Some Results on Top-Context-Free Tree Languages

Total Page:16

File Type:pdf, Size:1020Kb

Some Results on Top-Context-Free Tree Languages Some Results on Topcontextfree Tree Languages Dieter Hofbauer Maria Hub er Gregory Kucherov Technische Universitt Berlin Franklinstrae FR D Berlin Germany email dietercstuberlinde CRIN INRIALorraine rue du Jardin Botanique VillerslsNancyFrance email huberkucherovloriafr Abstract Topcontextfree tree languages called corgulier by Arnold and Dauchet constitute a natural sub class of contextfree tree languages In this pap er wegive further evidence for the imp ortance of this class by exhibiting certain closure prop erties We systematically treat closure under the op erations replacement and substitution as well as under the corresp onding iteration op erations Several other wellknown language classes are considered as well Furthermore various characteri zations of the regular topcontextfree languages are given among others by means of restricted regular expressions Intro duction This pap er is motivated by our previous work on tree languages related to term rewriting systems It is wellknown that for a leftlinear termrewriting Red R of ground terms reducible by R is a regular tree lan system Rtheset guage ConverselyifRed R is regular then R can eectively b e linearized ie a nite language can b e substituted for its nonlinear variables without changing the set of reducible ground terms However little is known ab out conditions on which Red R is contextfree Here again nonlinear vari ables play a crucial role This motivation led us to study the class of topcontextfree languages which turned out to b e of sp ecial imp ortance Topcontextfree tree languages are lan guages generated bycontextfree tree grammars in which righthand sides of pro duction rules contain nonterminal symb ols if at all only at the top p osi tion This class has b een studied by Arnold and Dauchet who proved in particular the following result Theorem The language L ff t t j t L g is contextfreeiL is top contextfre eiL itself is topcontextfree The theorem remains true if contextfree and topcontextfree are re placed by regular and nite resp ectivelyWe conjecture that this analogy Partially supp orted by a p ostdo c grant of the MEN Supp orted by the MESR can also b e drawn for the language Red R mentioned ab ove It is contextfree i a topcontextfree language can b e substituted for the nonlinear variables in R without changing the set of reducible ground terms This pap er is devoted to the study of some related topics that could serve as a basis for further investigations The class of topcontextfree languages is in a sense orthogonal to that of regular languages Though these two classes intersect there are very simple lan guages that are topcontextfree but not regular and vice versa For example the i i language ff g ag a j i g is topcontextfree but not regular Conversely Arnold and Dauchet showed that the language of all terms over a signature of one binary and one constant symb ol is not topcontextfree In order to obtain a criterion that a language is not topcontextfree we more generallyprovethat every topcontextfree language is slim a simple syntactic prop erty We further study the class of languages that are b oth topcontextfree and regular We prop ose a numberofequivalentcharacterizations of this class in terms of grammars linear topcontextfree nonbranching regular linear reg ular expressions and more syntactic prop erties slim passable p olynomially sizeb ounded Closure prop erties play an imp ortantroleinallbranches of formal language theory A detailed analysis of closure prop erties for the class of regular tree lan guages can b e found in In this pap er wecontinue this topic analyzing closure of dierent classes under the op erations replacement substitution and their it erations Replacement and substitution considered also in are two p ossible extentions of the string pro duct to the tree case In contrast to replacement sub stitution replaces equal symb ols by equal terms Wemake an exhaustivestudy of closure prop erties under these op erations for six classes of tree languages nite regular linear topcontextfree topcontextfree linear contextfree and contextfree Notations We assume the reader to b e familiar with basic denitions