Overview of Neurological Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Overview of Neurological Conditions Overview of Neurological Conditions Dr. David Lipson, MD FRCPC, Physical Medicine and Rehabilitation Purpose Overview of pertinent neurological conditions Build basic understanding of Diagnosis Presentation/manifestations Investigations Complications Issues on causation Management Basic understanding of associated functional limitations Agenda Acquired Brain Injury Traumatic Brain Injury Concussion Myelopathy Radiculopathy Peripheral nerve injury and peripheral neuropathy Specific neuro conditions Stroke, MS, GBS, CRPS, etc… Not covering cognitive as this is Dr. Zakzanis’ talk Acquired Brain Injury Catch all term that incorporates all non-congenital/non-developmental brain damage, including traumatic brain injury Brain damage in the first year or two of life is often categorized separately and will usually fall under Cerebral Palsy Includes Anoxic brain injury Traumatic Brain Injury Brain injury from metabolic disturbances Brain damage from seizures Brain damage from intoxication All forms of brain injury Acquired Brain Injury cont… In medical legal world usually most interested in traumatic brain injury Talk will focus more so on traumatic brain injury Important to note that other causes of acquired brain injury may coexist with traumatic brain injury and may be part of secondary injury cascade Traumatic brain injury Injury to the brain from an externally applied force Usually graded in severity on the basis of loss of consciousness (and duration), post-traumatic amnesia (duration), and GCS score 30-60 minutes post injury May or may not involve structural damage to the brain tissue Trauamtic brain injury severity Mild TBI Deficits associated with mild TBI may or may not be permanent Mild TBI may or may not be associated with identifiable structural damage on conventional neuroimaging Concussion is a subset of mild TBI Concussion A subset of mild TBI Functional, not structural disturbance in brain function Caused by trauma to the head, or trauma to the body with impulsive force transmitted to the head Standard neuroimaging is typically normal If traumatic abnormalities seen on conventional neuroimaging or if parameters of initial presentation exceed mild TBI, then diagnosis exceeds concussion. Concussion diagnosis Minimum criteria to diagnose a concussion not agreed upon Screening tools helpful to determine who should be assessed by MD In cases of LOC or decline in GCS following trauma, diagnosis more clear Diagnosis is usually made on the basis of an MD assessment who is familiar with the diagnosis of concussion Some form of early onset altered mental status is commonly relied upon to make diagnosis in setting of probable inciting event normally a clinical diagnosis Presentation of concussion Many different symptomatic complaints Some symptoms clear and some are very non-specific Some of the more clear presentations involve Loss/alteration of consciousness Confusion – cant speak coherently or cant follow instructions Lack of awareness of surroundings – cant orient to time or place Nausea and vomiting Loss of balance/disturbance in walking steadiness Severe dizziness Significant hearing and/or vision changes/ringing ears Seizure Concussion presentation cont… Some concussions associated with complaints that are less specific Headache Lethargy Emotionality Sleep disturbance Feeling of unwellness Light or sound sensitivity Difficulty concentrating Concussion: can easily be confused with Headache/migraine Neck sprain ADHD Intoxication Depression Other psychoemotional conditions Viral illness Disrupted sleep Hormonal changes – low thyroid, monthly cycles Fibromyalgia-like conditions Many eye/ear medical problems Concussion Timeline Normally presents immediately (no time lag) Can be initially missed in setting of more severe distracting injuries or if alone and unaware of what is transpiring Retrospective concussion diagnoses not always reliable Can progress over hours in minority of cases. Concussion Recovery In most cases, concussion follows a predictable course Onset of symptoms fast Usually not progressive, but in some cases can progress over minutes to hours Resolution usually follows a predictable pattern Most individuals (85% of adults) recover from concussion within 2 weeks Kids can take a little longer Almost everyone recovers within 3 months A small percentage have persistent complications Concussion treatment No proven treatment to augment recovery Care is supportive Should avoid early provocation and engage in a slow stepwise reintegration into activity Treatment for persistent symptoms in chronic stage may be appropriate. Evidence is not strong for specific concussion therapies. Some therapies may be worthwhile to try but others are highly contentious. Some people have