Metamodeling for Large-Scale Optimization Tasks Based on Object Networks

Total Page:16

File Type:pdf, Size:1020Kb

Metamodeling for Large-Scale Optimization Tasks Based on Object Networks Metamodeling for Large-Scale Optimization Tasks Based on Object Networks Ludmilla Werbos, Robert Kozma, Rodrigo Silva-Lugo, Giovanni E. Pazienza, and Paul Werbos Abstract—Optimization in large-scale networks – such as expensive models or computations. In this paper, we large logistical networks and electric power grids involving summarize the theory of inverse metamodeling and apply it many thousands of variables – is a very challenging task. In this to a practical problem, related to large-scale optimization paper, we present the theoretical basis and the related tasks. experiments involving the development and use of visualization The paper is structured as follows: in Sec. II, we introduce tools and improvements in existing best practices in managing the theoretical background of metamodeling; in Sec. III, we optimization software, as preparation for the use of present a practical problem and the numerical simulations “metamodeling” – the insertion of complex neural networks or other universal nonlinear function approximators into key obtained by using the principles of metamodeling; in Sec. parts of these complicated and expensive computations; this IV, we discuss the importance of using proper tools to novel approach has been developed by the new Center for represent the knowledge obtained from our simulations; in Large-Scale Integrated Optimization and Networks (CLION) Sec. V, we draw the conclusions and discuss the future at University of Memphis, TN. developments of our project. II. PRINCIPLES OF METAMODELING I. INTRODUCTION A. Forward Metamodeling HIS paper presents a combined method of solving and In the world of stochastic optimization and operations Tunderstanding scheduling and optimization tasks using research, “metamodeling” usually means forward both Linear Programming and Neural Networks. The metamodeling. In forward metamodeling, a neural network problem of transportation network configuration and fleet or some other function approximator is trained to assignment in realistic case is multidimensional (hundreds of approximate the function we are trying to minimize. We can thousands variables and constraints) and computationally represent a neural network as a function, f(x,W), where x are challenging. The best way to approach it at present time is the inputs to the network, and W are the weights or Mixed Integer Programming (MIP) [1]. This approach led to parameters of the network. In the case of forwards great success stories, such as [2], [3], especially recently metamodeling, f is just a scalar, so we may write the neural with arrival of Gurobi software [4] and faster multicore network as f(x,W). The task is to minimize the cost function computers. C(u, α) subject to some constraints, where: However, the more we succeed, the more we want. The • C is the total cost scope of real-life problems is growing faster than software • α is the set of all the inputs, including those in the and hardware capabilities. If a few years ago we would be constraints satisfied to be able to predict a typical day for • u is the set of all the things we are trying to optimize, manufacturing, distribution or logistics optimization including the fleet assignments purposes, now we want to see an image of a typical weekend There are three steps to forward metamodeling here: or a week. That would give the planners more power to 1. Pick a sample {ui} of possible fleet assignments ui – consider all the opportunities and their combinations on the either all based on the same input vector α, or with larger scale, instead of limiting themselves to a limited different α. Let us assume that we have m sample duration chunks of time modeled independently. points; in other words, i = 1 to m. Because the goal here is to minimize the amount of time 2. Calculate C(ui, α) for each of these assignments required to get to a desired level of accuracy, the best 3. Train the neural network f(x,W) to approximate C approach will include some use of metamodeling – the use over this sample; in other words, find the weights of fast universal approximators to approximate slower, more W which minimize the error between f and C, for our sample of m cases, where x(i) is set to ui or to ui||αi . Another way to say this is that we train the Manuscript submitted February 10, 2011. This work has been supported neutral network f over the set of sample pairs { <u , in part by FedEX Institute of Technology FIT Research Grant. i Ludmilla Werbos is with IntControl LLC and CLION, The University of C(ui, α)> }. Memphis. Forward metamodeling is especially useful for stochastic R. Kozma, R. Silva-Lugo and G.E. Pazienza are with CLION, The optimization problems where it is very expensive to University of Memphis. G.E. Pazienza is also with the Pazmany University, calculate the function C, or where the only way to get its Budapest ([email protected]). Paul Werbos is with CLION, The University of Memphis, and the value is to do a physical experiment. But in the practical National Science Foundation (NSF). logistics problems we have been looking at, it is generally what makes the mammal brain different from and more very easy to calculate the cost C after u and α are already powerful than the reptile brain. We may or may not be ready known. Therefore, the usual forwards metamodeling is not to get into this kind of advanced capability, but it certainly is so useful here. fundamental and important. 