in term rewriting and formal language theory A signature is a nite set of function symb ols of xed arity for n denotes the set of symb ols in of arity n T X n is the set of nite terms over and a set of variables X The set of ground terms ie terms without variables over is denoted by T For t T X t is the set of p ositions in t dened in the usual way as sequences of natural P os numbers Wewrite p q if p is a prex of q The subterm of t at p osition p is tj For p Post tj is a principal subterm of t if jpj and it is a p p prop er subterm of t if jpj Here jpj denotes the length of p The depth of t is jtj maxfjpjjp Post g its size is size tjP ost jIf t is a subterm of tthen t can b e written as ct where c is a context A context is called context in case it contains only symb ols from Avariable x is said to b e linear in t if there is only one p osition p Post suchthattj x and is said to b e nonlinear in t otherwise A term is linear if p all its variables are linear and is nonlinear otherwise If unambiguous we sometimes prefer vector notation to three dots nota tion For example f t abbreviates f t t n and t will b e clear from n i the context and f x stands for f x x For f and L L T n n n let f L L ff t t j t L t L g The cardinalityofa n n n n nite multiset S is denoted by jS j Contextfree languages Replacement and Substitution G N P S consists of disjoint Denition A contextfree tree grammar signatures N nonterminals and terminalsa niterewrite system P over N and a distinct constant symbol S N initial symbolallrulesin P are of the form Ax x t n where A N n x x arepairwise dierent variables and t n n T fx x g N n G is said to be regular if N contains only constant symbols G is said to be topcontextfree if al l proper subterms of righthand sides of rules areinT fx x g n G is said to be linear if al l righthand sides of rules in P are linear The language generated by a grammar G N P S is LGft T j S tg P A language L T is called linear contextfree regular if there is a linear contextfree regular grammar generating LFor A N wealso n use the more general notation LG Ax x ft T X j Ax x tg n n P G S Thus LG L Fin Reg LinTopCf TopCf LinCf Cf will denote the class of nite regular linear topcontextfree topcontextfree linear contextfree context free languages By denition wehave the inclusions Fin Reg LinCf Cf Fin LinTopCf TopCf Cf and LinTopCf LinCf All inclusions are prop er and b oth LinTopCf and TopCf are incomparable with Reg Topcontextfree languages were studied by Arnold and Dauchet under the name of langages corguliersIn they showed that TopCf coincides with the class of languages obtained by deterministic topdown tree transformations on monadic regular languages It can even b e shown that it is sucient to con sider a single monadic language eg T where and are symb ols of arity fg and is a constantsymb ol Regular tree languages have b een extensively studied eg in For context free tree languages see eg Several normal forms have b een dened for regular and contextfree grammars In this pap er we will use the fact that for each grammar there is a reduced grammar of the same typ e generating the same language A grammar is said to b e reduced if all nonterminals A in N n n are reachable ie S cAt t for some term cAt t T n n N P and productive ie LG Ax x n It is wellknown that such a normal form always exists For topcontext free grammars we will use another normal form Wecallacontextfree grammar slow if all righthand sides of its rules contain exactly one symb ol Thus slow topcontextfree grammars contain only rules of the form Ax x f y y n m fy y z Ax x B z m k n where B N k f m fy y z z g fx x g k m m k n Whereas not all contextfree languages can b e generated byslow grammars for an example see exercise for each linear topcontextfree language there isaslow reduced linear topcontextfree grammar generating this language A pro of can b e found in The op erations creplacement and csubstitution constitute two dierentways of replacing a constant c in all terms of a language L by terms of a language L The csubstitution op eration substitutes all o ccurrences of c in a term of L by the same term of L When applying the creplacement op eration all cs in L Thus the terms of L are replaced indep endently by p ossibly dierent terms of csubstitution corresp onds to