Information to Users
Total Page:16
File Type:pdf, Size:1020Kb
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 3 0 0 North Z eeb R oad . Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6 USA 313/761-4700 800/521-0600 Order Number 9201690 The improvement and application ofab initio electronic structure m ethods Kim, Kyungsun, Ph.D. The Ohio State University, 1991 Copyright ©1992 by Kim, Kyungsun. All rights reserved. UMI 300 N. Zeeb Rd. Ann Arbor, MI 48106 The Improvement and Application of Ab initio Electronic Structure Methods DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosopy in the Graduate School of The Ohio State University By Kyungsun Kim, B.S., M.S. The Ohio State University 1991 Dissertation Committee: Approved by Terry A. Miller Russell M. Pitzer Adviser Isaiah Shavitt Department of Chemistry ACKNOWLEDGMENTS I express sincere appreciation to my advisor, Professor Isaiah Shavitt, for his guidance, insight, and support throughout the research. Thanks go to the other members of my advisory committee, Professors Russell Pitzer and Terry Miller for their suggestions and comments. I thank my colleagues, Dr. Donald Comeau, Dr. Melanie Pepper, Mr. Eric Stahlberg, Mr. Bob Zellmer, Mr. Gary Kedziora, and Mr. Galen Gawboy for helpful discussions during the research. Finally, I am indebted to my parents, sister, and brothers for their years of encouragement. VITA December 1,1959 Born, Seoul, Korea 1982 ..................... B.S., Department of Chemistry, Yonsei University, Seoul, Korea 1982-1984 Graduate Teaching Associate, Department of Chemistry, Yonsei University, Seoul, Korea 1984 M.S. Department of Chemistry, Yonsei University, Seoul, Korea 1985 — 1987 Graduate Teaching Associate Department of Chemistry The Ohio State University Columbus, Ohio 43210 1987— 1988 Graduate Research Associate Department of Chemistry The Ohio State University Columbus Ohio, OHIO 43210 1988 M.S. Department of Chemistry The Ohio State University Columbus Ohio, OHIO 43210 1988 — 1989 Graduate Teaching Associate Department of Chemistry The Ohio State University Columbus, Ohio 43210 1989 — present Graduate Research Associate Department of Chemistry The Ohio State University Columbus, Ohio 43210 iii PUBLICATIONS "An ab initio study of symmetry breaking in calculation on the first excited singlet state of N2H2” Janet E. Del Bene, Kyungsun Kim, and Isaiah Shavitt, Can. J. Chem., 69, 246 (1991). ‘A study of nonstoichiometric empirical formulas for semiconductive metal oxides”, Kyung Sun Kim, Kwan Hee Lee, Ung-ln Cho, Jae Shi Choi, Bull. Korean Chem. Soc., 7, 29 (1986). FIELDS OF STUDY Major Field: Chemistry Theoretical Chemistry, Professor Isaiah Shavitt TABLE OF CONTENTS ACKNOWLEDGEMENTS..................................................................................................................... ii VITA......................................................................................................................................................iii LISTS OF TABLES............................................................................................................................ vii LISTS OF FIGURES............................................................................................................................ x CHAPTER PAGE I. Introduction .......................................................................................................................... 1 II. Methods of Electronic Structure Theory and Spectroscopy .............................................4 2.1. Introduction ............................................................................................................... 4 2.2. Approximate Solutions to the Schrodinger Equation ............................................. 5 2.3. Basis S e ts ..................................................................................................................8 2.4. Location of the Equilibrium Geometries and Frequencies .................................. 10 2.5. Population Analysis ............................................................................................... 11 2.6. Spectroscopy ..........................................................................................................12 III. Optimization of the COLUMBUS Configuration Interaction Program on the CRAY Y-MP and the IBM 3090-600E Supercomputers ................................................. 16 3.1. Introduction ..............................................................................................................16 3.2. Architecture of the CRAY Y-MP and IBM 3090 .................................................. 18 3.3. Structure of the COLUMBUS Cl Programs ........................................................... 18 3.4. Benchmark Calculations on the CRAY Y-MP ....................................................... 20 3.4.1. Matrix Multiplication and Addition 3.4.2. Automatic Inlining 3.5. Optimization on the CRAY Y-MP8/864 3.6. Optimization on the IBM 3090-600E 3.7. Results and Discussion IV. Electronic States of the HCCO Radical ........................................................................... 35 4.1. Introduction ..............................................................................................................35 4.2. Previous Studies on HCCO and the Renner-Teller Effect .....................................36 4.2.1. Previous Studies .......................................................................................... 36 4.2.2. Renner-Teller Effect .....................................................................- .............. 38 4.3. Computations ......................................................................................................... 40 4.3.1. Geometry Optimization .................................................................................40 4.3.2. Accurate Energy Determination ................................................................. 42 4.3.3. Bonding Structure Determination ............................................................... 47 4.4. Results and Discussion ........................................................................................ 47 4.4.1. Equilibrium Geometry .................................................................................. 50 4.4.2. Basis Sets and Wave Function Dependence of the Accurate Energy ............................................................................................51 4.4.3. Electronic Transition Energies ..................................................................... 54 4.4.4. Bonding Structure ........................................................................................56 4.4.5. Performance on the CRAY ...........................................................................58 V. The n -*■ 7r* Transitions and Symmetry Breaking in N2H2 ..........................................70 5.1. Introduction ............................................................................................................. 70 5.2. Review of Previous Studies on N2H2 .................................................................... 71 5.2.1. Theoretical S tudies ......................................................................................71 5.2.2. Experimental Studies .................................................................................. 72 5.3. Computations ......................................................................................................... 74 5.3.1. Basis S e t.......................................................................................................74 5.3.2. The Method Used to Resolve Symmetry Breaking in the Singlet Excited S tates .......................................................................74 5.3.3. Geometry Optimizations ...............................................................................76 5.3.4. Reference Configurations .............................................................................76 5.3.5. Frequency Calculations ...............................................................................76 5.3.6. Transition Energies ......................................................................................81