2018 Summer Program

Total Page:16

File Type:pdf, Size:1020Kb

2018 Summer Program JUNE 25-28, 2018 H O L I D A Y I N N COLLEGE PARK, MD NEW FACULTY THE WORKSHOP FOR NEW PHYSICS AND WORKSHOP ASTRONOMY FACULTY ADVISORY IS SPONSORED BY COMMITTEE Edmund Bertschinger Massachusetts Institute of Technology Beth Cunningham American Association of Physics Teachers AMERICAN ASSOCIATION Paul Gueye OF PHYSICS TEACHERS Hampton University Jack Hehn American Association of Physics Teachers Warren Hein American Association of Physics Teachers (retired) AMERICAN ASTRONOMICAL SOCIETY Robert Hilborn, PI American Association of Physics Teachers Theodore Hodapp, co-PI American Physical Society AMERICAN PHYSICAL SOCIETY Seth Hornstein University of Colorado – Boulder Tim McKay University of Michigan Laurie McNeil University of North Carolina – Chapel Hill AMERICAN INSTITUTE OF PHYSICS Jesus Pando DePaul University Edward Prather, co-PI University of Arizona Marilyne Stains NATIONAL SCIENCE FOUNDATION University of Nebraska – Lincoln Jodi Wesemann American Chemical Society WORKSHOP LEADERS Laurie McNeil Mario Belloni University of North Carolina – Chapel Hill Davidson College Chapel Hill, NC Davidson, NC [email protected] [email protected] Jorge Moreno Stephanie V. Chasteen, External Evaluator Pomona College Chasteen Educational Consulting Claremont, CA [email protected] [email protected] Darsa Donelan Alice Olmstead Gustavus Adolphus College University of Western Michigan St. Peter, MN Kalamazoo, MI [email protected] [email protected] Andrew Gavrin Kathy Perkins Indiana University-Purdue University-Indianapolis University of Colorado – Boulder Indianapolis, IN Boulder, CO [email protected] [email protected] Robert Hilborn, Workshop PI Edward Prather, Workshop Chair American Association of Physics Teachers University of Arizona College Park, MD Tucson, AZ [email protected] [email protected] Theodore Hodapp Andy Rundquist American Physical Society Hamline University College Park, MD St. Paul, MN [email protected] [email protected] Natasha Holmes Nicole E. Cabrera Salazar Cornell University Movement Consulting Ithaca, NY Atlanta, GA [email protected] [email protected] Cassandra Horii Peter Shaffer California Institute of Technology University of Washington Pasadena, CA Seattle, WA [email protected] [email protected] Corinne Manogue David Sokoloff Oregon State University University of Oregon Corvallis, OR Eugene, OR [email protected] [email protected] Bruce Mason Ronald Thornton University of Oklahoma Tufts University Norman, OK Medford, MA [email protected] [email protected] Lillian C. McDermott Mike Wood University of Washington University of St. Thomas Seattle, WA St. Paul, MN [email protected] [email protected] June 25–28, 2018 1 WORKSHOP PARTICIPANTS Ramesh Adhikari Blake Currier Mohammed Hassan Jacksonville University Worcester Polytechnic Institute University of Arizona - Tucson Sheehan Haider Ahmed Bhupal Dev Chris Herdman Lafayette College Washington University in St. Middlebury College Louis Can Ataca Paul William Hess University of Maryland - Baltimore Pratik P. Dholabhai Middlebury College County Rochester Institute of Technology Jeffrey Hyde Adam Aurisano Goucher College University of Cincinnati - Main Brian Donovan Campus United States Naval Academy Andrew Miller Jayich University of California - Santa Akaa Daniel Ayangeakaa Michelle Driscoll Barbara United States Naval Academy Northwestern University Sean P. Bartz Bindu KC Macalester College Mary Elting Emporia State University 3 North Carolina State University Bhubanjyoti Bhattacharya Andrea Kunder, Esq. Lawrence Tech University Carl D. Ferkinhoff Saint Martin’s University Winona State University Tabetha Boyajian Louisiana State University Stephanie Lauback Francois Foucart Juniata College University of New Hampshire Theodore A. Brzinski, III