the usual substitution if c is treated as a variable The creplacement corresp onds to a substitution where all cs are considered as dierent linear variables In creplacementandcsubstitution are called OI and IOsubstitution resp ectively Denition For languages L L and a constant symbol c the creplacement S of L into L is L L t L where t L is denedbyforn c c c tL L if f c f t t L n c f t L t L otherwise c n c S S ft t gwhere t t is The csubstitution of L into L is L L c c c tL t L dened by for n t if f c f t t t n c f t t t t otherwise c n c When c is clear from the context or arbitrarywe will not mention it Given C and C C is said to b e closed under replacement substi classes of languages tution by C ifL L C L L C resp ectively holds for all L C L C c c and all constantsymbols cWe will also write CC C CC C C is said to b e closed under replacement substitution if
Recommended publications
  • Regular Description of Context-Free Graph Languages
    Regular Description of ContextFree Graph Languages Jo ost Engelfriet and Vincent van Oostrom Department of Computer Science Leiden University POBox RA Leiden The Netherlands email engelfriwileidenunivnl Abstract A set of lab eled graphs can b e dened by a regular tree language and one regular string language for each p ossible edge lab el as follows For each tree t from the regular tree language the graph g r t has the same no des as t with the same lab els and there is an edge with lab el from no de x to no de y if the string of lab els of the no des on the shortest path from x to y in t b elongs to the regular string language for Slightly generalizing this denition scheme we allow g r t to have only those no des of t that have certain lab els and we allow a relab eling of these no des It is shown that in this way exactly the class of CedNCE graph languages generated by CedNCE graph grammars is obtained one of the largest known classes of contextfree graph languages Introduction There are many kinds of contextfree graph grammars see eg ENRR EKR Some are no de rewriting and others are edge rewriting In b oth cases a pro duc tion of the grammar is of the form X D C Application of such a pro duction to a lab eled graph H consists of removing a no de or edge lab eled X from H replacing it by the graph D and connecting D to the remainder of H accord ing to the embedding pro cedure C Since these grammars are contextfree in the sense that one no de or edge is replaced their derivations can b e mo d eled by derivation trees as
    [Show full text]
  • Weighted Regular Tree Grammars with Storage
    Discrete Mathematics and Theoretical Computer Science DMTCS vol. 20:1, 2018, #26 Weighted Regular Tree Grammars with Storage 1 2 2 Zoltan´ Ful¨ op¨ ∗ Luisa Herrmann † Heiko Vogler 1 Department of Foundations of Computer Science, University of Szeged, Hungary 2 Faculty of Computer Science, Technische Universitat¨ Dresden, Germany received 19th May 2017, revised 11th June 2018, accepted 22nd June 2018. We introduce weighted regular tree grammars with storage as combination of (a) regular tree grammars with storage and (b) weighted tree automata over multioperator monoids. Each weighted regular tree grammar with storage gen- erates a weighted tree language, which is a mapping from the set of trees to the multioperator monoid. We prove that, for multioperator monoids canonically associated to particular strong bimonoids, the support of the generated weighted tree languages can be generated by (unweighted) regular tree grammars with storage. We characterize the class of all generated weighted tree languages by the composition of three basic concepts. Moreover, we prove results on the elimination of chain rules and of finite storage types, and we characterize weighted regular tree grammars with storage by a new weighted MSO-logic. Keywords: regular tree grammars, weighted tree automata, multioperator monoids, storage types, weighted MSO- logic 1 Introduction In automata theory, weighted string automata with storage are a very recent topic of research [HV15, HV16, VDH16]. This model generalizes finite-state string automata in two directions. On the one hand, it is based on the concept of “sequential program + machine”, which Scott [Sco67] proposed in order to har- monize the wealth of upcoming automaton models.
