha polypeptide antibody, Fibrinogen A alpha polypeptide chain antibody, Fibrinogen alpha chain antibody Application Note Anti-FIBRINOGEN Antibody (peroxidase coniugated) antibody is functional in ELISA, western blot, and immunohistochemical assays. Concentrations should be optimized by researcher. Background Peroxidase Conjugated Anti-FIBRINOGEN Antibody is specific of fibrinogen protein. Fibrinogen is a soluble plasma glycoprotein synthesised by the liver that is converted by thrombin into fibrin during blood coagulation.
    [Show full text]
  • Label-Free Proteomic Methodology for the Analysis of Human Kidney Stone Matrix Composition Frank A
    Witzmann et al. Proteome Science (2016) 14:4 DOI 10.1186/s12953-016-0093-x METHODOLOGY Open Access Label-free proteomic methodology for the analysis of human kidney stone matrix composition Frank A. Witzmann1*, Andrew P. Evan2, Fredric L. Coe3, Elaine M. Worcester3, James E. Lingeman4 and James C. Williams Jr2 Abstract Background: Kidney stone matrix protein composition is an important yet poorly understood aspect of nephrolithiasis. We hypothesized that this proteome is considerably more complex than previous reports have indicated and that comprehensive proteomic profiling of the kidney stone matrix may demonstrate relevant constitutive differences between stones. We have analyzed the matrices of two unique human calcium oxalate stones (CaOx-Ia and CaOx-Id) using a simple but effective chaotropic reducing solution for extraction/solubilization combined with label-free quantitative mass spectrometry to generate a comprehensive profile of their proteomes, including physicochemical and bioinformatic analysis.` Results: We identified and quantified 1,059 unique protein database entries in the two human kidney stone samples, revealing a more complex proteome than previously reported. Protein composition reflects a common range of proteins related to immune response, inflammation, injury, and tissue repair, along with a more diverse set of proteins unique to each stone. Conclusion: The use of a simple chaotropic reducing solution and moderate sonication for extraction and solubilization of kidney stone powders combined with label-free quantitative mass spectrometry has yielded the most comprehensive list to date of the proteins that constitute the human kidney stone proteome. Keywords: Calcium oxalate, Kidney stone, Label-free quantitative liquid chromatography–tandem mass spectrometry, Matrix protein, Nephrolithiasis, Proteomics Background deposition is the primary event, at least in the formation The organic matrix within urinary stones has long been of CaOx stones over plaque.
    [Show full text]
  • Genome Analysis and Knowledge
    Dahary et al. BMC Medical Genomics (2019) 12:200 https://doi.org/10.1186/s12920-019-0647-8 SOFTWARE Open Access Genome analysis and knowledge-driven variant interpretation with TGex Dvir Dahary1*, Yaron Golan1, Yaron Mazor1, Ofer Zelig1, Ruth Barshir2, Michal Twik2, Tsippi Iny Stein2, Guy Rosner3,4, Revital Kariv3,4, Fei Chen5, Qiang Zhang5, Yiping Shen5,6,7, Marilyn Safran2, Doron Lancet2* and Simon Fishilevich2* Abstract Background: The clinical genetics revolution ushers in great opportunities, accompanied by significant challenges. The fundamental mission in clinical genetics is to analyze genomes, and to identify the most relevant genetic variations underlying a patient’s phenotypes and symptoms. The adoption of Whole Genome Sequencing requires novel capacities for interpretation of non-coding variants. Results: We present TGex, the Translational Genomics expert, a novel genome variation analysis and interpretation platform, with remarkable exome analysis capacities and a pioneering approach of non-coding variants interpretation. TGex’s main strength is combining state-of-the-art variant filtering with knowledge-driven analysis made possible by VarElect, our highly effective gene-phenotype interpretation tool. VarElect leverages the widely used GeneCards knowledgebase, which integrates information from > 150 automatically-mined data sources. Access to such a comprehensive data compendium also facilitates TGex’s broad variant annotation, supporting evidence exploration, and decision making. TGex has an interactive, user-friendly, and easy adaptive interface, ACMG compliance, and an automated reporting system. Beyond comprehensive whole exome sequence capabilities, TGex encompasses innovative non-coding variants interpretation, towards the goal of maximal exploitation of whole genome sequence analyses in the clinical genetics practice. This is enabled by GeneCards’ recently developed GeneHancer, a novel integrative and fully annotated database of human enhancers and promoters.
