Numerical Simulation of Cloud Microphysical Characteristics of Landfall Typhoon Krosa

Total Page:16

File Type:pdf, Size:1020Kb

Numerical Simulation of Cloud Microphysical Characteristics of Landfall Typhoon Krosa Vol.19 No.3 JOURNAL OF TROPICAL METEOROLOGY September 2013 Article ID: 1006-8775(2013) 03-0284-13 NUMERICAL SIMULATION OF CLOUD MICROPHYSICAL CHARACTERISTICS OF LANDFALL TYPHOON KROSA HUA Cong (花 丛), LIU Qi-jun (刘奇俊) (National Meteorological Center, Beijing 100081 China) Abstract: In this study, the super typhoon KROSA (2007) was simulated using a mesoscale numerical model Global and Regional Assimilation and Prediction System (GRAPES) with a two-moment mixed-phase microphysics scheme. Local rainfall observations, radar and satellite data were also used to analyze the precipitation structure and microphysical features. It was shown that low-level jets and unstable temperature stratification provided this precipitation process with favorable weather condition. Heavy rainfall centers were located in the north and east part of KROSA with the maxima of 6-hourly total rainfall during the simulation more than 100 mm. The quantities of column solid water and column liquid water were generally equivalent, indicating the important role of ice phase in precipitation formation. Results of CloudSat showed that strong convection occurred in the eyewall around the cyclonic center. According to the simulation results, heavy precipitation in the northeast part of the typhoon was mainly triggered by convective clouds, accompanied by the strongest updraft under the melting level. In the southwest part of KROSA, precipitation intensity was rather homogeneous. The ascending center occurred in high-level cold clouds, favoring the formation and growth of ice particles. Key words: typhoon heavy rainfall; KROSA; GRAPES model; two-moment mixed-phase microphysics scheme; cloud microphysics CLC number: P444 Document code: A 1 INTRODUCTION with little rainwater takes place without ice microphysics. Wang[6] reported that both evaporation China is one of the countries in the world heavily of rain and melting of snow and graupel are influenced by landfall tropical cyclones (TCs). The responsible for the generation of downdrafts and annual mean direct economic losses caused by rainbands. Franklin et al.[7] showed that rain rates in landfall TCs are 29 billion yuan (equivalent to about [1] the inner core of the storm become higher with US$6.19 billion) . Heavy rainfall brought by TCs is increasing speeds of graupel fall. a major contributor to disasters. Significant progress Super typhoon Krosa (2007) first appeared over has been made in research associated with typhoon the ocean east of Luzon in the Philippines at 0000 storms in the past decade, such as the formation of Coordinated Universal Time (UTC) 2 October 2007, spiral rainbands, the function of underlying surface, and subsequently moved northwestward. At 1800 and the interactions between TCs and mesoscale [2-4] UTC 4 October, Krosa strengthened into a super systems . Meanwhile, studies also pointed out that typhoon with its central pressure down to 935 hPa. At cloud microphysical processes have a significant 0730 UTC 7 October, Krosa made landfall at Xiaguan impact on the intensity, structure and precipitation of town located at the junction of Fujian and Zhejiang TCs. provinces, with a central pressure of 975 hPa. After In recent years, cloud-resolving simulation with that, Krosa weakened into a strong tropical storm and mesoscale numerical models with detailed cloud moved northeastward along the Zhejiang coastline. microphysical processes has become more and more Krosa returned to the East China Sea at 0930 UTC 8 attractive in TC research. It is suggested that cloud October and damped into a tropical depression at microphysical processes are critical to the realistic 1500 UTC 8 October. simulations of TC clouds and precipitation. Zhu and [5] Krosa was strong and stayed over the mainland of Zhang found that the weakest and shallowest storm China for 26 hours, which was rarely seen in the same Received 2012-04-24; Revised 2013-05-08; Accepted 2013-07-15 Foundation item: “Abnormal Changes and Mechanism Study Before and After Typhoon Landing” (2009CB421500) from the National Key Basic Research Program (973 Program) Biography: HUA Cong, M.S., primarily undertaking research on cloud model and cloud microphysics. Corresponding author: HUA Cong, e-mail: [email protected] No.3 HUA Cong (花 丛) and LIU Qi-jun (刘奇俊) 285 period of history. Its