    [Show full text]
  • Tree Automata Techniques and Applications
    Tree Automata Techniques and Applications Hubert Comon Max Dauchet Remi´ Gilleron Florent Jacquemard Denis Lugiez Sophie Tison Marc Tommasi Contents Introduction 7 Preliminaries 11 1 Recognizable Tree Languages and Finite Tree Automata 13 1.1 Finite Tree Automata . 14 1.2 The pumping Lemma for Recognizable Tree Languages . 22 1.3 Closure Properties of Recognizable Tree Languages . 23 1.4 Tree homomorphisms . 24 1.5 Minimizing Tree Automata . 29 1.6 Top Down Tree Automata . 31 1.7 Decision problems and their complexity . 32 1.8 Exercises . 35 1.9 Bibliographic Notes . 38 2 Regular grammars and regular expressions 41 2.1 Tree Grammar . 41 2.1.1 Definitions . 41 2.1.2 Regular tree grammar and recognizable tree languages . 44 2.2 Regular expressions. Kleene’s theorem for tree languages. 44 2.2.1 Substitution and iteration . 45 2.2.2 Regular expressions and regular tree languages. 48 2.3 Regular equations. 51 2.4 Context-free word languages and regular tree languages . 53 2.5 Beyond regular tree languages: context-free tree languages . 56 2.5.1 Context-free tree languages . 56 2.5.2 IO and OI tree grammars . 57 2.6 Exercises . 58 2.7 Bibliographic notes . 61 3 Automata and n-ary relations 63 3.1 Introduction . 63 3.2 Automata on tuples of finite trees . 65 3.2.1 Three notions of recognizability . 65 3.2.2 Examples of the three notions of recognizability . 67 3.2.3 Comparisons between the three classes . 69 3.2.4 Closure properties for Rec£ and Rec; cylindrification and projection .
    [Show full text]
  • Taxonomy of XML Schema Languages Using Formal Language Theory
    Taxonomy of XML Schema Languages using Formal Language Theory MAKOTO MURATA IBM Tokyo Research Lab DONGWON LEE Penn State University MURALI MANI Worcester Polytechnic Institute and KOHSUKE KAWAGUCHI Sun Microsystems On the basis of regular tree grammars, we present a formal framework for XML schema languages. This framework helps to describe, compare, and implement such schema languages in a rigorous manner. Our main results are as follows: (1) a simple framework to study three classes of tree languages (“local”, “single-type”, and “regular”); (2) classification and comparison of schema languages (DTD, W3C XML Schema, and RELAX NG) based on these classes; (3) efficient doc- ument validation algorithms for these classes; and (4) other grammatical concepts and advanced validation algorithms relevant to XML model (e.g., binarization, derivative-based validation). Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design—Schema and subschema; F.4.3 [Mathematical Logic and Formal Languages]: Formal Languages— Classes defined by grammars or automata General Terms: Algorithms, Languages, Theory Additional Key Words and Phrases: XML, schema, validation, tree automaton, interpretation 1. INTRODUCTION XML [Bray et al. 2000] is a meta language for creating markup languages. To represent an XML based language, we design a collection of names for elements and attributes that the language uses. These names (i.e., tag names) are then used by application programs dedicated to this type of information. For instance, XHTML [Altheim and McCarron (Eds) 2000] is such an XML-based language. In it, permissible element names include p, a, ul, and li, and permissible attribute names include href and style.