risks for prolonged recovery Many prior concussions Many concussions in a short period of time Migraine headaches before the concussion Younger age kids History of ADHD Psychiatric issues More severe concussion with loss of consciousness Post-Concussion Syndrome Failure of concussion symptoms to recover within normal expected time No universally agreed upon definition Often thought to be polyfactorial because neurobiological effects of concussion are typically not thought to persist Ensure all factors explored: substance use, sleep, psychoemotional factors, etc… Structural Abnormalities – not a concussion Subdural hematomas Epidural hematoma Subarachnoid hemorrhage Intraparenchymal hemorrhage Diffuse axonal injury Subdural Hematoma Bleeding below the dura but outside brain parenchyma This is reason patients asked to be frequently awakened to ensure no progression SDH can slowly expand resulting in late progressive brain compression Epidural Hematoma Bleeding between the skull and dura Less threatening over long term because less likely to expand Late compromise is unlikely Subarachnoid hemorrhage Bleeding into subarachnoid space (a space closer to brain tissue than a subdural hematoma) Does not usually result in progressive mass effect, but can cause other late complications Vasospasm/stroke Very severe headaches Seizures Hydrocephalus Intraparechymal hemorrhages Bleeding into the substance of the brain In addition to direct damage and mass effect damage, can result in late damage from hydrocephalus as well Diffuse axonal injury This is the type of injury being caused by rotational forces May be little visible presentation on standard neuroimaging MRI could show hemosiderin deposition (blood products in characteristic patters) as well as tiny diffuse hemorrhages Rotational forces result in mass shearing of axons within the brain Complications of Traumatic Brain Injury Cognitive decrement in many domains Emotional lability/personality change/abulia/agitation Motor decline/mobility decline/gross and fine motor/balance decline Headaches Cognitive communication difficulties Dysphagia Incontinence Seizures Dizziness Care for Traumatic Brain Injury (with structural damage) Rehab should be interdisciplinary care process Work to retrain lost neuro function/remediate deficits Training can facilitate adaptive neuroplasticity Train to circumvent limitations May involve use of mobility aids or communication aids or alter fluid consistency etc… Manage complications Treat spasticity, treat aspiration pneumonia, treat pain, treat depression etc… Traumatic Brain Injury Recovery In moderate to severe traumatic brain injury, most recovery usually within 1st 6 months Most plateau in recovery around 1 year post-injury Some do exhibit late recovery, but not common Traumatic brain injury disability Can be devastating for Vocational performance Performance of activities of daily living Interpersonal relationships Pursuit of enjoyment of life Vertigo Common complaint and/or comorbidity after traumatic brain injury Can be related to the neurobiological effects of brain injury itself Can be related to bone fleck in inner ear – BPPV Can be related to other factors – substance use, labyrinthitis, menierre’s,etc.. Should be distinguished from light headedmenss Helpful to have ENT input Dix Hallpike maneuver should be assessed In BPPV, Dix Hallpike maneuver is normally provocative for a matter of seconds, not more than minutes Stroke Stroke is similar to traumatic brain injury but there are key differences Stroke is an acute onset neurological event Associated with a vascular disruption in the brain Occurs spontaneously Can be ischemic or hemorrhagic Neuro deficits correspond to neuroanatomy/pathology Term CVA (cerebrovascular event) no longer used Stroke cont… As compared to TBI, stoke deficits are usually more focal/less diffuse There is usually better correlation between neuroanatomical involvement and clinical findings May see much more localized deficits in areas such as aphasia/apraxia/agnosia Sensorimotor deficits also usually much more localized Can produce profound disability in many of same domains as TBI Causation is not usually the subject of disability litigation because not traumatically induced Stroke management Management of those with significant deficits should be interdisciplinary Treatment should focus on Remediation of deficits Circumvention of functional limitations Management of complications Secondary prevention Optimizing re-integration Recovery – most recovery occurs in 1st 3-6 months and usually plateau by 1 yr. Multiple sclerosis Progressive condition with poorly understood pathophysiology Lesions arise in the central nervous system (brain and spinal cord) that are demyelinating Also optic neuritis tends to occur Lesions and neurological dysfunction
Recommended publications