Haverford College Thanh K. Le Josh Fuchs University of Maine Texas Lutheran University Ashley Cannaday Rollins College Yi Li Cody Goolsby-Cole Johns Hopkins University University of Maryland - Yeliz Celik Baltimore County Rochester Institute of Technology Elena Long University of New Hampshire Natalie Gosnell Tyler Churchill Colorado College United States Naval Academy Katherine Mack North Carolina State University Rebecca Harbison Ryan Comes University of Nebraska - Lincoln Auburn University Louis McLane Rochester Institute of Seyed Mohammad Hashemi Technology Robert Cooper Rafsanjani New Mexico State University University of Miami 2 workshop for new physics and astronomy faculty WORKSHOP PARTICIPANTS Sandra Miarecki Kevin Schlaufman Katherine Truex United States Air Force Academy Johns Hopkins University United States Naval Academy Steven Morgan Francesca Serra Madeline Wade University of Minnesota Johns Hopkins University Kenyon College Santoshi Nandivada Shanmuka Shivashankara Jef Wagner Arkansas Tech University Providence College Lawrence University Elizabeth A. Nowadnick Jason Smolinski Kalpani Werellapatha New Jersey Institute of Calvin College University of Maine Technology Alfredo Takashi Suzuki Nicholas Whiting Brad Ramshaw La Sierra University Rowan University Cornell University Richelle M. Teeling-Smith Bin Xiao Amy Roberts University of Mount Union North Carolina State University University of Colorado - Denver College Junjie Yang Paul Robertson Central Michigan University University of California - Irvine June 25–28, 2018 3 MONDAY, JUNE 25 11:00 A.M.–5:00 P.M. WORKSHOP REGISTRATION GRAND BALLROOM FOYER Holiday Inn – College Park, 10000 Baltimore Ave., Beltsville, MD 20740 1:30–3:00 P.M. WORKSHOP GRAND BALLROOM AB Effective Grant Proposal Writing and Grant Opportunities with Research Corporation Richard Weiner, Program Officer, Research Corporation for Science Advancement; [email protected] 3:00–4:30 P.M. WORKSHOP GRAND BALLROOM AB Grant Opportunities at the National Science Foundation Kathleen McCloud, Division of Physics, [email protected] Keith Dienes, Division of Physics, [email protected] Joe Pesce, Division of Astronomical Sciences, [email protected] Guebre Tessema, Division of Materials Research, [email protected] 4:30–4:45 P.M. BREAK GRAND BALLROOM FOYER 4:45–5:15 P.M. WELCOMING REMARKS GRAND BALLROOM AB Welcome and Introductions Robert Hilborn, Associate Executive Officer, AAPT, PI, Physics and Astronomy New Faculty Workshop Beth Cunningham, Executive Officer, AAPT Kate Kirby, Chief Executive Officer, APS Kevin Marvel, Executive Officer, AAS Michael Moloney, Chief Executive Officer, AIP 5:15–6:30 P.M. LARGE GROUP SESSION GRAND BALLROOM AB Highlighting PER – The Journey from Traditional Instruction to Active Learning Laurie McNeil, University of North Carolina – Chapel Hill 6:30–7:30 P.M. DINNER GRAND BALLROOM CD 7:30–8:30 P.M. LARGE GROUP SESSION GRAND BALLROOM AB Change and Adoption: Scaffolding Your New Faculty Workshop Experience Cassandra Horii, California Institute of Technology TUESDAY, JUNE 26 6:30–8:30 A.M. BREAKFAST AND NETWORKING: HOLIDAY INN RESTAURANT– COLLEGE PARK 8:30–8:40 A.M INTRODUCTIONS AND FOLC ANNOUNCEMENT GRAND BALLROOM AB Robert Hilborn, AAPT; Andy Rundquist, Hamline University; Darsa Donelan, Gustavus Adolphus College; and Mike Wood, University of St. Thomas 8:40–9:55 A.M. LARGE GROUP SESSION GRAND BALLROOM AB Learner Centered Teaching in Physics and Astronomy Ed Prather, University of Arizona WORKSHOP SCHEDULE WORKSHOP 4 workshop for new physics and astronomy faculty TUESDAY, JUNE 26 (CONT.) 9:55–10:10 A.M. BREAK GRAND BALLROOM FOYER 10:10–11:10 A.M. SMALL GROUP SESSIONS (PARTICIPANTS CHOOSE THREE OF THE FOUR SESSIONS) 1) Interactive Lecture Demonstrations GRAND BALLROOM A 2) Tutorials in Physics GRAND BALLROOM B Lillian C. McDermott and Peter Shaffer, University of Washington 3) Just-in-Time Teaching GRAND BALLROOM C Andy Gavrin, Indiana University-Purdue University-Indianapolis 4) PhET simulations GRAND BALLROOM D Kathy Perkins, University of Colorado – Boulder 11:15 A.M.