    [Show full text]
  • Tree Automata
    Foundations of XML Types: Tree Automata Pierre Genevès CNRS (slides mostly based on slides by W. Martens and T. Schwentick) University Grenoble Alpes, 2020–2021 1 / 43 Why Tree Automata? • Foundations of XML type languages (DTD, XML Schema, Relax NG...) • Provide a general framework for XML type languages • A tool to define regular tree languages with an operational semantics • Provide algorithms for efficient validation • Basic tool for static analysis (proofs, decision procedures in logic) 2 / 43 Prelude: Word Automata b b a start even odd a Transitions even !a odd odd !a even ... 3 / 43 From Words to Trees: Binary Trees Binary trees with an even number of a’s a a a b a b b How to write transitions? 4 / 43 From Words to Trees: Binary Trees Binary trees with an even number of a’s a even a even a odd b even a odd b even b even How to write transitions? 4 / 43 From Words to Trees: Binary Trees Binary trees with an even number of a’s a even a even a odd b even a odd b even b even How to write transitions? (even; odd) !a even (even; even) !a odd etc: 4 / 43 Ranked Trees? They come from parse trees of data (or programs)... A function call f (a; b) is a ranked tree f a b 5 / 43 Ranked Trees? They come from parse trees of data (or programs)... A function call f (g(a; b; c); h(i)) is a ranked tree f g h a b c i 5 / 43 Ranked Alphabet A ranked alphabet symbol is: • a formalisation of a function call • a symbol a with an integer arity(a) • arity(a) indicates the number of children of a Notation a(k): symbol a with arity(a)= k 6 / 43 Example Alphabet:
    [Show full text]
  • Language, Automata and Logic for Finite Trees
    Language, Automata and Logic for Finite Trees Olivier Gauwin UMons Feb/March 2010 Olivier Gauwin (UMons) Finite Tree Automata Feb/March 2010 1 / 66 Languages, Automata, Logic Example for regular word languages: Σ∗.a.b.Σ∗ Complexity a, b a, b a b ∃x. ∃y. lab (x) S A B Automata Logic a ∧ labb(y) ∧ succ(x, y) Grammars / Expressions S → aS S → aB X → aX X → ǫ S → bS B → bX X → bX Olivier Gauwin (UMons) Finite Tree Automata Feb/March 2010 2 / 66 Languages, Automata, Logic Example for regular word languages: Σ∗.a.b.Σ∗ Example for regular tree languages: all trees with an a-node having a b-child Complexity a, b a, b a b ∃x. ∃y. lab (x) S A B Automata Logic a ∧ labb(y) ∧ succ(x, y) (S, X ) → S ∃x. ∃y. laba(x) (X , S) → S ∧ labb(y) ∧ child(x, y) a(B, X ) → S a(X , B) → S Grammars / Expressions ... S → aS S → aB X → aX X → ǫ b → B S → bS B → bX X → bX ... S → (S, X ) S → a(B, X ) B → b(X , X ) X → (X , X ) S → (X , S) S → a(X , B) B → b X → Olivier Gauwin (UMons) Finite Tree Automata Feb/March 2010 2 / 66 References The main reference for this talk is the TATA book [CDG+07]: Tree Automata, Techniques and Applications by Hubert Comon, Max Dauchet, R´emi Gilleron, Christof L¨oding, Florent Jacquemard, Denis Lugier, Sophie Tison, Marc Tommasi. Other references will be mentionned progressively. Olivier Gauwin (UMons) Finite Tree Automata Feb/March 2010 3 / 66 1 Ranked Trees Trees on Ranked Alphabet Tree Automata Tree Grammars Logic 2 Unranked Trees Unranked Trees Automata Logic Olivier Gauwin (UMons) Finite Tree Automata Feb/March 2010 4 / 66 1 Ranked Trees Trees on Ranked Alphabet Tree Automata Tree Grammars Logic 2 Unranked Trees Unranked Trees Automata Logic Olivier Gauwin (UMons) Finite Tree Automata Feb/March 2010 5 / 66 Trees on Ranked Alphabet Ranked alphabet Ranked alphabet = finite alphabet + arity function Σr Σ= {a, b, c} ar:Σ → N ar(a) = 2 ar(b) = 2 ar(c) = 0 Ranked trees over Σr TΣr , the set of ranked trees, is the smallest set of terms f (t1,..., tk ) such that: f ∈ Σr , k = ar(f ), and ti ∈TΣr for all 1 ≤ i ≤ k.
