Western Australian Wheatbelt Part 2: Vegetation and Habitat of Bendering
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplementary Materialsupplementary Material
10.1071/BT13149_AC © CSIRO 2013 Australian Journal of Botany 2013, 61(6), 436–445 SUPPLEMENTARY MATERIAL Comparative dating of Acacia: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records Joseph T. MillerA,E, Daniel J. MurphyB, Simon Y. W. HoC, David J. CantrillB and David SeiglerD ACentre for Australian National Biodiversity Research, CSIRO Plant Industry, GPO Box 1600 Canberra, ACT 2601, Australia. BRoyal Botanic Gardens Melbourne, Birdwood Avenue, South Yarra, Vic. 3141, Australia. CSchool of Biological Sciences, Edgeworth David Building, University of Sydney, Sydney, NSW 2006, Australia. DDepartment of Plant Biology, University of Illinois, Urbana, IL 61801, USA. ECorresponding author. Email: [email protected] Table S1 Materials used in the study Taxon Dataset Genbank Acacia abbreviata Maslin 2 3 JF420287 JF420065 JF420395 KC421289 KC796176 JF420499 Acacia adoxa Pedley 2 3 JF420044 AF523076 AF195716 AF195684; AF195703 Acacia ampliceps Maslin 1 KC421930 EU439994 EU811845 Acacia anceps DC. 2 3 JF420244 JF420350 JF419919 JF420130 JF420456 Acacia aneura F.Muell. ex Benth 2 3 JF420259 JF420036 JF420366 JF419935 JF420146 KF048140 Acacia aneura F.Muell. ex Benth. 1 2 3 JF420293 JF420402 KC421323 JQ248740 JF420505 Acacia baeuerlenii Maiden & R.T.Baker 2 3 JF420229 JQ248866 JF420336 JF419909 JF420115 JF420448 Acacia beckleri Tindale 2 3 JF420260 JF420037 JF420367 JF419936 JF420147 JF420473 Acacia cochlearis (Labill.) H.L.Wendl. 2 3 KC283897 KC200719 JQ943314 AF523156 KC284140 KC957934 Acacia cognata Domin 2 3 JF420246 JF420022 JF420352 JF419921 JF420132 JF420458 Acacia cultriformis A.Cunn. ex G.Don 2 3 JF420278 JF420056 JF420387 KC421263 KC796172 JF420494 Acacia cupularis Domin 2 3 JF420247 JF420023 JF420353 JF419922 JF420133 JF420459 Acacia dealbata Link 2 3 JF420269 JF420378 KC421251 KC955787 JF420485 Acacia dealbata Link 2 3 KC283375 KC200761 JQ942686 KC421315 KC284195 Acacia deanei (R.T.Baker) M.B.Welch, Coombs 2 3 JF420294 JF420403 KC421329 KC955795 & McGlynn JF420506 Acacia dempsteri F.Muell. -
Synthesizing Ecosystem Implications of Mistletoe Infection
Environmental Research Letters LETTER • OPEN ACCESS Related content - Networks on Networks: Water transport in Mistletoe, friend and foe: synthesizing ecosystem plants A G Hunt and S Manzoni implications of mistletoe infection - Networks on Networks: Edaphic constraints: the role of the soil in vegetation growth To cite this article: Anne Griebel et al 2017 Environ. Res. Lett. 12 115012 A G Hunt and S Manzoni - Impact of mountain pine beetle induced mortality on forest carbon and water fluxes David E Reed, Brent E Ewers and Elise Pendall View the article online for updates and enhancements. This content was downloaded from IP address 137.154.212.215 on 17/12/2017 at 21:57 Environ. Res. Lett. 12 (2017) 115012 https://doi.org/10.1088/1748-9326/aa8fff LETTER Mistletoe, friend and foe: synthesizing ecosystem OPEN ACCESS implications of mistletoe infection RECEIVED 28 June 2017 Anne Griebel1,3 ,DavidWatson2 and Elise Pendall1 REVISED 1 Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, Australia 12 September 2017 2 Institute for Land, Water and Society, Charles Sturt University, PO box 789, Albury, NSW, Australia ACCEPTED FOR PUBLICATION 3 Author to whom any correspondence should be addressed. 29 September 2017 PUBLISHED E-mail: [email protected] 16 November 2017 Keywords: mistletoe, climate change, biodiversity, parasitic plants, tree mortality, forest disturbance Original content from this work may be used Abstract under the terms of the Creative Commons Biotic disturbances are affecting a wide range of tree species in all climates, and their occurrence is Attribution 3.0 licence. contributing to increasing rates of tree mortality globally. -