3) Robust optimization: Most of the US power grid is now B. Inverse Metamodeling managed by large Independent System Operators (ISOs) and The term “inverse metamodeling” is fairly new. The term Regional Transmission Organizations (RTO), who use large itself is due to Russell Barton of Penn State [5], but it is optimization packages to make decisions ranging from possible to generalize the idea, to include the following kind commitment of generation a day ahead, to actual dispatch of of inverse metamodeling, described in [6]: generation 15 minutes ahead, to planning many years ahead. 1. Pick a sample of possible α, {αi}, with i = 1 to m. The optimization problems now solved by these systems [8], 2. Run the optimizer to calculate the optimal u, u*(α), for are not so different from those in logistics. When the utilities each α, subject to the constraints. shift from day-ahead commitment to actual operations, they 3. Train the neural network f(x,W) to approximate the always have to make some (costly) adjustments, because of function u*(α) over the training set {<αi,u*(αi)>}. In other things which cannot be predicted ahead of time. Therefore, words, pick W so as to minimize the error between f and u*, they can get better results by reformulating the optimization when α is used as the input to the neural network. problem itself, by injecting noise. If one accounts for If the neural network were an exact approximator, and uncertainties in the vector u, the problem becomes more extremely fast, this would be extremely useful in saving complicated in theory – but the actual surface of expected computation time; however, it is not likely to be quite so error becomes more convex, which would typically increase good in the beginning. It will require a very complex neural the value of warm starts and possibly allow better use of new network to get decent approximation in this application. This methods. kind of research is the priority area for CLION, which specializes in complex neural networks. If the neural III. OPTIMIZATION OF SCHEDULING FOR LARGE-SCALE network is designed to match the capabilities of the LOGISTICS TASKS dedicated hardware implementation, as much as possible, it should be very fast in real time. Even if the approximation is A. Efficient Scheduling Process not perfect, this may provide a fast warm start for the Efficient scheduling is a crucial issue in many areas optimizer program. The value of warm starts varies a lot belonging to both defense and civilian domains, including from problem to problem, but generally provides a faster disaster response, power distribution, transportation, convergence compared to random or randomized starting set manufacturing job scheduling etc. [9-11]. Throughout the of data. years, there have been countless efforts to tackle this C. Variations and Extensions problem; nevertheless, the appearance on the market of 1) Gradient-assisted learning (GAL): With forwards manycore platforms and advanced FPGAs offers unexplored possibilities, which requires novel and more efficient metamodeling, we can usually calculate ∇uC for each approaches. The ultimate goal is to develop efficient sample point u , whenever we have a differentiable i nonlinear optimizers, like approximate dynamic algorithm to calculate C itself, at a computational cost about programming [12], though we are far away from this goal: the same as the computation of C itself. This comes from the today's state of art optimization tools explore mixed integer use of the chain rule for ordered derivatives, see [7]. programming techniques. We can use Gradient Assisted Learning to train the neural In the present work, we used the Gurobi software to network to match not only f and C, but f and C as well. ∇ ∇ explore and understand better the problem of large scale This can be extended to inverse metamodeling as well. If the optimization tasks, which may include hundreds of vector u has, say, 200 components, GAL causes a sample of thousands of variables. In particular, we focused on the N cases to be “worth” 200 times as much – as if 200×N decision support to optimize the assignment of resources for examples had been collected. For inverse metamodeling of the domestic market operation of a large distribution logistics tasks, it is necessary to get sensitivity information company, where in the logistics operation there are about from the existing optimizer to make this possible, and build 200 delivery points served by a fleet.