  • Positive Cases in Suspected Cauda Equina Syndrome
    Edinburgh Research Explorer The clinical features and outcome of scan-negative and scan- positive cases in suspected cauda equina syndrome Citation for published version: Hoeritzauer, I, Pronin, S, Carson, A, Statham, P, Demetriades, AK & Stone, J 2018, 'The clinical features and outcome of scan-negative and scan-positive cases in suspected cauda equina syndrome: a retrospective study of 276 patients', Journal of Neurology, vol. 265, no. 12. https://doi.org/10.1007/s00415- 018-9078-2 Digital Object Identifier (DOI): 10.1007/s00415-018-9078-2 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Journal of Neurology Publisher Rights Statement: This is an open access article distributed under the terms of the Creative Commons CC BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Journal of Neurology (2018) 265:2916–2926 https://doi.org/10.1007/s00415-018-9078-2 ORIGINAL COMMUNICATION The clinical features and outcome of scan-negative and scan-positive cases in suspected cauda equina syndrome: a retrospective study of 276 patients Ingrid Hoeritzauer1,2,5 · Savva Pronin1,5 · Alan Carson1,2,3 · Patrick Statham2,4,5 · Andreas K.
    [Show full text]
  • Cardiovascular Collapse Following Succinylcholine in a Paraplegic Patient
    ParajJleg£a (I973), II, 199-204 CARDIOVASCULAR COLLAPSE FOLLOWING SUCCINYLCHOLINE IN A PARAPLEGIC PATIENT By J. C. SNOW,! M.D., B. J. KRIPKE, M.D. , G. P. SESSIONS, M.D. and A. J. FINCK, M.D. University Hospital, Boston, DeKalb General Hospital, Decatur, Georgia, and Boston University School of Medicine, Boston, Massachusetts 02118 INTRODUCTION SEVERAL reports have been presented that have discussed cardiovascular collapse following the intravenous infusion of succinylcholine in patients with burns, massive trauma,tetanus, spinal cord injury, brain injury,upper or lower motor neuron disease,and uraemia with increased serum potassium. The purpose of this article is to report a spinal cord injured patient who developed cardiac arrest following administration of succinylcholine, possibly due to succinylcholine-induced hyperkalaemia. The anaesthesia management during the course of subsequent surgical procedure proved to be uneventful. CASE REPORT On 7 December 1971, a 20-year-old white man was admitted to the hospital after he fell 50 feet from a scaffold to the ground. He was reported to have been in good health until this accident. His legs and outstretched hands absorbed the major impact. No loss of consciousness was reported at any time. Neurologic examination revealed absent function of muscle groups in the distribution distal to L4, including the sacral segments. There were contractions of both quadriceps muscles in the adductors of the legs. The legs were held in flexion with no evidence of function in his hip abductors, extensors, knee flexors or anything below his knee. He had intact sensation over the entire thigh and medial calf. He had no apparent abdominal or cremasteric reflexes, no knee or ankle jerks, no Babinski responses, and no sacral sparing.
    [Show full text]
  • Wallerian Degeneration and Inflammation in Rat Peripheral Nerve Detected by in Vivo MR Imaging
    741 Wallerian Degeneration and Inflammation in Rat Peripheral Nerve Detected by in Vivo MR Imaging DavidS. Titelbaum 1 To investigate the role of MR imaging in wallerian degeneration, a series of animal Joel L. Frazier 2 models of increasingly complex peripheral nerve injury were studied by in vivo MR. Robert I. Grossman 1 Proximal tibial nerves in brown Norway rats were either crushed, transected (neurotomy), Peter M. Joseph 1 or transected and grafted with Lewis rat (allograft) or brown Norway (isograft) donor Leonard T. Yu 2 nerves. The nerves distal to the site of injury were imaged at intervals of 0-54 days after surgery. Subsequent histologic analysis was obtained and correlated with MR Eleanor A. Kassab 1 3 findings. Crush injury, neurotomy, and nerve grafting all resulted in high signal intensity William F. Hickey along the course of the nerve observed on long TR/TE sequences, corresponding to 2 Don LaRossa edema and myelin breakdown from wallerian degeneration. The abnormal signal inten­ 4 Mark J. Brown sity resolved by 30 days after crush injury and by 45-54 days after neurotomy, when the active changes of wallerian degeneration had subsided. These changes were not seen in sham-operated rats. Our findings suggest that MR is capable of identifying traumatic neuropathy in a peripheral nerve undergoing active wallerian degeneration. The severity of injury may be reflected by the corresponding duration of signal abnormality. With the present methods, MR did not distinguish inflammatory from simple posttraumatic neuropathy. Wallerian degeneration is the axonal degeneration and loss of myelin that occurs when an axon is separated from its cell body.