Annual Report 2008 for the Yilgarn District Threatened Flora And
1 YILGARN DISTRICT THREATENED FLORA AND COMMUNITIES MANAGEMENT PROGRAM Annual Report 2008 For the Yilgarn District Threatened Flora and Communities Recovery Team Ben Lullfitz Conservation Officer (Flora) Daviesia microcarpa seedling (Photo: Hayden Cannon) Property and copyright of this document is vested jointly in the Director, Threatened Species and Communities Section, Environment Australia and the Executive Director, Western Australia Department of Environment and Conservation The Commonwealth disclaims responsibility for the views expressed Department of Environment and Conservation PO Box 332 Merredin WA 6415 Yilgarn District Threatened Flora and Communities Management Program 2008 Annual Report 2 TABLE OF CONTENTS 1. SUMMARY OF KEY RECOVERY ACTIONS COMPLETED IN 2008 3 2. THREATENED FLORA AND COMMUNITIES RECOVERY TEAM 4 2.1. ROLES AND RESPONSIBILITIES 4 2.2. MEMBERS 4 2.3. RECOVERY TEAM MEETING 5 3. FUNDING 6 4. SPECIES AND COMMUNITIES BRANCH – INTERIM RECOVERY PLANS 6 4.1. IRPs OUTSTANDING 6 5. YILGARN DISTRICT THREATENED FLORA MANAGEMENT PROGRAM 6 5.1. YILGARN DISTRICT THREATENED FLORA SCHEDULE 6 6. IMPLIMENTATION OF RECOVERY ACTIONS 7 6.1. CRITICALLY ENDANGERED 7 6.2. ENDNGERED 8 6.3. VULNERABLE 8 6.4. PRIORITY ONE 9 6.5. PRIORITY TWO 9 6.6. PRIORITY THREE 9 6.7. PRIORITY FOUR 10 7. TRANSLOCATIONS 10 8. INDUCED RECRUITMENT BURNS 10 9. APPLICATIONS TO TAKE RARE FLORA 11 10. EDUCATION AND PUBLICITY 11 11. DISTRICT THREATENED FLORA HERBARIUM 11 12. PRIORITY ECOLOGICAL COMMUNITIES 11 13. CONCLUSION 12 APPENDIX 1: YILGARN DISTRICT THREATENED FLORA LIST 2008 13 Yilgarn District Threatened Flora and Communities Management Program 2008 Annual Report 3 1. SUMMARY OF KEY RECOVERY ACTIONS COMPLETED IN 2008 • Flora survey works in 2008 resulted in the discovery of 11 new populations of declared rare and priority flora in the Yilgarn district (2 endangered, 4 vulnerable and 5 priority species). -
10 Seed Release and Dispersal Mechanisms
10 Seed Release and Dispersal Mechanisms For seedling recruitment to occur seeds need to be dispersed into an environment that promotes germination and seedling survival. Dispersal consists of two phases. Primary dispersal is defined as the initial transport of seeds or seed-bearing fruits (collectively seeds and fruits are called diaspores) to the ground or water body, or for aerial parasites, a host branch. Secondary dispersal relates to any subsequent movement to the seed’s final resting place. Primary dispersal may be active (e.g. seeds released explosively from the fruit, e.g. dehiscence (opening) of Hardenbergia pods), passive (e.g. seeds fall out when the capsules of Eucalyptus open), or require a vector to aid in seed removal (e.g. wind uplift of winged seeds of Hakea or winged fruits of Nuytsia; Amyema berries consumed by mistletoe birds). Secondary dispersal involves either a biotic (e.g. ants) or environmental (e.g. wind, water) vector, and it is usually a different mechanism than that involved in primary dispersal. While primary dispersal is usually only for a few metres, secondary