Recommended publications
  • Multi-Objective Optimization of Unidirectional Non-Isolated Dc/Dcconverters
    MULTI-OBJECTIVE OPTIMIZATION OF UNIDIRECTIONAL NON-ISOLATED DC/DC CONVERTERS by Andrija Stupar A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Edward S. Rogers Department of Electrical and Computer Engineering University of Toronto © Copyright 2017 by Andrija Stupar Abstract Multi-Objective Optimization of Unidirectional Non-Isolated DC/DC Converters Andrija Stupar Doctor of Philosophy Graduate Department of Edward S. Rogers Department of Electrical and Computer Engineering University of Toronto 2017 Engineers have to fulfill multiple requirements and strive towards often competing goals while designing power electronic systems. This can be an analytically complex and computationally intensive task since the relationship between the parameters of a system’s design space is not always obvious. Furthermore, a number of possible solutions to a particular problem may exist. To find an optimal system, many different possible designs must be evaluated. Literature on power electronics optimization focuses on the modeling and design of partic- ular converters, with little thought given to the mathematical formulation of the optimization problem. Therefore, converter optimization has generally been a slow process, with exhaus- tive search, the execution time of which is exponential in the number of design variables, the prevalent approach. In this thesis, geometric programming (GP), a type of convex optimization, the execution time of which is polynomial in the number of design variables, is proposed and demonstrated as an efficient and comprehensive framework for the multi-objective optimization of non-isolated unidirectional DC/DC converters. A GP model of multilevel flying capacitor step-down convert- ers is developed and experimentally verified on a 15-to-3.3 V, 9.9 W discrete prototype, with sets of loss-volume Pareto optimal designs generated in under one minute.
    [Show full text]
  • Julia, My New Friend for Computing and Optimization? Pierre Haessig, Lilian Besson
    Julia, my new friend for computing and optimization? Pierre Haessig, Lilian Besson To cite this version: Pierre Haessig, Lilian Besson. Julia, my new friend for computing and optimization?. Master. France. 2018. cel-01830248 HAL Id: cel-01830248 https://hal.archives-ouvertes.fr/cel-01830248 Submitted on 4 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 1 « Julia, my New frieNd for computiNg aNd optimizatioN? » Intro to the Julia programming language, for MATLAB users Date: 14th of June 2018 Who: Lilian Besson & Pierre Haessig (SCEE & AUT team @ IETR / CentraleSupélec campus Rennes) « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 2 AgeNda for today [30 miN] 1. What is Julia? [5 miN] 2. ComparisoN with MATLAB [5 miN] 3. Two examples of problems solved Julia [5 miN] 4. LoNger ex. oN optimizatioN with JuMP [13miN] 5. LiNks for more iNformatioN ? [2 miN] « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 3 1. What is Julia ? Open-source and free programming language (MIT license) Developed since 2012 (creators: MIT researchers) Growing popularity worldwide, in research, data science, finance etc… Multi-platform: Windows, Mac OS X, GNU/Linux..
