Especies Invasoras Acuáticas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aphanotorulus Ammophilus ERSS
Aphanotorulus ammophilus (a catfish, no common name) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, August 2011 Revised, August 2018 Web Version, 8/31/2018 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018a): “South America: Portuguesa River basin [Colombia, Venezuela].” From Ray and Armbruster (2016): “Type locality: Venezuela, Estado Cojedes, Río San Carlos, R. Portuguesa drainage at Caño Hondo, 2 km west of Las Vegas on the road from Las Vegas to Campo Allegre – 9º31'51"N, 68º39'39"W.” From Armbruster and Page (1996): “Rio Orinoco drainage of Venezuela […]; mainly known from the Rio Apure system.” 1 Status in the United States No records of Aphanotorulus ammophilus in trade or in the wild in the United States were found. Means of Introductions in the United States No records of Aphanotorulus ammophilus in the wild in the United States were found. Remarks Information searches were conducted using the accepted species name, Aphanotorulus ammophilus, and the synonym Hypostomus ammophilus. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Eschmeyer et al. (2018), Aphanotorulus ammophilus (Armbruster and Page 1996) is the valid name for this species; Hypostomus ammophilus (Armbruster and Page 1996) used to be a valid name for this species and now is a synonym. From Froese and Pauly (2018b): “Kingdom Animalia Phylum Chordata Class Actinopterygii Order Siluriformes Family Loricariidae Genus Aphanotorulus” Size, Weight, and Age Range From Froese and Pauly (2018a): “Max length : 16.1 cm SL male/unsexed; [Weber 2003]” Environment From Froese and Pauly (2018a): “Freshwater; benthopelagic.” Climate/Range From Froese and Pauly (2018a): “Tropical” 2 Distribution Outside the United States Native From Froese and Pauly (2018a): “South America: Portuguesa River basin [Colombia and Venezuela].” From Ray and Armbruster (2016): “Type locality: Venezuela, Estado Cojedes, Río San Carlos, R. -
A Practical Handbook for Determining the Ages of Gulf of Mexico And
A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399. -
Diversidade E Dinâmica De Microcrustáceos Em Áreas Úmidas Intermitentes
Universidade Federal do Rio Grande Instituto de Ciências Biológicas Pós-graduação em Biologia de Ambientes Aquáticos Continentais Diversidade e dinâmica de microcrustáceos em áreas úmidas intermitentes Maiby Glorize da Silva Bandeira Orientadora: Profa. Dra. Edélti F. Albertoni Coorientador: Prof. Dr. Luiz U. Hepp Rio Grande 2020 Universidade Federal do Rio Grande Instituto de Ciências Biológicas Pós-graduação em Biologia de Ambientes Aquáticos Continentais Diversidade e dinâmica de microcrustáceos em áreas úmidas intermitentes Aluna: Maiby Glorize da Silva Bandeira Orientadora: Profa. Dra. Edélti F. Albertoni Coorientador: Prof. Dr. Luiz U. Hepp Tese apresentada ao Programa de Pós- graduação em Biologia de Ambientes Aquáticos Continentais como requisito parcial para a obtenção do título de Doutora em Biologia de Ambientes Aquáticos Continentais. Rio Grande 2020 Dedico ao meu querido Andirobal (Monte Alegre-PA) Cujos moradores são a minha motivação diária Eles me mantém focada nos meus objetivos E me fazem ser mais persistente com os meus sonhos Que de certa forma são deles também. AGRADECIMENTOS Primeiramente a Deus que nunca desiste de mim. Segundo, à queridíssima profª. Edélti Albertoni que desde o meu primeiro email (no início de 2016), me aceitou e permitiu que eu realizasse mais um grande sonho na minha vida. Nunca terei palavras para expressar o carinho que ela, o prof. Cleber, a Manu e o Leandro tiveram comigo quando cheguei ao tenebroso frio do Sul. A Edélti não foi só uma orientadora, também foi mãe, amiga, conselheira e sempre nos acolheu com muito carinho, seja no laboratório ou no aconchego do seu lar. Sempre me apoiou nas minhas decisões, nas desilusões, nas conquistas, e soube me frear quando achou necessário. -
Morphological and Genetic Comparative