    [Show full text]
  • A Model-Theoretic Description of Tree Adjoining Grammars 1
    p() URL: http://www.elsevier.nl/locate/entcs/volume53.html 23 pages A Model-Theoretic Description of Tree Adjoining Grammars 1 Frank Morawietz and Uwe M¨onnich 2,3 Seminar f¨ur Sprachwissenschaft Universit¨at T¨ubingen T¨ubingen, Germany Abstract In this paper we show that non-context-free phenomena can be captured using only limited logical means. In particular, we show how to encode a Tree Adjoining Gram- mar [16] into a weakly equivalent monadic context-free tree grammar (MCFTG). By viewing MCFTG-rules as terms in a free Lawvere theory, we can translate a given MCFTG into a regular tree grammar. The latter is characterizable by both a tree automaton and a corresponding formula in monadic second-order (MSO) logic. The trees of the resulting regular tree language are then unpacked into the intended “linguistic” trees through a model-theoretic interpretation in the form of an MSO transduction based upon tree-walking automata. This two-step approach gives a logical as well as an operational description of the tree sets involved. 1 Introduction Algebraic, logical and regular characterizations of (tree) languages provide a natural framework for the denotational and operational semantics of grammar formalisms relying on the use of trees for their intended models. In the present context the combination of algebraic, logical and regular techniques does not onlyadd another description of mildlycontext-sensitive languages to an alreadylong list of weak equivalences between grammar for- malisms. It also makes available the whole bodyof techniques that have been developed in the tradition of algebraic language theory, logic and automata theory.
    [Show full text]
  • Uniform Vs. Nonuniform Membership for Mildly Context-Sensitive Languages: a Brief Survey
    algorithms Article Uniform vs. Nonuniform Membership for Mildly Context-Sensitive Languages: A Brief Survey Henrik Björklund *, Martin Berglund and Petter Ericson Department of Computing Science, Umeå University, SE-901 87 Umeå, Sweden; [email protected] (M.B.); [email protected] (P.E.) * Correspondence: [email protected]; Tel.: +46-90-786-9789 Academic Editors: Henning Fernau and Florin Manea Received: 8 March 2016; Accepted: 27 April 2016; Published: 11 May 2016 Abstract: Parsing for mildly context-sensitive language formalisms is an important area within natural language processing. While the complexity of the parsing problem for some such formalisms is known to be polynomial, this is not the case for all of them. This article presents a series of results regarding the complexity of parsing for linear context-free rewriting systems and deterministic tree-walking transducers. We discuss the difference between uniform and nonuniform complexity measures and how parameterized complexity theory can be used to investigate how different aspects of the formalisms influence how hard the parsing problem is. The main results we survey are all hardness results and indicate that parsing is hard even for relatively small values of parameters such as rank and fan-out in a rewriting system. Keywords: mildly context-sensitive languages; parsing; formal languages; parameterized complexity 1. Introduction Context-free and context-sensitive grammars were introduced in the 1950s by Noam Chomsky, as possible formalisms for describing the structure of natural languages; see, e.g., [1]. Context-free grammars (CFG for short), in particular, have been very successful, both when it comes to natural language modelling and, perhaps to an even larger degree, the description of the syntax of programming languages.
    [Show full text]
  • Context-Free Graph Grammars and Concatenation of Graphs
    Context-free graph grammars and concatenation of graphs Citation for published version (APA): Engelfriet, J., & Vereijken, J. J. (1995). Context-free graph grammars and concatenation of graphs. (Computing science reports; Vol. 9533). Technische Universiteit Eindhoven. Document status and date: Published: 01/01/1995 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Hybrid Grammars for Parsing of Discontinuous Phrase Structures and Non-Projective Dependency Structures
    Hybrid Grammars for Parsing of Discontinuous Phrase Structures and Non-Projective Dependency Structures Kilian Gebhardt∗ Technische Universität Dresden Mark-Jan Nederhof∗∗ University of St. Andrews Heiko Vogler∗ Technische Universität Dresden We explore the concept of hybrid grammars, which formalize and generalize a range of existing frameworks for dealing with discontinuous syntactic structures. Covered are both discontinuous phrase structures and non-projective dependency structures. Technically, hybrid grammars are related to synchronous grammars, where one grammar component generates linear structures and another generates hierarchical structures. By coupling lexical elements of both components together, discontinuous structures result. Several types of hybrid grammars are characterized. We also discuss grammar induction from treebanks. The main advantage over existing frameworks is the ability of hybrid grammars to separate discontinuity of the desired structures from time complexity of parsing. This permits exploration of a large variety of parsing algorithms for discontinuous structures, with different properties. This is confirmed by the reported experimental results, which show a wide variety of running time, accuracy, and frequency of parse failures. 1. Introduction Much of the theory of parsing assumes syntactic structures that are trees, formalized such that the children of each node are ordered, and the yield of a tree, that is, the leaves read from left to right, is the sentence. In different terms, each node in the hierarchical syntactic structure of a sentence corresponds to a phrase that is a list of adjacent words, without any gaps. Such a structure is easy to represent in terms of bracketed notation, which is used, for instance, in the Penn Treebank (Marcus, Santorini, and Marcinkiewicz 1993).