long-term effects brought heavy equation for hydrometeor mixing ratios, hydrometeor rainfall to north Fujian and most of Zhejiang province. number concentration ratios and spectrum broaden [8, 9] There have been studies considering the mesoscale functions in this scheme is written as:. cloud clusters in spiral cloud bands as the main reason for precipitation during early landfall. Spiral cloud ∂F()mFm⎛⎞→ ∂ δ () x x =−∇⋅⎜⎟UFxmxxx() m +∇⋅() K ∇⋅ F () m +() UF () m + bands provided favorable moisture conditions to the ∂∂tzt⎝⎠ δ heavy rainfall. An inverted trough resulted in the where Fx (m) stands for hydrometeor mixing ratios of coupling of upper divergence and lower convergence, Q , Q , Q , Q , Q and Q , hydrometeor number enhancing precipitation in the north of Krosa. Cold air v c r i s g concentration ratios Nr, Ni, Ns, Ng, ice spectrum invaded into the cyclone to increase atmospheric broaden function F and snow spectrum broaden baroclinic instability, assisting the maintenance of i function Fs. The right-hand-side terms of the equation heavy rainfall. are advection transport, turbulent diffusion, In this study, super typhoon Krosa (2007) was sedimentation and cloud microphysical sources and simulated using a mesoscale numerical model, Global sinks, respectively. 29 kinds of microphysical and Regional Assimilation and Prediction System processes are included in the scheme (Figure 1), such (GRAPES), which is independently developed in as condensation or evaporation of cloud droplets and China. Local rainfall observations, radar and satellite raindrops, deposition or sublimation of ice crystals, data were also used to analyze the precipitation snow crystals and graupel, automatic conversion of structure and microphysical features. cloud droplets to raindrops, ice crystals to snow crystals, ice crystals to graupel, snow crystals to 2 THE MICROPHYSICAL SCHEME graupel; collection of cloud droplets and raindrops, cloud droplets and ice crystals, cloud droplets and [10] GRAPES is a numerical forecasting model graupel, ice crystals and ice crystals, rain drops and designed for both scientific research and operation. Its ice crystals, raindrops and snow crystals, raindrops physics schemes, which are used to describe the and raindrops, ice crystals and graupel, ice crystals atmosphere and underlying surface processes, include and snow crystals, snow crystals and graupel, snow radiation transfer, boundary layer processes, sub-grid crystals and snow crystals; nucleation of ice crystals; moist convection, grid-scale cloud and precipitation multiplication of ice crystals; melting of ice crystals, processes, surface-layer physics process and sub-grid snow crystals and graupel; congelation of raindrops scale terrain gravity wave drag. Here we used the and cloud droplets, et al. GRAPES-Meso model with a two-moment mixed-phase microphysics scheme[11]. The continuity Condensation, evaporation Condensation, evaporation Water Vapor (Qv) Sublimation, deposition and nucleation Sublimation, condensation Sublimation, Sublimation, deposition Auto-conversion Cloud droplet (Qc) Raindrop (Qr, Nr) and condensation and Multiplication, collision Melting Melting Freezing Collision Collision, melting Collision Collision Ice crystal (Qi, Ni) Auto-conversion Snow (Qs, Ns) Auto-conversion Graupel (Qg, Ng) Collision Collision Auto-conversion, collision Figure 1. Microphysics processes in the two-moment mixed-phase scheme. 285 286 Journal of Tropical Meteorology Vol.19 Except for the mutual transformation of the mode is used in the simulation, indicating the inner microphysics, the scheme also took traction on the grid is run with the initial and boundary conditions dynamic field and the latent heat release into provided by outer coarse grids. The T213 forecast consideration. The temperature equation is given by field incorporated with a bogus vortex is adopted as ∂∂TT⎛⎞→ δ the initial field. All three nested domains have the =−∇⋅⎜⎟UT +∇⋅() K ∇⋅ T +() UT + ∂∂tzt⎝⎠ δ same initial physical quantities, including horizontal wind speed u and v, temperature t, geopotential height δT where is latent heat induced by phase change. h, water vapor content Qv, sea level pressure ps and δt sea level temperature ts. Figure 2 shows the model domains. Domain 3, with a horizontal resolution of 3 EXPERIMENT DESIGN 3.3 km, covers the five provinces in East China severely affected by Krosa, and only an explicit The physics options adopted in the simulation are microphysical scheme is applied. See Table 2 for listed in Table 1, and