    [Show full text]
  • What to Expect After Having a Subarachnoid Hemorrhage (SAH) Information for Patients and Families Table of Contents
    What to expect after having a subarachnoid hemorrhage (SAH) Information for patients and families Table of contents What is a subarachnoid hemorrhage (SAH)? .......................................... 3 What are the signs that I may have had an SAH? .................................. 4 How did I get this aneurysm? ..................................................................... 4 Why do aneurysms need to be treated?.................................................... 4 What is an angiogram? .................................................................................. 5 How are aneurysms repaired? ..................................................................... 6 What are common complications after having an SAH? ..................... 8 What is vasospasm? ...................................................................................... 8 What is hydrocephalus? ............................................................................... 10 What is hyponatremia? ................................................................................ 12 What happens as I begin to get better? .................................................... 13 What can I expect after I leave the hospital? .......................................... 13 How will the SAH change my health? ........................................................ 14 Will the SAH cause any long-term effects? ............................................. 14 How will my emotions be affected? .......................................................... 15 When should
    [Show full text]
  • What%Is%Epilepsy?%
    What%is%Epilepsy?% Epilepsy(is(a(brain(disorder(in(which(a(person(has(repeated(seizures((convulsions)(over(time.(Seizures(are( episodes(of(disturbed(brain(activity(that(cause(changes(in(attention(or(behavior.( Causes( Epilepsy(occurs(when(permanent(changes(in(brain(tissue(cause(the(brain(to(be(too(excitable(or(jumpy.( The(brain(sends(out(abnormal(signals.(This(results(in(repeated,(unpredictable(seizures.((A(single(seizure( that(does(not(happen(again(is(not(epilepsy.)( Epilepsy(may(be(due(to(a(medical(condition(or(injury(that(affects(the(brain,(or(the(cause(may(be( unknown((idiopathic).( Common(causes(of(epilepsy(include:( •Stroke(or(transient(ischemic(attack((TIA)( •Dementia,(such(as(Alzheimer's(disease( •Traumatic(brain(injury( •Infections,(including(brain(abscess,(meningitis,(encephalitis,(and(AIDS( •Brain(problems(that(are(present(at(birth((congenital(brain(defect)( •Brain(injury(that(occurs(during(or(near(birth( •Metabolism(disorders(present(at(birth((such(as(phenylketonuria)( •Brain(tumor( •Abnormal(blood(vessels(in(the(brain( •Other(illness(that(damage(or(destroy(brain(tissue( •Use(of(certain(medications,(including(antidepressants,(tramadol,(cocaine,(and(amphetamines( Epilepsy(seizures(usually(begin(between(ages(5(and(20,(but(they(can(happen(at(any(age.(There(may(be(a( family(history(of(seizures(or(epilepsy.( Symptoms( Symptoms(vary(from(person(to(person.(Some(people(may(have(simple(staring(spells,(while(others(have( violent(shaking(and(loss(of(alertness.(The(type(of(seizure(depends(on(the(part(of(the(brain(affected(and( cause(of(epilepsy.(
    [Show full text]
  • A Cauda Equina Syndrome in a Patient Treated with Oral Anticoagulants