–12:15 P.M. SMALL GROUP SESSIONS (PARTICIPANTS CHOOSE THREE OF THE FOUR SESSIONS) Repeat from 10:10–11:10 a.m. 12:15–1:15 P.M. GROUP PHOTO AND LUNCH GRAND BALLROOM FOYER 1:15–2:15 P.M. SMALL GROUP SESSIONS (PARTICIPANTS CHOOSE THREE OF THE FOUR SESSIONS) Repeat from 10:10–11:10 a.m. 2:15–2:25 P.M. BREAK GRAND BALLROOM FOYER 2:25–3:45 P.M. SMALL GROUP SESSIONS (PARTICIPANTS CHOOSE ONE OF THE FOUR SESSIONS) 1) Going deeper: PhET GRAND BALLROOM A Kathy Perkins, University of Colorado – Boulder 2) Going deeper: JITT GRAND BALLROOM B Andy Gavrin, Indiana University-Purdue University-Indianapolis 3) Going deeper: TPS (Peer Instruction) GRAND BALLROOM C Ed Prather, University of Arizona 4) Going deeper: Interactive Lecture Demos GRAND BALLROOM D David Sokoloff, Univ. of Oregon and Ronald Thornton, Tufts Univ. 3:45–4:00 P.M. BREAK GRAND BALLROOM FOYER 4:00–5:00 P.M. SMALL GROUP SESSIONS (PARTICIPANTS CHOOSE TWO OF THE THREE SESSIONS) 1) Labs GRAND BALLROOM A Natasha Holmes, Cornell University 2) Open Source Physics GRAND BALLROOM B Mario Belloni, Davidson College 3) Lecture Tutorials GRAND BALLROOM C Ed Prather, University of Arizona 5:05–6:05 P.M. SMALL GROUP SESSIONS (PARTICIPANTS CHOOSE TWO OF THE THREE SESSIONS) TUESDAY, JUNE 26 Repeat from 4:00–5:00 p.m. 6:05–6:30 P.M. BREAK 6:30–7:30 P.M. DINNER GRAND BALLROOM CD 7:30–8:30 P.M. GROUP MEETING GRAND BALLROOM AB Faculty Online Learning Community group meeting Andy Rundquist, Hamline University; Darsa Donelan, Gustavus Adolphus College; and Mike Wood, University of St. Thomas WORKSHOP SCHEDULE WORKSHOP June 25–28, 2018 5 WEDNESDAY, JUNE 27 6:30–8:30 A.M. BREAKFAST
Recommended publications
  • Roger A. Chevalier Curriculum Vitae Address
    Roger A. Chevalier Curriculum Vitae Address Department of Astronomy, University of Virginia, P. O. Box 400325, Charlottesville, VA 22904 (434) 924–4889 (office); (434) 924–3104 (fax); [email protected] Education Ph.D. Astronomy, Princeton University, 1973 B.S. Astronomy, California Institute of Technology, 1970 Employment W. H. Vanderbilt Professor of Astronomy, University of Virginia, Charlottesville, VA, 1990– Professor of Astronomy, University of Virginia, 1985–90 Chair, Department of Astronomy, University of Virginia, 1985–88, 1989–92 Associate Professor of Astronomy, University of Virginia, 1979–85 Associate Astronomer, Kitt Peak National Observatory, Tucson, AZ, 1976–79 Assistant Astronomer, Kitt Peak National Observatory, Tucson, AZ, 1973–76 Honors NASA Public Service Group Achievement Award to Supernova Science Team (SN 1987A), 1989 Virginia’s Outstanding Scientist Award, 1991 President’s and Visitors’ Research Prize, University of Virginia, 1992 Dannie Heineman Prize for Astrophysics, 1996 Elected to National Academy of Sciences, 1996 Meeting “A Festival of Cosmic Explosions: Celebrating the Contributions and Ac- complishments of Roger Chevalier” held August 21-23, 2009, Caltech, Pasadena, CA Committees American Astronomical Society: High Energy Astrophysics Division Executive Committee (1985–86); Councilor (1988–91); Heineman Prize Committee (2001– 03; Chair 2003) Associated Universities for Research in Astronomy: Observatories Visiting Com- mittee (1999–2002; Chair 2002) National Science Foundation: Committee on Large Optical/Infrared Telescopes (1985–86); Committee of Visitors, Division of Astronomical Sciences (1990, 1993); Advisory Committee, Division of Astronomical Sciences (1991–93) National Aeronautics and Space Administration: Science Working Group on Su- pernova 1987A (1987–88) National Academy of Sciences/National Research Council: Committee on Space Astronomy and Astrophysics (1987–88); Theory Panel of Astronomy Survey 1 Committee for the 1990’s (1989–90); Committee on Astronomy and Astrophysics (1997–2002); Watson Prize Committee; U.S.