the two-moment mixed-phase more details. microphysics scheme introduced above is chosen as the microphysics scheme. A triply nested, one-way Table 1. Summary of the physics scheme. Physics Scheme Microphysics Ice scheme Longwave radiation physics RRTM scheme Shortwave radiation physics Dudhia scheme Surface-layer physics Monin-Obukhov scheme Land-surface physics Thermal diffusion scheme Boundary-layer physics MRF scheme Cumulus physics Kain-Fritsch (new Eta) scheme (only for domain 1&2) Table 2. Summary of the experiment design. Domain Simulation time Resolution /km Time step/s Vertical levels 1200 UTC October 6 to 1 17.6 60 17 1200 UTC October 8, 2007 0000 UCT October 7 to 2 6.0 30 17 1200 October
Recommended publications
  • October 2013 Global Catastrophe Recap 2 2
    October 2013 Global Catastrophe Recap Table of Contents Executive0B Summary 3 United2B States 4 Remainder of North America (Canada, Mexico, Caribbean, Bermuda) 4 South4B America 4 Europe 4 6BAfrica 5 Asia 5 Oceania8B (Australia, New Zealand and the South Pacific Islands) 6 8BAAppendix 7 Contact Information 14 Impact Forecasting | October 2013 Global Catastrophe Recap 2 2 Executive0B Summary . Windstorm Christian affects western and northern Europe; insured losses expected to top USD1.35 billion . Cyclone Phailin and Typhoon Fitow highlight busy month of tropical cyclone activity in Asia . Deadly bushfires destroy hundreds of homes in Australia’s New South Wales Windstorm Christian moved across western and northern Europe, bringing hurricane-force wind gusts and torrential rains to several countries. At least 18 people were killed and dozens more were injured. The heaviest damage was sustained in the United Kingdom, France, Belgium, the Netherlands and Scandinavia, where a peak wind gust of 195 kph (120 mph) was recorded in Denmark. More than 1.2 million power outages were recorded and travel was severely disrupted throughout the continent. Reports from European insurers suggest that payouts are likely to breach EUR1.0 billion (USD1.35 billion). Total economic losses will be even higher. Christian becomes the costliest European windstorm since WS Xynthia in 2010. Cyclone Phailin became the strongest system to make landfall in India since 1999, coming ashore in the eastern state of Odisha. At least 46 people were killed. Tremendous rains, an estimated 3.5-meter (11.0-foot) storm surge, and powerful winds led to catastrophic damage to more than 430,000 homes and 668,000 hectares (1.65 million) acres of cropland.
    [Show full text]
  • Initializing the WRF Model with Tropical Cyclone Real-Time Reports Using the Ensemble
    Initializing the WRF Model with Tropical Cyclone Real-Time Reports using the Ensemble Kalman Filter Algorithm Tien Duc Du(1), Thanh Ngo-Duc(2), and Chanh Kieu(3)* (1)National Center for Hydro-Meteorological Forecasting, 8 Phao Dai Lang, Hanoi, Vietnam 1 (2)Department of Space and Aeronautics, University of Science and Technology of Hanoi, Vietnam 2 (3)Department of Earth and Atmospheric Sciences, Indiana University, Bloomington IN 47405, USA Revised: 18 April 2017 Submitted to Pure and Applied Geophysical Science Abbreviated title: Tropical Cyclone Ensemble Forecast Keywords: Tropical cyclones, ensemble Kalman filter, the WRF model, tropical cyclone vital, ensemble forecasting ____________________ *Corresponding author: Chanh Kieu, Atmospheric Program, GY428A Geological Building, Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN 47405. Tel: 812-856-5704. Email: [email protected]. 1 1 Abstract 2 This study presents an approach to assimilate tropical cyclone (TC) real-time reports and the 3 University of Wisconsin-Cooperative Institute for Meteorological Satellite Studies (CIMSS) 4 Atmospheric Motion Vectors (AMV) data into the Weather Research and Forecasting (WRF) model 5 for TC forecast applications. Unlike current methods in which TC real-time reports are used to either 6 generate a bogus vortex or spin-up a model initial vortex, the proposed approach ingests the TC real- 7 time reports through blending a dynamically consistent synthetic vortex structure with the CIMSS- 8 AMV data. The blended dataset is then assimilated into the WRF initial condition, using the local 9 ensemble transform Kalman filter (LETKF) algorithm. Retrospective experiments for a number of 10 TC cases in the north Western Pacific basin during 2013-2014 demonstrate that this approach could 11 effectively increase both the TC circulation and enhance the large-scale environment that the TCs are 12 embedded in.