dispersal may cover several kilometres, and sometimes thousands for tiny seeds. This chapter covers some of the dispersal mechanisms exhibited by the SouthWest flora following their release. Terminology used to describe seed dispersal mechanisms is provided in Table 10.1. Table 10.1: Seed dispersal terminology. Term Definition Anemochory Wind dispersed Chamaechory Dispersal by rolling along the ground (wind assisted) Zoochory Animal dispersed (general) Myrmecochory Ant dispersed Ornithochory Bird dispersed Mammalochory Mammal dispersed Hydrochory Water dispersed Barochory Unassisted (gravity causes seeds to drop to the ground) Autochory Dispersal assisted by the actions of the parent plant (e.g. -
Charles Darwin Reserve
CHARLES DARWIN RESERVE (WHITE WELLS STATION) WESTERN AUSTRALIA FIELD HERBARIUM Volunteers of the Bushland Plant Survey Project Wildflower Society of Western Australia (Inc.) PO Box 519 Floreat WA 6014 for Bush Heritage Australia July 2010 This project was supported by the Wildflower Society of Western Australia Support was also provided by the WA Department of Environment and Conservation NOTE: This Field Herbarium is to remain the property of Bush Heritage, in so long as the Reserve is managed sympathetically with the bushland, and the owners are able to care for the Herbarium so it does not deteriorate. In the event these criteria cannot be met the Field Herbarium is to be handed over to the Geraldton Regional Herbarium. For further information contact the WA Herbarium, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, WA 6983 Phone (08) 9334 0500. Charles Darwin Reserve (White Wells Station), Western Australia – Field Herbarium CONTENTS 1 BACKGROUND AND ACKNOWLEDGEMENTS..................................................................................... 1 Map 1 Wildflower Society of WA survey sites at Charles Darwin Reserve - August 2008 .......................... 2 Map 2 Wildflower Society of WA survey sites at Charles Darwin Reserve – October 2008 ........................ 3 2 FLORA ........................................................................................................................................................... 4 3 THE FIELD HERBARIUM .......................................................................................................................... -
Structural Botany / Botánica Estructural
Botanical Sciences 99(3): 588-598. 2021 Received: October 15, 2020, Accepted: December 1, 2020 DOI: 10.17129/botsci.2776 AcaciaOn linecornigera first: April 15, 2021 Structural Botany / Botánica Estructural FLORAL DEVELOPMENT OF THE MYRMECOPHYTIC ACACIA CORNIGERA (LEGUMINOSAE) DESARROLLO FLORAL DE LA MIRMECÓFITA ACACIA CORNIGERA (LEGUMINOSAE) SANDRA LUZ GÓMEZ-ACEVEDO1,2 1 Unidad de Morfología y Función. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México. 2 Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, México. Author for correspondence: [email protected] Abstract Background: The Neotropical ant-acacias show morphological variations in their vegetative characteristics as a consequence of their relation- ship with ants. However, there is no information regarding whether floral organs have also undergone any modification that prevents resident ants from approaching the inflorescences in anthesis. Questions: Are the patterns of floral development affected by the relationship with ants? Is there any floral organ or structure involved in avoid- ing the presence of ants during the flowering period? At what stage of