    Paraplegia 32 (1994) 277-280 © 1994 International Medical Society of Paraplegia A cauda equina syndrome in a patient treated with oral anticoagulants. Case report l l l 2 l J Willems MD, A Anne MD, P Herregods MD, R Klaes MD, R Chappel MD 1 Department of Physical Medicine and Rehabilitation, 2 Department of Neurosurgery, A.z. Middelheim, Lindendreef 1, B-2020 Antwerp, Belgium. The authors report a patient who was on oral anticoagulants because of mitral valve disease and who developed paraplegia from subarachnoid bleeding involv­ ing the cauda equina. The differential diagnosis, investigations and treatment of the cauda equina syndrome are described. Keywords: cauda equina syndrome; anticoagulants; subarachnoid haemorrhage; mitral valve disease. Case report A 32 year old woman from Chile presented with a complete paraplegia. She claimed that the paraplegia had developed progressively over 8 months. Initially she had paraesthesiae in her feet, followed by progressive paresis of both legs, beginning distally, over a period of 3 months. Two months after the onset of illness she complained of bladder incontinence. There was no history of trauma or low back pain. Clinical examination in our hospital revealed a flaccid paraplegia at L1 level, and loss of sensation from the groins to the feet, including saddle anaesthesia. The knee and ankle jerks were absent. The anal sphincter was atonic. She had an indwelling urethral catheter, and she was faecally incontinent. Myelography and a CT scan were carried out, and a space-occupying lesion at the level of T12-L4 (Figs 1, 2) was defined. Surgical ex­ ploration was done to determine the cause.
    [Show full text]
  • On Lumbar Disc Herniation – Aspects of Outcome After Surgical Treatment
    From the Dept. of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet and the Dept. of Clinical Science and Education, Södersjukhuset, Karolinska Institutet Stockholm Sweden On Lumbar Disc Herniation – Aspects of outcome after surgical treatment Peter Elkan Stockholm 2017 1 The frontpage picture is published with license from: Zephyr/Science Photo Library/IBL http://www.sciencephoto.com/ All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by E-PRINT © Peter Elkan, 2017 ISBN 978-91-7676-712-2 2 Institutionen för klinisk vetenskap, intervention och teknik, Enheten för ortopedi och bioteknologi, Karolinska Institutet On Lumbar Disc Herniation – Aspects of outcome after surgical treatment AKADEMISK AVHANDLING som för avläggande av medicine doktorsexamen vid Karolinska Institutet offentligen försvaras i Aulan, 6 tr, Södersjukhuset Sjukhusbacken 10, Stockholm Fredag 19 maj, kl 09:00 Av Peter Elkan Handledare Opponent Docent Paul Gerdhem Enheten för ortopedi Docent Bengt Sandén Institutionen för och bioteknologi Institutionen för klinisk kirurgiska vetenskaper vetenskap, intervention och teknik Uppsala Universitet Karolinska Institutet Bihandledare Betygsnämnd Professor Sari Ponzer Institutionen för klinisk Professor Olle Svensson Institutionen för forskning och utbildning, Södersjukhuset kirurgi och perioperativ vetenskap Karolinska institutet Umeå Universitet Med dr Ulric Willers Institutionen för klinisk Professor Lars Weidenhielm Institutionen för forskning och utbildning, Södersjukhuset molekylär medicin och kirurgi Karolinska institutet Karolinska Institutet Adj. professor Rune Hedlund Institutionen för Docent Gunnar Ordeberg Institutionen för kliniska vetenskaper kirurgiska vetenskaper Sahlgrenska Akademin Uppsala Universitet Stockholm 2017 3 4 To my dear family, all patients suffering from sciatic pain and all patients who have contributed with data in this project.