    [Show full text]
  • Capital Adequacy (E) Task Force RBC Proposal Form
    Capital Adequacy (E) Task Force RBC Proposal Form [ ] Capital Adequacy (E) Task Force [ x ] Health RBC (E) Working Group [ ] Life RBC (E) Working Group [ ] Catastrophe Risk (E) Subgroup [ ] Investment RBC (E) Working Group [ ] SMI RBC (E) Subgroup [ ] C3 Phase II/ AG43 (E/A) Subgroup [ ] P/C RBC (E) Working Group [ ] Stress Testing (E) Subgroup DATE: 08/31/2020 FOR NAIC USE ONLY CONTACT PERSON: Crystal Brown Agenda Item # 2020-07-H TELEPHONE: 816-783-8146 Year 2021 EMAIL ADDRESS: [email protected] DISPOSITION [ x ] ADOPTED WG 10/29/20 & TF 11/19/20 ON BEHALF OF: Health RBC (E) Working Group [ ] REJECTED NAME: Steve Drutz [ ] DEFERRED TO TITLE: Chief Financial Analyst/Chair [ ] REFERRED TO OTHER NAIC GROUP AFFILIATION: WA Office of Insurance Commissioner [ ] EXPOSED ________________ ADDRESS: 5000 Capitol Blvd SE [ ] OTHER (SPECIFY) Tumwater, WA 98501 IDENTIFICATION OF SOURCE AND FORM(S)/INSTRUCTIONS TO BE CHANGED [ x ] Health RBC Blanks [ x ] Health RBC Instructions [ ] Other ___________________ [ ] Life and Fraternal RBC Blanks [ ] Life and Fraternal RBC Instructions [ ] Property/Casualty RBC Blanks [ ] Property/Casualty RBC Instructions DESCRIPTION OF CHANGE(S) Split the Bonds and Misc. Fixed Income Assets into separate pages (Page XR007 and XR008). REASON OR JUSTIFICATION FOR CHANGE ** Currently the Bonds and Misc. Fixed Income Assets are included on page XR007 of the Health RBC formula. With the implementation of the 20 bond designations and the electronic only tables, the Bonds and Misc. Fixed Income Assets were split between two tabs in the excel file for use of the electronic only tables and ease of printing. However, for increased transparency and system requirements, it is suggested that these pages be split into separate page numbers beginning with year-2021.
    [Show full text]
  • The Impact of Dropwindsonde on Typhoon Track Forecasts in DOTSTAR and T-PARC
    1 Eyewall Evolution of Typhoons Crossing the Philippines and Taiwan: An 2 Observational Study 3 Kun-Hsuan Chou1, Chun-Chieh Wu2, Yuqing Wang3, and Cheng-Hsiang Chih4 4 1Department of Atmospheric Sciences, Chinese Culture University, Taipei, Taiwan 5 2Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan 6 3International Pacific Research Center, and Department of Meteorology, University of 7 Hawaii at Manoa, Honolulu, Hawaii 8 4Graduate Institute of Earth Science/Atmospheric Science, Chinese Culture University, 9 Taipei, Taiwan 10 11 12 13 14 Terrestrial, Atmospheric and Oceanic Sciences 15 (For Special Issue on “Typhoon Morakot (2009): Observation, Modeling, and 16 Forecasting Applications”) 17 (Accepted on 10 May, 2011) 18 19 ___________________ 20 Corresponding Author’s address: Kun-Hsuan Chou, Department of Atmospheric Sciences, 21 National Taiwan University, 55, Hwa-Kang Road, Yang-Ming-Shan, Taipei 111, Taiwan. 22 ([email protected]) 1 23 Abstract 24 This study examines the statistical characteristics of the eyewall evolution induced by 25 the landfall process and terrain interaction over Luzon Island of the Philippines and Taiwan. 26 The interesting eyewall evolution processes include the eyewall expansion during landfall, 27 followed by contraction in some cases after re-emergence in the warm ocean. The best 28 track data, advanced satellite microwave imagers, high spatial and temporal 29 ground-observed radar images and rain gauges are utilized to study this unique eyewall 30 evolution process. The large-scale environmental conditions are also examined to 31 investigate the differences between the contracted and non-contracted outer eyewall cases 32 for tropical cyclones that reentered the ocean.