    [Show full text]
  • "Southern Skies and Cosmic Questions" by Ed Bertschinger
    Edmund Bertschinger Southern Skies and Cosmic Questions how big is the observable universe? what is it made of? why does space repel itself? n January 2006—the middle of summer in the i Southern hemisphere—a bus full of MIT alumni, family, and friends ascended a narrow, winding dirt road through the coastal range of Chile up to 2400 meters (8000 feet) elevation. After visiting European and American national observatory sites during the preceding days, the group figure 1 Wide-angle view of the Southern sky was eager to see the private observatory of which MIT is a part- taken from the Andes Mountains of Argentina on January 28, 2007. Visible ner: the Magellan Telescopes at Las Campanas Observatory. Only are Comet McNaught, the brightest comet in over 40 years; the splotchy Milky Way; and one traveler in the group had been there before: five years earlier, our two satellite galaxies, the Magellanic Clouds. (Photo credit and copyright: Miloslav Jane Pappalardo had attended the dedication of the newly built Druckmüller) telescopes. The author, serving as a scientific tour guide, was excited to arrive finally at the facility his colleague, MIT Magellan director Prof. Paul Schechter, had helped design and commission. After traveling a week through Northern Chile we had reached the summit of a remarkable trip. C H i L E — a th i n st r i P of L a n d between the Pacific Ocean and the crest of the Andes—is an astronomical mecca. The cold Humboldt ocean current flow- ing northward from Antarctica keeps the marine clouds low against the wall of coastal mountains.
    [Show full text]
  • Curriculum Vitae of Robert J. Scherrer
    CURRICULUM VITAE OF ROBERT J. SCHERRER Address: Department of Physics and Astronomy Vanderbilt University Nashville, TN 37235 phone: 615-343-3230/615-343-6419 email: [email protected] Education Sept. 1977 - June 1981: Princeton University, A.B. in physics, magna cum laude Sept. 1981 - Aug. 1983: Cambridge University, M.A. in physics. Sept. 1983 - Oct. 1986: University of Chicago, Ph.D. in physics (Thesis advisor: Prof. Michael S. Turner). Positions Held Oct. 1986 - Jun. 1987, Oct. 1987 - Jul. 1988: Harvard University, Postdoctoral Research Associate. Jun. 1987 - Oct. 1987, Jul. 1988 - Dec. 1988: Queen Mary College, University of London, NATO Postdoctoral Fellow. Jan. 1989 - Sept. 1993: Assistant Professor, Department of Physics, The Ohio State University. Oct. 1993 - Sept. 1998: Associate Professor, Department of Physics, The Ohio State University. Oct. 1996 - Sept. 1998: Associate Professor, Department of Astronomy, The Ohio State University. Sept. 1997 - May 1998: Visiting Scientist, Theoretical Astrophysics Group, Fermilab Oct. 1998 - Aug. 2003: Professor, Department of Physics and Department of Astronomy, The Ohio State University. Oct. 1999 - Aug. 2003: Vice-Chair for Undergraduate Studies, Department of Physics, The Ohio State University Sept. 2003 - present: Professor, Department of Physics and Astronomy, Vanderbilt University. Jan. 2004 - present: Chair, Department of Physics and Astronomy, Vanderbilt University Honors and Awards Marshall Scholarship (1981-83). McCormick Graduate Fellowship (University of Chicago 1983-86). NATO Postdoctoral Fellowship (1987-88). The Ohio State University Alumni Award for Distinguished Teaching (1999). Fellow of the American Physical Society (2001). 5th Prize, Gravity Research Foundation Essay Competition (2007). Klopsteg Memorial Award, American Association of Physics Teachers (2010). Books Quantum Mechanics: An Accessible Introduction Robert J.