    [Show full text]
  • Nerve Injury After Peripheral Nerve Block: Allbest Rights Practices Reserved
    PRINTER-FRIENDLY VERSION AVAILABLE AT ANESTHESIOLOGYNEWS.COM Nerve Injury After Peripheral Nerve Block: AllBest rights Practices reserved. Reproduction and Medical-Legal in whole or in part without Protection permission isStrategies prohibited. Copyright © 2015 McMahon Publishing Group unless otherwise noted. DAVID HARDMAN, MD, MBA Professor of Anesthesiology Vice Chair for Professional Affairs Department of Anesthesiology University of North Carolina at Chapel Hill Chapel Hill, North Carolina Dr. Hardman reports no relevant financial conflicts of interest. he risk for permanent or severe nerve injury after peripheral nerve blocks (PNBs) is Textremely low, irrespective of its etiology (ie, related to anesthesia, surgery or the patient). The risk inherent in a procedure should always be explicitly discussed with the patient (sidebar, page 4). In fact, it may be better to define this phenomenon ultrasound-guided axillary blocks were used, demon- as postoperative neurologic symptoms (PONS) or peri- strated a very low nerve injury rate of 0.0037% at hos- operative nerve injuries (PNI) in order to help stan- pital discharge.1-7 dardize terminology. Permanent injury rates, as defined A 2009 prospective case series involving more than by a neurologic abnormality present at or beyond 12 7,000 PNBs, conducted in Australia and New Zealand, months after the procedure, have consistently ranged demonstrated that when a postoperative neurologic from 0.029% to 0.2%, although the results of a recent symptom was diagnosed, it was 9 times more likely to multicenter Web-based survey in France, in which be due to a non–anesthesia-related cause than a nerve ANESTHESIOLOGY NEWS • JULY 2015 1 block–related cause.6 On the other hand, it is well doc- PNI rate of 1.7% in patients who received a single-injec- umented in the orthopedic and anesthesia literature tion interscalene block (ISB).
    [Show full text]
  • Brain Injury and Opioid Overdose
    Brain Injury and Opioid Overdose: Acquired Brain Injury is damage to the brain 2.8 million brain injury related occurring after birth and is not related to congenital or degenerative disease. This includes anoxia and hospital stays/deaths in 2013 hypoxia, impairment (lack of oxygen), a condition consistent with drug overdose. 70-80% of hospitalized patients are discharged with an opioid Rx Opioid Use Disorder, as defined in DSM 5, is a problematic pattern of opioid use leading to clinically significant impairment, manifested by meaningful risk 63,000+ drug overdose-related factors occurring within a 12-month period. deaths in 2016 Overdose is injury to the body (poisoning) that happens when a drug is taken in excessive amounts “As the number of drug overdoses continues to rise, and can be fatal. Opioid overdose induces respiratory doctors are struggling to cope with the increasing number depression that can lead to anoxic or hypoxic brain of patients facing irreversible brain damage and other long injury. term health issues.” Substance Use and Misuse is: The frontal lobe is • Often a contributing factor to brain injury. History of highly susceptible abuse/misuse is common among individuals who to brain oxygen have sustained a brain injury. loss, and damage • Likely to increase for individuals who have misused leads to potential substances prior to and post-injury. loss of executive Acute or chronic pain is a common result after brain function. injury due to: • Headaches, back or neck pain and other musculo- Sources: Stojanovic et al 2016; Melton, C. Nov. 15,2017; Devi E. skeletal conditions commonly reported by veterans Nampiaparampil, M.D., 2008; Seal K.H., Bertenthal D., Barnes D.E., et al 2017; with a history of brain injury.
    [Show full text]
  • Non-Traumatic Rupture of the Ligamentum Flavum With
    Interdisciplinary Neurosurgery 16 (2019) 51–53 Contents lists available at ScienceDirect Interdisciplinary Neurosurgery journal homepage: www.elsevier.com/locate/inat Case Reports & Case Series Non-traumatic rupture of the ligamentum flavum with symptomatic ☆ spontaneous lumbar epidural hematoma: A case report T ⁎ Ashwin G. Ramayya (MD, PhD)a, ,1, Alejandro Carrasquilla (BS)c,1, Frederick L. Hitti (MD, PhD)a, Peter J. Madsen (MD)a, Jayesh P. Thawani (MD)a, Kimberly Imbesi (MD)b, Michael Trotter (MD)b, David K. Kung (MD)a, James Schuster (MD, PhD)a a Department of Neurosurgery, The University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19103, United States b Department of Emergency Medicine, The University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19103, United States c Perelman School of Medicine, The University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19103, United States ARTICLE INFO ABSTRACT Keywords: We present a case of a healthy 31 year-old male plumber who presented to the emergency room with acute onset Ligamentum flavum rupture back pain that acutely developed after simply bending over. He developed radiculopathy and cauda equina Epidural hematoma syndrome over a period of hours. An MRI demonstrated an acute lumbar epidural hematoma and a disruption of Cauda equina syndrome the ligamentum flavum, suggesting that he may have torn the ligament with lumbar flexion. The patient was Back pain taken to the operating room for an emergent lumbar decompression and recovered full neurological function post-operatively. To our knowledge, this is the first report of a spontaneous symptomatic lumbar epidural he- matoma resulting from a non-traumatic ligamentum flavum rupture.