    [Show full text]
  • Numericaloptimization
    Numerical Optimization Alberto Bemporad http://cse.lab.imtlucca.it/~bemporad/teaching/numopt Academic year 2020-2021 Course objectives Solve complex decision problems by using numerical optimization Application domains: • Finance, management science, economics (portfolio optimization, business analytics, investment plans, resource allocation, logistics, ...) • Engineering (engineering design, process optimization, embedded control, ...) • Artificial intelligence (machine learning, data science, autonomous driving, ...) • Myriads of other applications (transportation, smart grids, water networks, sports scheduling, health-care, oil & gas, space, ...) ©2021 A. Bemporad - Numerical Optimization 2/102 Course objectives What this course is about: • How to formulate a decision problem as a numerical optimization problem? (modeling) • Which numerical algorithm is most appropriate to solve the problem? (algorithms) • What’s the theory behind the algorithm? (theory) ©2021 A. Bemporad - Numerical Optimization 3/102 Course contents • Optimization modeling – Linear models – Convex models • Optimization theory – Optimality conditions, sensitivity analysis – Duality • Optimization algorithms – Basics of numerical linear algebra – Convex programming – Nonlinear programming ©2021 A. Bemporad - Numerical Optimization 4/102 References i ©2021 A. Bemporad - Numerical Optimization 5/102 Other references • Stephen Boyd’s “Convex Optimization” courses at Stanford: http://ee364a.stanford.edu http://ee364b.stanford.edu • Lieven Vandenberghe’s courses at UCLA: http://www.seas.ucla.edu/~vandenbe/ • For more tutorials/books see http://plato.asu.edu/sub/tutorials.html ©2021 A. Bemporad - Numerical Optimization 6/102 Optimization modeling What is optimization? • Optimization = assign values to a set of decision variables so to optimize a certain objective function • Example: Which is the best velocity to minimize fuel consumption ? fuel [ℓ/km] velocity [km/h] 0 30 60 90 120 160 ©2021 A.
    [Show full text]
  • Specifying “Logical” Conditions in AMPL Optimization Models
    Specifying “Logical” Conditions in AMPL Optimization Models Robert Fourer AMPL Optimization www.ampl.com — 773-336-AMPL INFORMS Annual Meeting Phoenix, Arizona — 14-17 October 2012 Session SA15, Software Demonstrations Robert Fourer, Logical Conditions in AMPL INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 1 New and Forthcoming Developments in the AMPL Modeling Language and System Optimization modelers are often stymied by the complications of converting problem logic into algebraic constraints suitable for solvers. The AMPL modeling language thus allows various logical conditions to be described directly. Additionally a new interface to the ILOG CP solver handles logic in a natural way not requiring conventional transformations. Robert Fourer, Logical Conditions in AMPL INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 2 AMPL News Free AMPL book chapters AMPL for Courses Extended function library Extended support for “logical” conditions AMPL driver for CPLEX Opt Studio “Concert” C++ interface Support for ILOG CP constraint programming solver Support for “logical” constraints in CPLEX INFORMS Impact Prize to . Originators of AIMMS, AMPL, GAMS, LINDO, MPL Awards presented Sunday 8:30-9:45, Conv Ctr West 101 Doors close 8:45! Robert Fourer, Logical Conditions in AMPL INFORMS Annual Meeting — 14-17 Oct 2012 — Session SA15, Software Demonstrations 3 AMPL Book Chapters now free for download www.ampl.com/BOOK/download.html Bound copies remain available purchase from usual
    [Show full text]
  • Benchmarks for Current Linear and Mixed Integer Optimization Solvers
    ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume 63 207 Number 6, 2015 http://dx.doi.org/10.11118/actaun201563061923 BENCHMARKS FOR CURRENT LINEAR AND MIXED INTEGER OPTIMIZATION SOLVERS Josef Jablonský1 1 Department of Econometrics, Faculty of Informatics and Statistics, University of Economics, Prague, nám. W. Churchilla 4, 130 67 Praha 3, Czech Republic Abstract JABLONSKÝ JOSEF. 2015. Benchmarks for Current Linear and Mixed Integer Optimization Solvers. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63(6): 1923–1928. Linear programming (LP) and mixed integer linear programming (MILP) problems belong among very important class of problems that fi nd their applications in various managerial consequences. The aim of the paper is to discuss computational performance of current optimization packages for solving large scale LP and MILP optimization problems. Current market with LP and MILP solvers is quite extensive. Probably among the most powerful solvers GUROBI 6.0, IBM ILOG CPLEX 12.6.1, and XPRESS Optimizer 27.01 belong. Their attractiveness for academic research is given, except their computational performance, by their free availability for academic purposes. The solvers are tested on the set of selected problems from MIPLIB 2010 library that contains 361 test instances of diff erent hardness (easy, hard, and not solved). Keywords: benchmark, linear programming, mixed integer linear programming, optimization, solver INTRODUCTION with integer variables need not be solved even Solving linear and mixed integer linear in case of a very small size of the given problem. optimization problems (LP and MILP) that Real-world optimization problems have usually belong to one of the most o en modelling tools, many thousands of variables and/or constraints.