    [Show full text]
  • THEO MURPHY INTERNATIONAL SCIENTIFIC MEETING on Testing
    THEO MURPHY INTERNATIONAL SCIENTIFIC MEETING ON Testing general relativity with cosmology Monday 28 February – Tuesday 1 March 2011 The Kavli Royal Society International Centre, Chicheley Hall, Buckinghamshire Organised by Professor Pedro Ferreira, Professor Rachel Bean and Professor Andrew Taylor - Programme and abstracts - Speaker biographies The abstracts that follow are provided by the presenters and the Royal Society takes no responsibility for their content. Testing general relativity with cosmology Monday 28 February – Tuesday 1 March 2011 The Kavli Royal Society Centre, Chicheley Hall, Buckinghamshire Organised by Professor Pedro Ferreira, Professor Rachel Bean and Professor Andrew Taylor Day 1 – Monday 28 February 2011 09.15 Welcome by Professor Sir Peter Knight FRS , Principal, The Kavli Royal Society Centre Welcome by Professor Pedro Ferreira , Organiser 09.30 Constraining the cosmic growth history with large scale structure Professor Rachel Bean, Cornell University, USA 10.00 Discussion 10.15 One gravitational potential or two? Forecasts and tests Professor Edmund Bertschinger, Massachusetts Institute of Technology, USA 10.45 Discussion 11.00 Coffee 11.30 Cosmological tests of gravity Dr Constantinos Skordis, The University of Nottingham, UK 12.00 Discussion 12.15 Testing modified gravity with next generation weak lensing experiments Dr Thomas Kitching, University of Edinburgh, UK 12.45 Discussion 13.00 Lunch 14.00 Model independent tests of cosmic gravity Professor Eric Linder, University of California at Berkeley, USA 14.30
    [Show full text]
  • General Relativity - Wikipedia, the Free Encyclopedia Page 1 of 37
    General relativity - Wikipedia, the free encyclopedia Page 1 of 37 General relativity From Wikipedia, the free encyclopedia General relativity or the general theory of relativity is the geometric General relativity [1] theory of gravitation published by Albert Einstein in 1916. It is the Introduction current description of gravitation in modern physics. General relativity Mathematical formulation generalises special relativity and Newton's law of universal gravitation, Resources providing a unified description of gravity as a geometric property of Fundamental concepts Special relativity Equivalence principle World line · Riemannian geometry Phenomena Kepler problem · Lenses · Waves Frame-dragging · Geodetic effect Event horizon · Singularity Black hole Equations Linearized Gravity Post-Newtonian formalism Einstein field equations Friedmann equations ADM formalism BSSN formalism Advanced theories Kaluza–Klein Quantum gravity Solutions Schwarzschild Reissner-Nordström · Gödel Kerr · Kerr-Newman Kasner · Taub-NUT · Milne · Robertson-Walker pp-wave Scientists Einstein · Minkowski · Eddington Lemaître · Schwarzschild http://en.wikipedia.org/wiki/General_relativity 5/23/2011 General relativity - Wikipedia, the free encyclopedia Page 2 of 37 Robertson · Kerr · Friedman Chandrasekhar · Hawking · others space and time, or spacetime. In particular, the curvature of spacetime is directly related to the four- momentum (mass-energy and linear momentum) of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of partial differential equations. Many predictions of general relativity differ significantly from those of classical physics, especially concerning the passage of time, the geometry of space, the motion of bodies in free fall, and the propagation of light. Examples of such differences include gravitational time dilation, the gravitational redshift of light, and the gravitational time delay.