    [Show full text]
  • Tropical Cyclones 2019
    << LINGLING TRACKS OF TROPICAL CYCLONES IN 2019 SEP (), !"#$%&'( ) KROSA AUG @QY HAGIBIS *+ FRANCISCO OCT FAXAI AUG SEP DANAS JUL ? MITAG LEKIMA OCT => AUG TAPAH SEP NARI JUL BUALOI SEPAT OCT JUN SEPAT(1903) JUN HALONG NOV Z[ NEOGURI OCT ab ,- de BAILU FENGSHEN FUNG-WONG AUG NOV NOV PEIPAH SEP Hong Kong => TAPAH (1917) SEP NARI(190 6 ) MUN JUL JUL Z[ NEOGURI (1920) FRANCISCO (1908) :; OCT AUG WIPHA KAJIK() 1914 LEKIMA() 1909 AUG SEP AUG WUTIP *+ MUN(1904) WIPHA(1907) FEB FAXAI(1915) JUL JUL DANAS(190 5 ) de SEP :; JUL KROSA (1910) FUNG-WONG (1927) ./ KAJIKI AUG @QY @c NOV PODUL SEP HAGIBIS() 1919 << ,- AUG > KALMAEGI OCT PHANFONE NOV LINGLING() 1913 BAILU()19 11 \]^ ./ ab SEP AUG DEC FENGSHEN (1925) MATMO PODUL() 191 2 PEIPAH (1916) OCT _` AUG NOV ? SEP HALONG (1923) NAKRI (1924) @c MITAG(1918) NOV NOV _` KALMAEGI (1926) SEP NAKRI KAMMURI NOV NOV DEC \]^ MATMO (1922) OCT BUALOI (1921) KAMMURI (1928) OCT NOV > PHANFONE (1929) DEC WUTIP( 1902) FEB 二零一 九 年 熱帶氣旋 TROPICAL CYCLONES IN 2019 2 二零二零年七月出版 Published July 2020 香港天文台編製 香港九龍彌敦道134A Prepared by: Hong Kong Observatory 134A Nathan Road Kowloon, Hong Kong © 版權所有。未經香港天文台台長同意,不得翻印本刊物任何部分內容。 © Copyright reserved. No part of this publication may be reproduced without the permission of the Director of the Hong Kong Observatory. 本刊物的編製和發表,目的是促進資 This publication is prepared and disseminated in the interest of promoting 料交流。香港特別行政區政府(包括其 the exchange of information. The 僱員及代理人)對於本刊物所載資料 Government of the Hong Kong Special 的準確性、完整性或效用,概不作出 Administrative Region
    [Show full text]
  • Natural Catastrophes and Man-Made Disasters in 2013
    No 1/2014 Natural catastrophes and 01 Executive summary 02 Catastrophes in 2013 – man-made disasters in 2013: global overview large losses from floods and 07 Regional overview 15 Fostering climate hail; Haiyan hits the Philippines change resilience 25 Tables for reporting year 2013 45 Terms and selection criteria Executive summary Almost 26 000 people died in disasters In 2013, there were 308 disaster events, of which 150 were natural catastrophes in 2013. and 158 man-made. Almost 26 000 people lost their lives or went missing in the disasters. Typhoon Haiyan was the biggest Typhoon Haiyan struck the Philippines in November 2013, one of the strongest humanitarian catastrophe of the year. typhoons ever recorded worldwide. It killed around 7 500 people and left more than 4 million homeless. Haiyan was the largest humanitarian catastrophe of 2013. Next most extreme in terms of human cost was the June flooding in the Himalayan state of Uttarakhand in India, in which around 6 000 died. Economic losses from catastrophes The total economic losses from natural catastrophes and man-made disasters were worldwide were USD 140 billion in around USD 140 billion last year. That was down from USD 196 billion in 2012 2013. Asia had the highest losses. and well below the inflation-adjusted 10-year average of USD 190 billion. Asia was hardest hit, with the cyclones in the Pacific generating most economic losses. Weather events in North America and Europe caused most of the remainder. Insured losses amounted to USD 45 Insured losses were roughly USD 45 billion, down from USD 81 billion in 2012 and billion, driven by flooding and other below the inflation-adjusted average of USD 61 billion for the previous 10 years, weather-related events.