    [Show full text]
  • Combining Simulation and Optimization for Improved Decision Support on Energy Efficiency in Industry
    Linköping Studies in Science and Technology, Dissertation No. 1483 Combining simulation and optimization for improved decision support on energy efficiency in industry Nawzad Mardan Division of Energy Systems Department of Management and Engineering Linköping Institute of Technology SE-581 83, Linköping, Sweden Copyright © 2012 Nawzad Mardan ISBN 978-91-7519-757-9 ISSN 0345-7524 Printed in Sweden by LiU-Tryck, Linköping 2012 ii Abstract Industrial production systems in general are very complex and there is a need for decision support regarding management of the daily production as well as regarding investments to increase energy efficiency and to decrease environmental effects and overall costs. Simulation of industrial production as well as energy systems optimization may be used in such complex decision-making situations. The simulation tool is most powerful when used for design and analysis of complex production processes. This tool can give very detailed information about how the system operates, for example, information about the disturbances that occur in the system, such as lack of raw materials, blockages or stoppages on a production line. Furthermore, it can also be used to identify bottlenecks to indicate where work in process, material, and information are being delayed. The energy systems optimization tool can provide the company management additional information for the type of investment studied. The tool is able to obtain more basic data for decision-making and thus also additional information for the production-related investment being studied. The use of the energy systems optimization tool as investment decision support when considering strategic investments for an industry with complex interactions between different production units seems greatly needed.
    [Show full text]
  • Computational Aspects of Infeasibility Analysis in Mixed Integer Programming
    Takustr. 7 Zuse Institute Berlin 14195 Berlin Germany JAKOB WITZIG TIMO BERTHOLD STEFAN HEINZ Computational Aspects of Infeasibility Analysis in Mixed Integer Programming ZIB Report 19-54 (November 2019) Zuse Institute Berlin Takustr. 7 14195 Berlin Germany Telephone: +49 30-84185-0 Telefax: +49 30-84185-125 E-mail: [email protected] URL: http://www.zib.de ZIB-Report (Print) ISSN 1438-0064 ZIB-Report (Internet) ISSN 2192-7782 Computational Aspects of Infeasibility Analysis in Mixed Integer Programming Jakob Witzig,1 Timo Berthold,2 and Stefan Heinz3 1Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany [email protected] 2Fair Isaac Germany GmbH, Stubenwald-Allee 19, 64625 Bensheim, Germany [email protected] 3Gurobi GmbH, Ulmenstr. 37–39, 60325 Frankfurt am Main, Germany [email protected] November 6, 2019 Abstract The analysis of infeasible subproblems plays an important role in solv- ing mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to gener- ate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications, obtained by domain propagation, that led to infeasibility. The result of this analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept is called conflict graph analysis and has its origin in solving satisfiability problems and is similarly used in con- straint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. Every ray of the dual LP provides a set of multipliers that can be used to generate a single new globally valid linear constraint.