    [Show full text]
  • Update on Antithrombin I (Fibrin)
    ©2007 Schattauer GmbH,Stuttgart AnniversaryIssueContribution Update on antithrombinI(fibrin) Michael W. Mosesson 1957–2007) The Blood Research Institute,BloodCenter of Wisconsin, Milwaukee,Wisconsin, USA y( Summary AntithrombinI(fibrin) is an important inhibitor of thrombin exosite 2.Thelatterreaction results in allostericchanges that generation that functions by sequestering thrombin in the form- down-regulate thrombin catalytic activity. AntithrombinIdefi- Anniversar ingfibrin clot,and also by reducing the catalytic activity of fibrin- ciency (afibrinogenemia), defectivethrombin binding to fibrin th boundthrombin.Thrombin binding to fibrin takesplace at two (antithrombin Idefect) found in certain dysfibrinogenemias (e.g. 50 classesofnon-substrate sites: 1) in thefibrin Edomain (two per fibrinogen Naples 1), or areduced plasma γ ’ chain content (re- molecule) throughinteractionwith thrombin exosite 1; 2) at a ducedantithrombin Iactivity),predispose to intravascular singlesite on each γ ’ chain through interaction with thrombin thrombosis. Keywords Fibrinogen,fibrin, thrombin, antithrombin I ThrombHaemost 2007; 98: 105–108 Introduction meric with respecttoits γ chains,and accounts for ~85% of human plasma fibrinogen. Thrombinbinds to its substrate, fibrinogen, through an anion- Low-affinity thrombin binding activity reflects thrombin ex- binding sitecommonlyreferred to as ‘exosite 1’ (1,2). Howell osite1bindinginEdomain of fibrin, as recentlydetailedbyana- recognized nearly acenturyago that the fibrin clot itself exhibits lysesofthrombin-fibrin
    [Show full text]
  • Familial Multiple Coagulation Factor Deficiencies
    Journal of Clinical Medicine Article Familial Multiple Coagulation Factor Deficiencies (FMCFDs) in a Large Cohort of Patients—A Single-Center Experience in Genetic Diagnosis Barbara Preisler 1,†, Behnaz Pezeshkpoor 1,† , Atanas Banchev 2 , Ronald Fischer 3, Barbara Zieger 4, Ute Scholz 5, Heiko Rühl 1, Bettina Kemkes-Matthes 6, Ursula Schmitt 7, Antje Redlich 8 , Sule Unal 9 , Hans-Jürgen Laws 10, Martin Olivieri 11 , Johannes Oldenburg 1 and Anna Pavlova 1,* 1 Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany; [email protected] (B.P.); [email protected] (B.P.); [email protected] (H.R.); [email protected] (J.O.) 2 Department of Paediatric Haematology and Oncology, University Hospital “Tzaritza Giovanna—ISUL”, 1527 Sofia, Bulgaria; [email protected] 3 Hemophilia Care Center, SRH Kurpfalzkrankenhaus Heidelberg, 69123 Heidelberg, Germany; ronald.fi[email protected] 4 Department of Pediatrics and Adolescent Medicine, University Medical Center–University of Freiburg, 79106 Freiburg, Germany; [email protected] 5 Center of Hemostasis, MVZ Labor Leipzig, 04289 Leipzig, Germany; [email protected] 6 Hemostasis Center, Justus Liebig University Giessen, 35392 Giessen, Germany; [email protected] 7 Center of Hemostasis Berlin, 10789 Berlin-Schöneberg, Germany; [email protected] 8 Pediatric Oncology Department, Otto von Guericke University Children’s Hospital Magdeburg, 39120 Magdeburg, Germany; [email protected] 9 Division of Pediatric Hematology Ankara, Hacettepe University, 06100 Ankara, Turkey; Citation: Preisler, B.; Pezeshkpoor, [email protected] B.; Banchev, A.; Fischer, R.; Zieger, B.; 10 Department of Pediatric Oncology, Hematology and Clinical Immunology, University of Duesseldorf, Scholz, U.; Rühl, H.; Kemkes-Matthes, 40225 Duesseldorf, Germany; [email protected] B.; Schmitt, U.; Redlich, A.; et al.