Revista Mexicana de Biodiversidad 79: 373- 383, 2008 Morphological and genetic comparative analyses of populations of Zoogoneticus quitzeoensis (Cyprinodontiformes:Goodeidae) from Central Mexico, with description of a new species Análisis comparativo morfológico y genético de diferentes poblaciones de Zoogoneticus quitzeoensis (Cyprinodontiformes:Goodeidae) del Centro de México, con la descripción de una especie nueva Domínguez-Domínguez Omar1*, Pérez-Rodríguez Rodolfo1 and Doadrio Ignacio2 1Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Fuente de las Rosas 65, Fraccionamiento Fuentes de Morelia, 58088 Morelia, Michoacán, México 2Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, España. *Correspondent: [email protected] Abstract. A genetic and morphometric study of populations of Zoogoneticus quitzeoensis (Bean, 1898) from the Lerma and Ameca basins and Cuitzeo, Zacapu and Chapala Lakes in Central Mexico was conducted. For the genetic analysis, 7 populations were sampled and 2 monophyletic groups were identifi ed with a genetic difference of DHKY= 3.4% (3-3.8%), one being the populations from the lower Lerma basin, Ameca and Chapala Lake, and the other populations from Zacapu and Cuitzeo Lakes. For the morphometric analysis, 4 populations were sampled and 2 morphotypes identifi ed, 1 from La Luz Spring in the lower Lerma basin and the other from Zacapu and Cuitzeo Lakes drainages. Using these 2 sources of evidence, the population from La Luz is regarded as a new species Zoogoneticus purhepechus sp. nov. _The new species differs from its sister species Zoogoneticus quitzeoensis_ in having a shorter preorbital distance (Prol/SL x = 0.056, SD = 0.01), longer dorsal fi n base length (DFL/SL x = 0.18, SD = 0.03) and 13-14 rays in the dorsal fi n. -
The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11. -
The Etyfish Project © Christopher Scharpf and Kenneth J
CYPRINODONTIFORMES (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 3.0 - 13 Nov. 2020 Order CYPRINODONTIFORMES (part 3 of 4) Suborder CYPRINODONTOIDEI Family PANTANODONTIDAE Spine Killifishes Pantanodon Myers 1955 pan(tos), all; ano-, without; odon, tooth, referring to lack of teeth in P. podoxys (=stuhlmanni) Pantanodon madagascariensis (Arnoult 1963) -ensis, suffix denoting place: Madagascar, where it is endemic [extinct due to habitat loss] Pantanodon stuhlmanni (Ahl 1924) in honor of Franz Ludwig Stuhlmann (1863-1928), German Colonial Service, who, with Emin Pascha, led the German East Africa Expedition (1889-1892), during which type was collected Family CYPRINODONTIDAE Pupfishes 10 genera · 112 species/subspecies Subfamily Cubanichthyinae Island Pupfishes Cubanichthys Hubbs 1926 Cuba, where genus was thought to be endemic until generic placement of C. pengelleyi; ichthys, fish Cubanichthys cubensis (Eigenmann 1903) -ensis, suffix denoting place: Cuba, where it is endemic (including mainland and Isla de la Juventud, or Isle of Pines) Cubanichthys pengelleyi (Fowler 1939) in honor of Jamaican physician and medical officer Charles Edward Pengelley (1888-1966), who “obtained” type specimens and “sent interesting details of his experience with them as aquarium fishes” Yssolebias Huber 2012 yssos, javelin, referring to elongate and narrow dorsal and anal fins with sharp borders; lebias, Greek name for a kind of small fish, first applied to killifishes (“Les Lebias”) by Cuvier (1816) and now a -
Butterfly Splitfin (Ameca Splendens) Ecological Risk Screening Summary
Butterfly Splitfin (Ameca splendens) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, January 2013 Revised, January 2018 Web Version, 8/27/2018 Photo: Ameca splendens. Source: Getty Images. Available: https://rmpbs.pbslearningmedia.org/resource/128605480-endangered-species/butterfly-goodeid- ameca-splendens/#.Wld1X7enGUk. (January 2018). 