development do these modifications arise, if at all? Studied species: Acacia cornigera (L.) Willd. Study site: Santiago Pinotepa Nacional, Oaxaca and Los Tuxtlas, Veracruz. March and May 2015. Methods: Dissections of inflorescences in every developmental stage from two populations, were examined using scanning electron micros- copy. Results: The inception patterns of the calyx (irregular), corolla (simultaneous), androecium (acropetally in alternate sectors) and gynoecium (precocious) agree with previous reports for non-myrmecophyic species of the Acacia genus. In mature stages, the presence of stomata is char- acteristic of bracts and petals. -
Flora Survey on Hiltaba Station and Gawler Ranges National Park
Flora Survey on Hiltaba Station and Gawler Ranges National Park Hiltaba Pastoral Lease and Gawler Ranges National Park, South Australia Survey conducted: 12 to 22 Nov 2012 Report submitted: 22 May 2013 P.J. Lang, J. Kellermann, G.H. Bell & H.B. Cross with contributions from C.J. Brodie, H.P. Vonow & M. Waycott SA Department of Environment, Water and Natural Resources Vascular plants, macrofungi, lichens, and bryophytes Bush Blitz – Flora Survey on Hiltaba Station and Gawler Ranges NP, November 2012 Report submitted to Bush Blitz, Australian Biological Resources Study: 22 May 2013. Published online on http://data.environment.sa.gov.au/: 25 Nov. 2016. ISBN 978-1-922027-49-8 (pdf) © Department of Environment, Water and Natural Resouces, South Australia, 2013. With the exception of the Piping Shrike emblem, images, and other material or devices protected by a trademark and subject to review by the Government of South Australia at all times, this report is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. All other rights are reserved. This report should be cited as: Lang, P.J.1, Kellermann, J.1, 2, Bell, G.H.1 & Cross, H.B.1, 2, 3 (2013). Flora survey on Hiltaba Station and Gawler Ranges National Park: vascular plants, macrofungi, lichens, and bryophytes. Report for Bush Blitz, Australian Biological Resources Study, Canberra. (Department of Environment, Water and Natural Resources, South Australia: Adelaide). Authors’ addresses: 1State Herbarium of South Australia, Department of Environment, Water and Natural Resources (DEWNR), GPO Box 1047, Adelaide, SA 5001, Australia. -
A Framework for Mapping Vegetation Over Broad Spatial Extents: a Technique to Aid Land Management Across Jurisdictional Boundaries
Landscape and Urban Planning 97 (2010) 296–305 Contents lists available at ScienceDirect Landscape and Urban Planning journal homepage: www.elsevier.com/locate/landurbplan A framework for mapping vegetation over broad spatial extents: A technique to aid land management across jurisdictional boundaries Angie Haslem a,b,∗, Kate E. Callister a, Sarah C. Avitabile a, Peter A. Griffioen c, Luke T. Kelly b, Dale G. Nimmo b, Lisa M. Spence-Bailey a, Rick S. Taylor a, Simon J. Watson b, Lauren Brown a, Andrew F. Bennett b, Michael F. Clarke a a Department of Zoology, La Trobe University, Bundoora, Victoria 3086, Australia b School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia c Peter Griffioen Consulting, Ivanhoe, Victoria 3079, Australia article info abstract Article history: Mismatches in boundaries between natural ecosystems and land governance units often complicate an Received 2 October 2009 ecosystem approach to management and conservation. For example, information used to guide man- Received in revised form 25 June 2010 agement, such as vegetation maps, may not be