    [Show full text]
  • Russell Doolittle Biochemistry Laboratory Records
    http://oac.cdlib.org/findaid/ark:/13030/tf0v19n7xm No online items Russell Doolittle Biochemistry Laboratory Records Special Collections & Archives, UC San Diego Special Collections & Archives, UC San Diego Copyright 2005 9500 Gilman Drive La Jolla 92093-0175 [email protected] URL: http://libraries.ucsd.edu/collections/sca/index.html Russell Doolittle Biochemistry MSS 0077 1 Laboratory Records Descriptive Summary Languages: English Contributing Institution: Special Collections & Archives, UC San Diego 9500 Gilman Drive La Jolla 92093-0175 Title: Russell Doolittle Biochemistry Laboratory Records Identifier/Call Number: MSS 0077 Physical Description: 87.4 Linear feet (83 records cartons, 8 archives boxes, 16 oversize folders and 1 art bin item) Date (inclusive): 1971 - 1998 Abstract: The records (1971-1998) of Dr. Russell F. Doolittle's biochemistry laboratory at the University of California, San Diego include notebooks related to the first determination of the complete sequence of amino acids in the human fibrinogen molecule, paper files for the amino acid sequences contained in the protein sequence data bank called NEWAT, as well as other research, correspondence and Protein Society files. Preferred Citation Russell Doolittle Biochemistry Laboratory Records, MSS 0077. Special Collections & Archives, UC San Diego. Administrative History Dr. Russell F. Doolittle, professor of chemistry at the University of California, San Diego, headed a campus science laboratory that conducts research in the evolutionary and structural aspects of proteins. In 1979, Doolittle's laboratory successfully analyzed the structure of the amino acid sequence for the human fibrinogen molecule. During that study, ten to twenty postdoctoral, graduate and undergraduate researchers worked to pull apart and analyze the amino acid sequences in the alpha, beta and gamma chains of fibrinogen.
    [Show full text]
  • Full Review Molecular Disease Presentation in Diabetic Nephropathy
    Nephrol Dial Transplant (2015) 30: iv17–iv25 doi: 10.1093/ndt/gfv267 Full Review Molecular disease presentation in diabetic nephropathy Downloaded from https://academic.oup.com/ndt/article/30/suppl_4/iv17/2324968 by guest on 25 September 2021 Andreas Heinzel1, Irmgard Mühlberger1, Gil Stelzer2, Doron Lancet2, Rainer Oberbauer3, Maria Martin4 and Paul Perco1 1emergentec biodevelopment GmbH, Vienna, Austria, 2Weizmann Institute of Science, Rehovot, Israel, 3Medical University of Vienna, Vienna, Austria and 4EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, UK Correspondence and offprint requests to: Paul Perco; E-mail: [email protected] ABSTRACT INTRODUCTION Diabetic nephropathy, as the most prevalent chronic disease of Kidney disease is a common problem in patients with diabetes. the kidney, has also become the primary cause of end-stage Depending on the degree of GFR impairment and/or albumin- renal disease with the incidence of kidney disease in type 2 dia- uria, roughly 30% of subjects are affected. As with most betics continuously rising. As with most chronic diseases, the diabetes-associated comorbidities, the pathophysiology is pathophysiology is multifactorial with a number of deregulated multifactorial and the molecular pathways involved in the ini- molecular processes contributing to disease manifestation and tiation and progression constitute a wide and complex as well as progression. Current therapy mainly involves interfering in the redundant network of regulators. Considerable success has renin–angiotensin–aldosterone
    [Show full text]
  • Serum Concentrations of Afamin Are Elevated in Patients with Polycystic Ovary Syndrome