1 1 Native Range and Status in the United States Native Range From Fuller (2018): “This species is confined to a very small area, the Río Ameca basin, on the Pacific Slope of western Mexico (Miller and Fitzsimons 1971).” From Goodeid Working Group (2018): “This species comes from the Pacific Slope and inhabits the Río Ameca and its tributary, the Río Teuchitlán in Jalisco. More habitats in the ichthyological [sic] closely connected Sayula valley have been detected quite recently.” Status in the United States From Fuller (2018): “Reported from Nevada. Records are more than 25 years old and the current status is not known to us. One individual was taken in November 1981 (museum specimen) and another in August 1983 from Rodgers Spring, Nevada (Courtenay and Deacon 1983, Deacon and Williams 1984). Others were seen and not collected (Courtenay, personal communication).” From Goodeid Working Group (2018): “Miller reported, that on 6 May 1982, this species was collected in Roger's Spring, Clark County, Nevada, (pers. comm. to Miller by P.J. Unmack) where it is now extirpated. It had been exposed there with several other exotic species (Deacon [and Williams] 1984).” From FAO (2018): “Status of the introduced species in the wild: Probably not established.” From Froese and Pauly (2018): “Raised commercially in Florida, U.S.A.” Means of Introductions in the United States From Fuller (2018): “Probably an aquarium release.” Remarks From Fuller (2018): “Synonyms and Other Names: butterfly goodeid.” 2 From Goodeid Working Group (2018): “Some hybridisation attempts have been undertaken with the Butterfly Splitfin to solve its relationship. -
Two New Species of the Genus Xenotoca Hubbs and Turner, 1939 (Teleostei, Goodeidae) from Central-Western Mexico
Zootaxa 4189 (1): 081–098 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4189.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:9BF8660A-4817-4EEA-853F-5856D1B8F6FA Two new species of the genus Xenotoca Hubbs and Turner, 1939 (Teleostei, Goodeidae) from central-western Mexico OMAR DOMÍNGUEZ-DOMÍNGUEZ1,3, DULCE MARÍA BERNAL-ZUÑIGA1 & KYLE R. PILLER2 1Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “R” planta baja, Ciudad Universitaria, Morelia, Michoacán, México 2Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, 70402, USA 3Corresponding author. E-mail: [email protected] Abstract The subfamily Goodeinae (Goodeidae) is one of the most representative and well-studied group of fishes from central Mexico, with around 18 genera and 40 species. Recent phylogenetic studies have documented a high degree of genetic diversity and divergences among populations, suggesting that the diversity of the group may be underestimated. The spe- cies Xenotoca eiseni has had several taxonomic changes since its description. Xenotoca eiseni is considered a widespread species along the Central Pacific Coastal drainages of Mexico, inhabiting six independent drainages. Recent molecular phylogenetic studies suggest that X. eiseni is a species complex, represented by at least three independent evolutionary lineages. We carried out a meristic and morphometric study in order to evaluate the morphological differences among these genetically divergent populations and describe two new species. The new species of goodeines, Xenotoca doadrioi and X. lyonsi, are described from the Etzatlan endorheic drainage and upper Coahuayana basin respectively. -
Endangered Species
FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S. -
Establishment of a Taxonomic and Molecular Reference Collection to Support the Identification of Species Regulated by the Wester
Management of Biological Invasions (2017) Volume 8, Issue 2: 215–225 DOI: https://doi.org/10.3391/mbi.2017.8.2.09 Open Access © 2017 The Author(s). Journal compilation © 2017 REABIC Proceedings of the 9th International Conference on Marine Bioinvasions (19–21 January 2016, Sydney, Australia) Research Article Establishment of a taxonomic and molecular reference collection to support the identification of species regulated by the Western Australian Prevention List for Introduced Marine Pests P. Joana Dias1,2,*, Seema Fotedar1, Julieta Munoz1, Matthew J. Hewitt1, Sherralee Lukehurst2, Mathew Hourston1, Claire Wellington1, Roger Duggan1, Samantha Bridgwood1, Marion Massam1, Victoria Aitken1, Paul de Lestang3, Simon McKirdy3,4, Richard Willan5, Lisa Kirkendale6, Jennifer Giannetta7, Maria Corsini-Foka8, Steve Pothoven9, Fiona Gower10, Frédérique Viard11, Christian Buschbaum12, Giuseppe Scarcella13, Pierluigi Strafella13, Melanie J. Bishop14, Timothy Sullivan15, Isabella Buttino16, Hawis Madduppa17, Mareike Huhn17, Chela J. Zabin18, Karolina Bacela-Spychalska19, Dagmara Wójcik-Fudalewska20, Alexandra Markert21,22, Alexey Maximov23, Lena Kautsky24, Cornelia Jaspers25, Jonne Kotta26, Merli Pärnoja26, Daniel Robledo27, Konstantinos Tsiamis28,29, Frithjof C. Küpper30, Ante Žuljević31, Justin I. McDonald1 and Michael Snow1 1Department of Fisheries, Government of Western Australia, PO Box 20 North Beach 6920, Western Australia; 2School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia; 3Chevron -