available or consistent across entire ecosystems. This Accepted 5 July 2010 study was undertaken within a single biogeographic region (the Murray Mallee) spanning three Aus- Available online 7 August 2010 tralian states. Existing vegetation maps could not be used as vegetation classifications differed between states. Our aim was to describe and map ‘tree mallee’ vegetation consistently across a 104 000 km2 area Keywords: of this region. Hierarchical cluster analyses, incorporating floristic data from 713 sites, were employed Semi-arid ecosystems Mallee vegetation to identify distinct vegetation types. Neural network classification models were used to map these veg- Remote sensing etation types across the region, with additional data from 634 validation sites providing a measure of Neural network classification models map accuracy. -
A Conserved Role for the NAM/Mir164 Developmental
ORIGINAL RESEARCH published: 13 January 2016 doi: 10.3389/fpls.2015.01239 AConservedRoleforthe NAM/miR164 Developmental Module Reveals a Common Mechanism Underlying Carpel Margin Fusion in Monocarpous and Syncarpous Eurosids Aurélie C. M. Vialette-Guiraud1, Aurélie Chauvet1, Juliana Gutierrez-Mazariegos1, Alexis Eschstruth2, Pascal Ratet2 and Charles P. Scutt1* 1 Laboratoire de Reproduction et Développement des Plantes, UMR 5667, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique – Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France, 2 Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique – Université de Paris Sud, Orsay, France The majority of angiosperms are syncarpous- their gynoecium is composed of two or more fused carpels. In Arabidopsis thaliana, this fusion is regulated through the Edited by: balance of expression between CUP SHAPED COTYLEDON (CUC) genes, which are Rainer Melzer, University College Dublin, Ireland orthologs of the Petunia hybrida transcription factor NO APICAL MERISTEM (NAM), and Reviewed by: their post-transcriptional regulator miR164. Accordingly, the expression of a miR164- Stefan De Folter, insensitive form of A. thaliana CUC2 causes a radical breakdown of carpel fusion. Centro de Investigación y de Estudios Here, we investigate the role of the NAM/miR164 genetic module in carpel closure Avanzados del Instituto Politécnico Nacional, Mexico in monocarpous plants. We show that the disruption of this module in monocarpous Barbara Ambrose, flowers of A. thaliana aux1-22 mutants causes a failure of carpel closure, similar The New York Botanical Garden, USA to the failure of carpel fusion observed in the wild-type genetic background. -
Potential Agroforestry Species and Regional Industries for Lower Rainfall
PotentialPotential agroforestryagroforestry speciesspecies andand regionalregional industriesindustries forfor lowerlower rainfall rainfall southernsouthern AustraliaAustralia FLORASEARCHFLORASEARCH 2 2 Australia Australia Potential agroforestry species and regional industries for lower rainfall southern Australia FLORASEARCH 2 Australia A report for the RIRDC / L&WA / FWPA / MDBC Joint Venture Agroforestry Program Future Farm Industries CRC by Trevor J. Hobbs, Mike Bennell, Dan Huxtable, John Bartle, Craig Neumann, Nic George, Wayne O’Sullivan and David McKenna January 2009 © 20092008 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 479 7 ISSN 1440-6845 Please cite this report as: Hobbs TJ, Bennell M, Huxtable D, Bartle J, Neumann C, George N, O’Sullivan W and McKenna D (2008). Potential agroforestry species and regional industries for lower rainfall southern Australia: FloraSearch 2. Report to the Joint Venture Agroforestry Program (JVAP) and the Future Farm Industries CRC*. Published by RIRDC, Canberra Publication No. 07/082 Project No. UWA-83A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia -
080057-10.003.Pdf
',prT€.rtsnv Jo E]olC,,eql ur uorlEcrlqndrreql go ecue,,rpeur sed,{lolca1 Jo uoqcelaspJocel ot pup seu€u alcprlel ot s.rededgo selrJsJno sJnurtuocuorlnqutuoc srql uollJnpoJlul .,{le{EIg , .V ?9 uepretr4{octdstltssas y puc qlueg DJDJtdslqau ,uepr€tr4trttuosln[ .y '.qtueg sapotpaqda .V 'uapret\ s!sualptD8looJ y :sgureuSurtrolloJ eq] JoJpepJoJe.r ere suorlucr;rdflolcel.uortrppB uI urlsr?tr^trg .y ,(,(trurJlu ue1,.oJDluJo dsqnsstsuaw4otqtoi{ puE u,rou{un.}o) ullsEINry up,roJ 'urlsvl .Je^ .y,(.qluegelecrdsnlnu DdrDJo\iuox y { 4) ue,roC otzJpullKc DIlKqdoatals .V o} peteler) -V .y,ur1svt14 urlsEtAluB,^ oC rinBuls V'(qlueg saplotpaqda ot peteler)urTSeI ? up,roJ rpuodat .urlsul .dsqns -V,(.wqen1 uet oJ Dllolqn|od dsq\s oll{tldourJuo y l T ue,$oJ ow7n0 o Kqdotnau lluosuaqqlnTv ot petrler) .V,(8zt\J urts€I J? ue|/\oJ DJo^al l oUKqdorflra yol potBler)urts?r{ ? uet^oJ DJsaBuoJu|V'(uep\el/i. .y .^ou .tr.JS .qwor .urIseIN lluosLnl uo p3sBq) la T uE,roC (uoprEtr^l) ,urlsetrAtr tluostnI Je^pue urlsuINe uel o) otllold rp^ ? uE,ro710p1ad tero.tnauotalatl.y,(Ap>1u1g ry uoprBl\Ilrajsqa$ y ot pot€leJ,{lsnonuel) ullsel^I T u€,roJnsoqqlS V,(qluegDr auotalaq-V o! patElo])urtsutr ue^oJDlDlrnunpada .y,ullsEj,{ .y,(Tlentr .C l ? ? uB,{\oJsadtpxu.dsqns wxto|tasap l .V,(qlvegru oaut8towuponb yot pet€leJ)urTsrt{ 2ttuE^\oJ Dsslwap auopJaq yo} petele:)urtsB1,a{ uB,{|oJ 'urtsutr .dsqns 'ultsEl T) D)lrpuut) y J 4) ue,roJ sr,raau11 fluosuaqqfiJ.y I ry ule/{io}J7UDI 'dsqns .V,(u\selNDuolsawrf.y pur ur1sey41ryuu,tro3 rsr;ia dsqnsstsuarp.utSlooc ot petelel) urls€tr{ uB^\oJDiDlltlwD -
Kalannie Region but They Are Not Known to Grow Together
Botanical name. Acacia affin. multispicata The taxon described here has affinities to A. multispicata but the nature of the relationship needs yet to be assessed. Common name None known. Characteristic features Bark light grey and smooth from base of stems to the tips of branchlets. Phyllodes short, terete, smooth, shallowly incurved, 8-nerved (nerves clearly separated from one another); apices obtuse-mucronate. Spikes sessile, short, prolific and very showy. Flowers 4-merous. Pods moniliform to sub-moniliform, narrow. Description Habit. Shrubs 0.5-1 m tall and 1-2 m wide, either domed with crowns extending to the ground or obconic with crowns occupying about 40% of the total plant height, dividing at ground level into 4-6, slender, slightly crooked main stems. Bark. Light grey and smooth from base of stems to tips of branchlets. Phyllodes. Terete, (15-)20-40 mm long, 0.8-1.5 mm wide, smooth, ascending to rather widely spreading, shallowly incurved, dull, green to sub-glaucous; longitudinal nerves 8, the nerves clearly separated from one another, yellow-green and evident at x10 magnification; abruptly contracted at the obtuse, innocuous apex and ending in a minute brown mucro; pulvinus orange. Flowers. 4-merous; sepals about 1/2-united. Spikes. Single within axil of phyllodes, +/- sessile (peduncles 0-1 mm long, glabrous), obloid to shortly cylindrical, 10-12 mm long and 6-7 mm wide at anthesis when fresh, bright golden, prolific, very showy, slightly fragrant, sub-densely flowered. Pods. Moniliform to sub-moniliform, 2-5 cm long, 3-3.5 mm wide, glabrous, dark brown, finely longitudinally wrinkled when dry.