    [Show full text]
  • Delayed Facial Palsy After Head Injury
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.40.4.342 on 1 April 1977. Downloaded from Journal ofNeurology, Neurosurgery, andPsychiatry, 1977, 40, 342-350 Delayed facial palsy after head injury K. PUVANENDRAN, M. VITHARANA, AND P. K. WONG From the University Department ofMedicine, and the Department ofOtorhinolaryngology, Singapore General Hospital, Singapore SUMMARY Where facial palsy follows head injury after many days, the mechanism is not clear, and there has been no detailed study on this condition. In this prospective study, an attempt is made to estimate this complication of head injury, and to study its pathogenesis, natural history, prognosis, and sequelae which differ markedly from Bell's palsy. It has a much worse prognosis and so surgical decompression should be considered early in this condition. The facial nerve is the motor cranial nerve which is studies, for prediction of prognosis at a time when most commonly affected in closed head injuries surgical intervention seems most advantageous. (Turner, 1943). In facial palsy which immediately follows a head injury, the mechanism is obvious, but Patients and methods Protected by copyright. it is not clear when the facial palsy follows the head injury after many days (Potter and Braakman, 1976). During the period May 1974-April 1975, there were Traumatic facial palsy has received much attention 6304 cases of head injury admitted to government but few authors distinguish between immediate and hospitals in Singapore. The chief criterion for delayed palsy. admission to hospital was the occurrence of traumatic Turner (1944) studied a selected group of war-time amnesia or unconsciousness, indicating concussion head injuries from a military hospital for head of the brain.
    [Show full text]
  • Extraordinary Recovery from Complete Cauda Equina Syndrome Following L3 Fracture
    Citation: Spinal Cord Series and Cases (2016) 2, 16027; doi:10.1038/scsandc.2016.27 © 2016 International Spinal Cord Society All rights reserved 2058-6124/16 www.nature.com/scsandc CASE REPORT Against the odds: extraordinary recovery from complete cauda equina syndrome following L3 fracture. Time still matters Silvia Antiga1, Klint Asafu-Adjaye1, Fahim Anwar1 and Pierluigi Vergara2 INTRODUCTION: Cauda equina syndrome secondary to lumbar fracture is a relative rare event. Although it is usually considered as an emergency, there is still controversy in the literature regarding the optimal timeframe of surgical intervention in complete spinal cord and cauda equina injuries. CASE PRESENTATION: We report a case of a 24-year-old victim of a road traffic accident admitted with an L3 fracture causing complete cauda equina syndrome, who underwent early surgery within 12 h and made an extraordinary recovery (from AIS A to E). DISCUSSION: Although the timing of surgery in complete traumatic spinal cord injury and cauda equina syndrome remains controversial, this case highlights the importance of early surgical intervention even in complete injuries. Spinal Cord Series and Cases (2016) 2, 16027; doi:10.1038/scsandc.2016.27; published online 10 November 2016 INTRODUCTION endplate fracture of the third lumbar vertebra (AOspine type A3), Cauda equina syndrome (CES) is a severe neurological disorder with a retropulsed fragment lying within the spinal canal and resulting from an injury to the cauda equina and causing causing 490% stenosis (Figure 1). polyradicular symptomatology, including lower limbs and sphincter The patient developed some paraesthesia in both lower limbs deficits. CES not only affects the physical well-being of the individual, ~ 8 h following injury, but with persistent numbness and no but can also have psychological consequences that may have long- improvement in motor, bladder or bowel function.
    [Show full text]