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Reconstruction of Cosmological Fields in Forward Model Framework Permalink https://escholarship.org/uc/item/4g05x2zh Author Modi, Chirag Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Reconstruction of Cosmological Fields in Forward Model Framework by Chirag Modi A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor UroˇsSeljak, Chair Professor Martin White Professor Fernando P´erez Summer 2020 Reconstruction of Cosmological Fields in Forward Model Framework Copyright 2020 by Chirag Modi 1 Abstract Reconstruction of Cosmological Fields in Forward Model Framework by Chirag Modi Doctor of Philosophy in Physics University of California, Berkeley Professor UroˇsSeljak, Chair The large scale structures (LSS) of the Universe contain a vast amount of information about the birth, evolution and composition of our Universe. To mine this information over the next decade, large scale imaging surveys such as the Dark Energy Spectroscopic Survey (DESI), Large Synoptic Survey Telescope (LSST), Euclid and WFIRST will probe the Universe with unprecedented precision, and on the largest scales. This provides an opportunity to shed light on the longstanding mysteries regarding the true nature of dark matter and dark energy, as well as to resolve tensions between different probes of the past decade. However to utilize the full potential these surveys which are no longer statistically limited, it is critical to develop analytic methods that extract the maximum amount of information across all scales.
    [Show full text]
  • PQ O'! ; the Astrophysical Journal Supplement Series, 58:39-66,1985
    O'!PQ ; The Astrophysical Journal Supplement Series, 58:39-66,1985 May ^ © 1985. The American Astronomical Society. All rights reserved. Printed in U.S.A. LO <ft S SELF-SIMILAR SECONDARY INFALL AND ACCRETION IN AN " EINSTEIN-DE SITTER UNIVERSE Edmund Bertschinger Princeton University Observatory; and Department of Astronomy, University of Virginia Received 1984 January 3; accepted 1984 November 15 ABSTRACT Similarity solutions have been found for secondary infall and accretion onto an initially overdense perturba- tion in an Einstein-de Sitter (fî =1) universe. After the initial collapse of a positive density perturbation, bound shells continue to turn around and fall in, with the radius of the shell currently turning around increasing as /8/9 and the mass within this radius increasing as ¿2/3. The secondary infall approaches a self-similar form, with the exact behavior depending on the kind of gas and on central boundary conditions. If there is a central black hole, it grows by accretion, with the density having the power-law form p oc r-15 near the center. If there is no central 225 black hole, a p cc r- density profile results, with infalling matter added to successively larger radii. Solutions are given here for collisional, collisionless, and mixed gases. The collisional component, if present, accretes through an outwardly propagating shock, with fluid elements coming to rest a finite distance from the center if the adiabatic exponent y >4/3; softer equations of state may lead to black hole formation. The collisionless gas passes through the center and crosses itself, leading to the formation of outwardly propagating caustics.
    [Show full text]
  • Arxiv:1605.04909V2 [Astro-Ph.CO] 24 May 2016 2
    FERMILAB-PUB-16-157-A A History of Dark Matter Gianfranco Bertone1 and Dan Hooper2;3 1GRAPPA, University of Amsterdam, Netherlands 2Center for Particle Astrophysics, Fermi National Accelerator Laboratory, USA and 3Department of Astronomy and Astrophysics, The University of Chicago, USA (Dated: May 26, 2016) Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or con- densed into a brief anecdotical account focused around the work of a few pioneering scientists. The aim of this review is to provide the reader with a broader historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model. arXiv:1605.04909v2 [astro-ph.CO] 24 May 2016 2 CONTENTS I. Preface 4 II. Prehistory 6 A. From Epicurus to Galileo 6 B. Dark Stars, Dark Planets, Dark Clouds 7 C. Dynamical Evidence 9 III. Galaxy Clusters 13 A. Zwicky and Smith 13 B. A Confusing Situation 15 IV. Galactic Rotation Curves 18 A. The Beginnings 18 B. The 1970s Revolution 21 C. Local Measurements 27 V. Dark Matter Particles 30 A. Neutrinos 31 B. Supersymmetry 36 C. Axions 40 D. The WIMP Paradigm 42 VI. Baryonic Dark Matter 44 A. Gravitational Microlensing 44 B. The Universe's Baryon Budget 46 C. Primordial Black Holes 48 VII. Modified Gravity 50 A. Toward a Realistic Theory of MOND 50 B. Observational Successes and Failures 52 VIII. Piecing the puzzle 55 A.