    AKo¨ ninger et al. Afamin in patients with PCOS 1–7 3:120 Research Open Access Serum concentrations of afamin are elevated in patients with polycystic ovary syndrome Angela Ko¨ ninger, Philippos Edimiris, Laura Koch, Antje Enekwe, Claudia Lamina1, Sabine Kasimir-Bauer, Rainer Kimmig and Hans Dieplinger1,2 Correspondence Department of Gynecology and Obstetrics, University of Duisburg-Essen, D-45122 Essen, Germany should be addressed 1Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, to H Dieplinger Innsbruck Medical University, Scho¨ pfstrasse 41, A-6020 Innsbruck, Austria Email 2Vitateq Biotechnology GmbH, A-6020 Innsbruck, Austria [email protected] Abstract Oxidative stress seems to be present in patients with polycystic ovary syndrome (PCOS). Key Words The aim of this study was to evaluate the correlation between characteristics of PCOS and " vitamin E-binding protein serum concentrations of afamin, a novel binding protein for the antioxidant vitamin E. " afamin A total of 85 patients with PCOS and 76 control subjects were investigated in a pilot cross- " polycystic ovary syndrome sectional study design between 2009 and 2013 in the University Hospital of Essen, Germany. " oxidative stress Patients with PCOS were diagnosed according to the Rotterdam ESHRE/ASRM-sponsored " insulin resistance PCOS Consensus Workshop Group. Afamin and diagnostic parameters of PCOS were determined at early follicular phase. Afamin concentrations were significantly higher in Endocrine Connections patients with PCOS than in controls (odds ratio (OR) for a 10 mg/ml increase in afaminZ1.3, 95% CIZ1.08–1.58). This difference vanished in a model adjusting for age, BMI, free testosterone index (FTI), and sex hormone-binding globulin (SHBG) (ORZ1.05, 95% CIZ0.80–1.38).
    [Show full text]
  • Causal Varian Discovery in Familial Congenital Heart Disease - an Integrative -Omic Approach Wendy Demos Marquette University
    Marquette University e-Publications@Marquette Master's Theses (2009 -) Dissertations, Theses, and Professional Projects Causal Varian discovery in Familial Congenital Heart Disease - An Integrative -Omic Approach Wendy Demos Marquette University Recommended Citation Demos, Wendy, "Causal Varian discovery in Familial Congenital Heart Disease - An Integrative -Omic Approach" (2012). Master's Theses (2009 -). 140. https://epublications.marquette.edu/theses_open/140 CAUSAL VARIANT DISCOVERY IN FAMILIAL CONGENITAL HEART DISEASE – AN INTEGRATIVE –OMIC APPROACH by Wendy M. Demos A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Master of Science Milwaukee, Wisconsin May 2012 ABSTRACT CAUSAL VARIANT DISCOVERY IN FAMILIAL CONGENITAL HEART DISEASE – AN INTEGRATIVE –OMIC APPROACH Wendy M. Demos Marquette University, 2012 Background : Hypoplastic left heart syndrome (HLHS) is a congenital heart defect that leads to neonatal death or compromised quality of life for those affected and their families. This syndrome requires extensive medical intervention for the affected to survive. It is characterized by significant underdevelopment or non-existence of the components of the left heart and the aorta, including the left ventricular cavity and mass. There are many factors ranging from genetics to environmental relationships hypothesized to lead to the development of the syndrome, including recent studies suggesting a link between hearing impairment and congenital heart defects (CHD). Although broadly characterized those factors remain poorly understood. The goal of this project is to systematically utilize bioinformatics tools to determine the relationships of novel mutations found in exome sequencing to a familial congenital heart defect. Methods A systematic genomic and proteomic approach involving exome sequencing, pathway analysis, and protein modeling was implemented to examine exome sequencing data of a patient with HLHS.
    [Show full text]