PARASITIC HELMINTHS INFECTING Eucinostomus Melanopterus AND
Facultad de Ciencias ACTA BIOLÓGICA COLOMBIANA Departamento de Biología http://www.revistas.unal.edu.co/index.php/actabiol Sede Bogotá NOTA BREVE / SHORT NOTE INMUNOLOGÍA PARASITIC HELMINTHS INFECTING Eucinostomus melanopterus AND Eugerres plumieri (PERCIFORMES: GERREIDAE), FROM BOCA DEL RIO, VERACRUZ, MÉXICO Helmintos parásitos de Eucinostomus melanopterus y Eugerres plumieri (Perciformes: Gerreidae), de Boca del Río, Veracruz, México Jesús MONTOYA-MENDOZA1 *, Gilberto MUÑOZ-NIETO1 , Sergio CHÁZARO-OLVERA2 , Edgar F MENDOZA-FRANCO3 , Fabiola LANGO-REYNOSO1 , María del Refugio CASTAÑEDA-CHÁVEZ1 1Laboratorio de Investigación Acuícola Aplicada, Tecnológico Nacional de México, Instituto Tecnológico de Boca del Río. Carretera Veracruz-Córdoba km 12, C.P. 94298, Boca del Río, Veracruz. México. 2Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Los Reyes Iztacala, Estado de México, México. 3Instituto de Ecología, Pesquerías y Oceanografía del Golfo de México (EPOMEX), Universidad Autónoma de Campeche, Campeche, México *For correspondence: [email protected] Received: 09th March 2019, Returned for revision: 03rd May 2019, Accepted: 23rd May 2019. Associate Editor: Diego Santiago-Alarcón. Citation/Citar este artículo como: Montoya-Mendoza J, Muñoz-Nieto G, Cházaro-Olvera S, Mendoza-Franco EF, Lango-Reynoso F, Castañeda- Chávez MR. Parasitic helminths infecting Eucinostomus melanopterus and Eugerres plumieri (Perciformes: Gerreidae), from Boca del Rio, Veracruz, México. Acta biol. Colomb. 2020;25(1):165-168. DOI: http://dx.doi.org/10.15446/abc.v25n1.78363 RESUMEN Se efectuó un examen helmintológico a 14 especímenes de Eucinostomus melanopterus (mojarra bandera) y 19 Eugerres plumieri (mojarra rayada), de los cuales se recolectaron un total de 461 helmintos. Se identificaron 12 taxones (cinco a nivel de especie, cinco a género y dos a familia) como sigue: cuatro monogéneos, cinco digéneos (cuatro adultos, una metacercaria), un céstodo (plerocercoide) y dos nemátodos (larvas). -
Multilocus Molecular Phylogeny of the Suckermouth Armored Catfishes
Molecular Phylogenetics and Evolution xxx (2014) xxx–xxx Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multilocus molecular phylogeny of the suckermouth armored catfishes (Siluriformes: Loricariidae) with a focus on subfamily Hypostominae ⇑ Nathan K. Lujan a,b, , Jonathan W. Armbruster c, Nathan R. Lovejoy d, Hernán López-Fernández a,b a Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada b Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada c Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA d Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada article info abstract Article history: The Neotropical catfish family Loricariidae is the fifth most species-rich vertebrate family on Earth, with Received 4 July 2014 over 800 valid species. The Hypostominae is its most species-rich, geographically widespread, and eco- Revised 15 August 2014 morphologically diverse subfamily. Here, we provide a comprehensive molecular phylogenetic reap- Accepted 20 August 2014 praisal of genus-level relationships in the Hypostominae based on our sequencing and analysis of two Available online xxxx mitochondrial and three nuclear loci (4293 bp total). Our most striking large-scale systematic discovery was that the tribe Hypostomini, which has traditionally been recognized as sister to tribe Ancistrini based Keywords: on morphological data, was nested within Ancistrini. This required recognition of seven additional tribe- Neotropics level clades: the Chaetostoma Clade, the Pseudancistrus Clade, the Lithoxus Clade, the ‘Pseudancistrus’ Guiana Shield Andes Mountains Clade, the Acanthicus Clade, the Hemiancistrus Clade, and the Peckoltia Clade.