    [Show full text]
  • Robyn E. Sanderson 209 South 33Rd Street February 2021 Philadelphia, PA 19104-6396 [email protected]
    Department of Physics & Astronomy University of Pennsylvania Robyn E. Sanderson 209 South 33rd Street February 2021 Philadelphia, PA 19104-6396 [email protected] Education Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 2004–2011 Ph.D., Physics, 25 January 2011. Thesis advisor: Edmund Bertschinger. Thesis Committee: Alan Guth, Paul Schechter. University of Maryland, College Park, Maryland, USA 1999–2003 B.S., Physics, High Honors and magna cum laude B.S., Astronomy, High Honors and magna cum laude Centre International d’Etudes´ Franc¸aises, Universite´ de Bourgogne, Dijon, France, January–May 2002 Diplome d’Etudes´ Langue Franc¸aise, deuxieme` degre,´ mention Tres` Bien Professional Appointments Assistant Professor, Dept. of Physics & Astronomy, University of Pennsylvania 2018–present. Associate Research Scientist, Center for Computational Astrophysics, Flatiron Institute 2018–present. Postdoctoral scholar, Caltech 2017–2018. NSF Astronomy and Astrophysics Postdoctoral Fellow 2014–2017. Postdoctoral researcher, Kapteyn Astronomical Institute 2011–2014. Ph.D. Thesis research, MIT 2004–2011. Honors & Awards Research Corporation Scialog Fellow 2019 NSF Astronomy and Astrophysics Postdoctoral Fellowship 2014–2017 Current Grant Support ($1.7m career total as PI or Co-I) $202k “Collaborative Research: Expanding the Dynamical Map of the Milky Way with Asteroseismic Dis- tances.” National Science Foundation Program AST-2007232, awarded 18 August 2020. Penn co-PI R. Sanderson. Co-PIs S. Chakrabarti, D Huber. $498k “Predicting observable signatures for dynamical interactions between dark-matter substructure and stel- lar streams in the Milky Way.” NASA Astrophysics Theory Program, 19-ATP19-0068, awarded 4 Novem- ber 2019. PI R. Sanderson. Co-I A. Wetzel. $145k “Probing the epoch of reionization with the fossil record of nearby dwarf galaxies.” HST Cycle 27 proposal HST-AR-15809.009-A, awarded 27 June 2019.
    [Show full text]
  • Newsletter 104 ª March 2001 NEWSLETTER
    Newsletter 104 ª March 2001 NEWSLETTER The American Astronomical Societys2000 Florida Avenue, NW, Suite 400sWashington, DC [email protected] PASADENA SUMMER MEETING! The Local Organizing Committee (LOC) welcomes the American Astronomical Society to its 198th meeting on 3-7 June 2001 in Pasadena, California. The meeting is hosted by the California Institute of Technology , the Jet Propulsion Laboratory, and the Observatories of the Carnegie Institution of Washington. This will be the fourth time the AAS has met in Pasadena. In addition to its varied astronomical activities, the Pasadena area has a rich and varied cultural scene, with fine arts and music available to suit all tastes. Tours are planned to visit Palomar Observatory, Mt. Wilson and the Getty Museum. Many exciting invited talks and special sessions are scheduled as well as these topical sessions: 6GRB’s: A Mystery and a Tool; 6Interacting Galaxies: A Multi-wavelength Look at their Role in Galactic and Cosmic Evolution; 6Science Results from the Two Micron All Sky Survey; 6Optical Interferometry; 6The Cosmological Impact of Galactic Winds; 6Intermediate-luminosity X-ray Objects and Intermediate Mass Black Holes; 6Cluster Properties and Large Scale Structure; and 6Measuring the History of Star Formation Using the Rest Ultraviolet. Rounding out the program is a public lecture by Ken Nealson on “Searching for Life in the Universe: Lessons from the Earth.” A fun evening is planned at the banquet where guests will have the opportunity to dance to the blues and boogie-woogie music of the Rob Rio Band. AAS ELECTION 2001 COUNCIL ACTIONS The following actions were among the most noteworthy taken President-Elect Catherine A.