    [Show full text]
  • Introduction to Economics
    Introduction to CPLEX 1.0 Overview There are a number of commercial grade LP solvers available. Wikipedia gives a decent summary at https://en.wikipedia.org/wiki/List_of_optimization_software. Some very convenient solvers for many students include those with Excel and Matlab. The standard one that comes with Excel uses a basic implementation of the primal Simplex method; however, it is limited to 200 decision variables. To use it, the Solver add-in must be included (not installed by default). To add this facility you need to carry out the following steps: 1. Select the menu option File Options 2. Click “Add-ins” and then in the Manage box, select “Solver add-in” and then click “OK” On clicking OK, you will then be able to access the Solver option from the Analysis group of the Data tab. If you want to see how to use it, using the LP example we have been working on, click on http://www.economicsnetwork.ac.uk/cheer/ch9_3/ch9_3p07.htm. You can also buy commercial add-ons that significantly improve the power of Excel as an LP solver. For example, see http://www.solver.com/. 1 Matlab also has a very easy to use solver. And there is an add-on for Matlab, called Tomlab, which significantly increases the solver’s capabilities, and we have it at ISU if you want to use it. See http://tomopt.com/tomlab/about/ for more details about Tomlab. There are various commercial solvers today, including, for example, CPLEX, Gurobi, XPRESS, MOSEK, and LINDO. There are some lesser-known solvers that provide particularly effective means of decomposition, including ADMM and DSP.
    [Show full text]
  • Pyomo and Jump – Modeling Environments for the 21St Century
    Qi Chen and Braulio Brunaud Pyomo and JuMP – Modeling environments for the 21st century EWO Seminar Carnegie Mellon University March 10, 2017 1.All the information provided is coming from the standpoint of two somewhat expert users in Pyomo and Disclaimer JuMP, former GAMS users 2. All the content is presented to the best of our knowledge 2 The Optimization Workflow . These tasks usually involve many tools: Data Input – Databases – Excel – GAMS/AMPL/AIMMS/CPLEX Data – Tableau Manipulation . Can a single tool be used to complete the entire workflow? Optimization Analysis Visualization 3 Optimization Environments Overview Visualization End User ● Different input sources ● Easy to model ● AMPL: Specific modeling constructs ○ Piecewise ○ Complementarity Modeling conditions ○ Logical Implications ● Solver independent models ● Developing complex algorithms can be challenging ● Large number of solvers available Advanced Optimization algorithms Expert ● Commercial 4 Optimization Environments Overview Visualization End User ● Different input sources ● Build input forms ● Easy to model ● Multiplatform: ○ Standalone Modeling ○ Web ○ Mobile ● Solver independent models ● Build visualizations ● Commercial Advanced Optimization algorithms Expert 5 Optimization Environments Overview Visualization End User ● Different input sources ● Hard to model ● Access to the full power of a solver ● Access to a broad range of tools Modeling ● Solver-specific models ● Building visualizations is hard ● Open source and free Advanced Optimization Expert algorithms solver
    [Show full text]
  • CME 338 Large-Scale Numerical Optimization Notes 2
    Stanford University, ICME CME 338 Large-Scale Numerical Optimization Instructor: Michael Saunders Spring 2019 Notes 2: Overview of Optimization Software 1 Optimization problems We study optimization problems involving linear and nonlinear constraints: NP minimize φ(x) n x2R 0 x 1 subject to ` ≤ @ Ax A ≤ u; c(x) where φ(x) is a linear or nonlinear objective function, A is a sparse matrix, c(x) is a vector of nonlinear constraint functions ci(x), and ` and u are vectors of lower and upper bounds. We assume the functions φ(x) and ci(x) are smooth: they are continuous and have continuous first derivatives (gradients). Sometimes gradients are not available (or too expensive) and we use finite difference approximations. Sometimes we need second derivatives. We study algorithms that find a local optimum for problem NP. Some examples follow. If there are many local optima, the starting point is important. x LP Linear Programming min cTx subject to ` ≤ ≤ u Ax MINOS, SNOPT, SQOPT LSSOL, QPOPT, NPSOL (dense) CPLEX, Gurobi, LOQO, HOPDM, MOSEK, XPRESS CLP, lp solve, SoPlex (open source solvers [7, 34, 57]) x QP Quadratic Programming min cTx + 1 xTHx subject to ` ≤ ≤ u 2 Ax MINOS, SQOPT, SNOPT, QPBLUR LSSOL (H = BTB, least squares), QPOPT (H indefinite) CLP, CPLEX, Gurobi, LANCELOT, LOQO, MOSEK BC Bound Constraints min φ(x) subject to ` ≤ x ≤ u MINOS, SNOPT LANCELOT, L-BFGS-B x LC Linear Constraints min φ(x) subject to ` ≤ ≤ u Ax MINOS, SNOPT, NPSOL 0 x 1 NC Nonlinear Constraints min φ(x) subject to ` ≤ @ Ax A ≤ u MINOS, SNOPT, NPSOL c(x) CONOPT, LANCELOT Filter, KNITRO, LOQO (second derivatives) IPOPT (open source solver [30]) Algorithms for finding local optima are used to construct algorithms for more complex optimization problems: stochastic, nonsmooth, global, mixed integer.