    [Show full text]
  • Efficient Techniques for Parsing with Tree Automata
    Efficient techniques for parsing with tree automata Jonas Groschwitz and Alexander Koller Mark Johnson Department of Linguistics Department of Computing University of Potsdam Macquarie University Germany Australia groschwi|[email protected] [email protected] Abstract ing algorithm which recursively explores substruc- tures of the input object and assigns them non- Parsing for a wide variety of grammar for- terminal symbols, but their exact relationship is malisms can be performed by intersecting rarely made explicit. On the practical side, this finite tree automata. However, naive im- parsing algorithm and its extensions (e.g. to EM plementations of parsing by intersection training) have to be implemented and optimized are very inefficient. We present techniques from scratch for each new grammar formalism. that speed up tree-automata-based pars- Thus, development time is spent on reinventing ing, to the point that it becomes practically wheels that are slightly different from previous feasible on realistic data when applied to ones, and the resulting implementations still tend context-free, TAG, and graph parsing. For to underperform. graph parsing, we obtain the best runtimes Koller and Kuhlmann (2011) introduced Inter- in the literature. preted Regular Tree Grammars (IRTGs) in order to address this situation. An IRTG represents 1 Introduction a language by describing a regular language of Grammar formalisms that go beyond context-free derivation trees, each of which is mapped to a term grammars have recently enjoyed renewed atten-
    [Show full text]
  • Regular Rooted Graph Grammars a Web Type and Schema Language
    Regular Rooted Graph Grammars A Web Type and Schema Language Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften an der Fakultat¨ fur¨ Mathematik, Informatik und Statistik der Ludwig-Maximilians-Universitat¨ Munchen¨ von Sacha Berger Dezember 2007 Erstgutachter: Prof. Dr. Franc¸ois Bry (Universitat¨ Munchen)¨ Zweitgutachter: Prof. Dr. Claude Kirchner (INRIA Bordeaux) Tag der m ¨undlichenPr ¨ufung: 4. Februar 2008 Abstract This thesis investigates a pragmatic approach to typing, static analysis and static optimization of Web query languages, in special the Web query language Xcerpt[43]. The approach is pragmatic in the sense, that no restriction on the types are made for decidability or efficiency reasons, instead precision is given up if necessary. Prag- matics on the dynamic side means to use types not only to ensure validity of objects operating on, but also influencing query selection based on types. A typing language for typing of graph structured data on the Web is introduced. The Graphs in mind are based on spanning trees with references, the typing languages is based on regular tree grammars [37, 38] with typed reference extensions. Beside ordered data in the spirit of XML, unordered data (i.e. in the spirit of the Xcerpt data model or RDF) can be modelled using regular expressions under unordered in- terpretation – this approach is new. An operational semantics for ordered and un- ordered types is given based on specialized regular tree automata[21] and counting constraints[67] (them again based on Presburger arithmetic formulae). Static type checking of Xcerpt query and construct terms is introduced, as well as optimization of Xcerpt query terms based on schema information.
    [Show full text]