    [Show full text]
  • Curriculum Vitae of Robert J. Scherrer
    CURRICULUM VITAE OF ROBERT J. SCHERRER Address: Department of Physics and Astronomy Vanderbilt University Nashville, TN 37235 phone: 615-343-3230 email: [email protected] Education Sept. 1977 - June 1981: Princeton University, A.B. in physics, magna cum laude Sept. 1981 - Aug. 1983: Cambridge University, M.A. in physics. Sept. 1983 - Oct. 1986: University of Chicago, Ph.D. in physics (Thesis advisor: Prof. Michael S. Turner). Positions Held Oct. 1986 - Jun. 1987, Oct. 1987 - Jul. 1988: Harvard University, Postdoctoral Research Associate. Jun. 1987 - Oct. 1987, Jul. 1988 - Dec. 1988: Queen Mary College, University of London, NATO Postdoctoral Fellow. Jan. 1989 - Sept. 1993: Assistant Professor, Department of Physics, The Ohio State University. Oct. 1993 - Sept. 1998: Associate Professor, Department of Physics, The Ohio State University. Oct. 1996 - Sept. 1998: Associate Professor, Department of Astronomy, The Ohio State University. Sept. 1997 - May 1998: Visiting Scientist, Theoretical Astrophysics Group, Fermilab Oct. 1998 - Aug. 2003: Professor, Department of Physics and Department of Astronomy, The Ohio State University. Oct. 1999 - Aug. 2003: Vice-Chair for Undergraduate Studies, Department of Physics, The Ohio State University Sept. 2003 - present: Professor, Department of Physics and Astronomy, Vanderbilt University. Jan. 2004 - present: Chair, Department of Physics and Astronomy, Vanderbilt University Honors and Awards Marshall Scholarship (1981-83). McCormick Graduate Fellowship (University of Chicago 1983-86). NATO Postdoctoral Fellowship (1987-88). The Ohio State University Alumni Award for Distinguished Teaching (1999). Fellow of the American Physical Society (2001). 5th Prize, Gravity Research Foundation Essay Competition (2007). Klopsteg Memorial Award, American Association of Physics Teachers (2010). Books Quantum Mechanics: An Accessible Introduction Robert J.
    [Show full text]
  • Simulations-Edbertar
    P1: NBL/dat/ary P2: NBL/vks QC: NBL/anil T1: NBL July 4, 1998 5:55 Annual Reviews AR062-14 Annu. Rev. Astron. Astrophys. 1998. 36:599–654 Copyright c 1998 by Annual Reviews. All rights reserved SIMULATIONS OF STRUCTURE FORMATION IN THE UNIVERSE Edmund Bertschinger Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 6-207, Cambridge, Massachussetts 02139; email: [email protected] KEY WORDS: cosmology, galaxy formation, numerical simulation ABSTRACT Cosmic structure has formed as a result of gravitational amplification of pri- mordial density fluctuations together with the action of other physical processes (adiabatic gas dynamics, radiative cooling, photoionization and recombination, radiative transfer). These complex nonlinear processes, acting over a wide range of length scales (from kiloparsecs to tens of megaparsecs), make this a difficult problem for computation. During the last two decades, significant progress has been made in developing numerical methods and statistical tools for analyzing simulations and data. Combined with observational advances, numerical sim- ulations have led to the demise of several formerly popular models and to an improved understanding of galaxy clusters, quasistellar object (QSO) absorption line systems, and other phenomena. This review summarizes these advances. 1. INTRODUCTION by University of California - Santa Cruz on 02/05/06. For personal use only. During the past twenty years, numerical simulations of cosmic structure for- mation have become a powerful theoretical tool to accompany, interpret, and Annu. Rev. Astro. Astrophys. 1998.36:599-654. Downloaded from arjournals.annualreviews.org sometimes to lead cosmological observations. Simulations bridge the gap that often exists between basic theory and observation.
    [Show full text]