    [Show full text]
  • Tomlab Product Sheet
    TOMLAB® - For fast and robust large- scale optimization in MATLAB® The TOMLAB Optimization Environment is a powerful optimization and modeling package for solving applied optimization problems in MATLAB. TOMLAB provides a wide range of features, tools and services for your solution process: • A uniform approach to solving optimization problem. • A modeling class, tomSym, for lightning fast source transformation. • Automatic gateway routines for format mapping to different solver types. • Over 100 different algorithms for linear, discrete, global and nonlinear optimization. • A large number of fully integrated Fortran and C solvers. • Full integration with the MAD toolbox for automatic differentiation. • 6 different methods for numerical differentiation. • Unique features, like costly global black-box optimization and semi-definite programming with bilinear inequalities. • Demo licenses with no solver limitations. • Call compatibility with MathWorks’ Optimization Toolbox. • Very extensive example problem sets, more than 700 models. • Advanced support by our team of developers in Sweden and the USA. • TOMLAB is available for all MATLAB R2007b+ users. • Continuous solver upgrades and customized implementations. • Embedded solvers and stand-alone applications. • Easy installation for all supported platforms, Windows (32/64-bit) and Linux/OS X 64-bit For more information, see http://tomopt.com or e-mail [email protected]. Modeling Environment: http://tomsym.com. Dedicated Optimal Control Page: http://tomdyn.com. Tomlab Optimization Inc. Tomlab
    [Show full text]
  • COBRA Toolbox 2.0
    COBRA Toolbox 2.0 Daniel Hyduke ( [email protected] ) Center for Systems Biology for Enteropathogens Jan Schellenberger Richard Que Ronan Fleming Ines Thiele Jeffery Orth Adam Feist Daniel Zielinski Aarash Bordbar Nathan Lewis Sorena Rahmanian Joseph Kang Bernhard Palsson University of California, San Diego Method Article Keywords: constraint based modeling, network reconstruction, metabolism, systems biology, metabolic engineering Posted Date: May 11th, 2011 DOI: https://doi.org/10.1038/protex.2011.234 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Abstract Over the past decade, a growing community of researchers has emerged around the use of COnstraint- Based Reconstruction and Analysis \(COBRA) methods to simulate, analyze and predict a variety of metabolic phenotypes using genome-scale models. The COBRA Toolbox, a MATLAB package for implementing COBRA methods, was presented earlier. Here we present a signicant update of this in silico ToolBox. Version 2.0 of the COBRA Toolbox expands the scope of computations by including in silico analysis methods developed since its original release. New functions include: \(1) network gap lling, \(2) 13C analysis, \(3) metabolic engineering, \(4) omics-guided analysis, and \(5) visualization. As with the rst version, the COBRA Toolbox reads and writes Systems Biology Markup Language formatted models. In version 2.0, we improved performance, usability, and the level of documentation. A suite of test scripts can now be used to learn the core functionality of the Toolbox and validate results. This Toolbox lowers the barrier of entry to use powerful COBRA methods. Introduction COnstraint-Based Reconstruction and Analysis \(COBRA) methods have been successfully employed in the eld of microbial metabolic engineering1-3 and are being extended to modeling transcriptional4-8 and signaling9-11 networks and the eld of public health12.
    [Show full text]