    [Show full text]
  • Impact of GPS Radio Occultation Measurements on Severe Weather Prediction in Asia
    Impact of GPS Radio Occultation Measurements on Severe Weather Prediction in Asia Ching-Yuang Huang1, Ying-Hwa Kuo2,3, Shu-Ya Chen1, Mien-Tze Kueh1, Pai-Liam Lin1, Chuen-Tsyr Terng4, Fang-Ching Chien5, Ming-Jen Yang1, Song-Chin Lin1, Kuo-Ying Wang1, Shu-Hua Chen6, Chien-Ju Wang1 1 and Anisetty S.K.A.V. Prasad Rao 1Department of Atmospheric Sciences, National Central University, Jhongli, Taiwan 2University Corporation for Atmospheric Research, Boulder, Colorado, USA 3National Center for Atmospheric Research, Boulder, Colorado, USA 4Central Weather Bureau, Taipei, Taiwan 5Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan 6Department of Land, Air & Water Resources, University of California, Davis, California, USA Abstract The impact of GPS radio occultation (RO) refractivity measurements on severe weather prediction in Asia was reviewed. Both the local operator that assimilates the retrieved refractivity as local point measurements and the nonlocal operator that assimilates the integrated retrieved refractivity along a straight raypath have been employed in WRF 3DVAR to improve the model initial analysis. We provide a general evaluation of the impact of these approaches on Asian regional analysis and daily prediction. GPS RO data assimilation was found beneficial for some periods of the predictions. In particular, such data improved prediction of severe weather such as typhoons and Mei-yu systems when COSMIC data were available, ranging from several points in 2006 to a maximum of about 60 in 2007 and 2008 in this region. These positive impacts are seen not only in typhoon track prediction but also in prediction of local heavy rainfall associated with severe weather over Taiwan.
    [Show full text]
  • Research Article a New Vortex Initialization Scheme Coupled with WRF-ARW
    Hindawi Advances in Meteorology Volume 2017, Article ID 6272158, 15 pages https://doi.org/10.1155/2017/6272158 Research Article A New Vortex Initialization Scheme Coupled with WRF-ARW Jimmy Chi Hung Fung1,2 and Guangze Gao1 1 Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 2Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Correspondence should be addressed to Jimmy Chi Hung Fung; [email protected] Received 21 August 2016; Revised 29 October 2016; Accepted 20 November 2016; Published 3 January 2017 Academic Editor: Anthony R. Lupo Copyright © 2017 J. C. H. Fung and G. Gao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The ability of numerical simulations to predict typhoons has been improved in recent decades. Although the track prediction is satisfactory, the intensity prediction is still far from adequate. Vortex initialization is an efficient method to improve the estimations of the initial conditions for typhoon forecasting. In this paper, a new vortex initialization scheme is developed and evaluated. The scheme requires only observational data of the radius of maximum wind and the max wind speed in addition to the global analysis data. This scheme can also satisfy the vortex boundary conditions, which means that the vortex is continuously merged into the background environment. The scheme has a low computational cost and has the flexibility to adjust the vortex structure.
    [Show full text]
  • Member Report
    MEMBER REPORT ESCAP/WMO Typhoon Committee 42nd Session 25–29 January 2010 Singapore People’s Republic of China 1 CONTENTS I. Overview of tropical cyclones which have affected/impacted Member’s area since the last Typhoon Committee Session II. Summary of progress in Key Result Areas 1. Progress on Key Result Area 1 2. Progress on Key Result Area 2 3. Progress on Key Result Area 3 4. Progress on Key Result Area 4 5. Progress on Key Result Area 5 6. Progress on Key Result Area 6 7. Progress on Key Result Area 7 III. Resource Mobilization Activities IV. Update of Members’ Working Groups representatives 2 I. Overview of tropical cyclones which have affected/impacted Member’s area in 2009 In 2009, totally 9 tropical cyclones landed on China. They were severe tropical storm Linfa (0903), tropical storm Nangka (0904) and Soudelor (0905), Typhoon Molave (0906), tropical storm Goni (0907), typhoon Morakot (0908), tropical storm Mujigae (0913), typhoon Koppu (0915) and super typhoon Parma (0917) respectively. 1. Meteorological Assessment (highlighting forecasting issues/impacts) (1) LINFA (0903) LINFA formed as a tropical depression over South China Sea at 06:00 UTC 17 June 2009. It developed into a tropical storm and a severe tropical storm at 06:00 UTC 18 June and 03:00 UTC 20 June respectively. LINFA started to move northwards. As it was gradually approaching to the coast of the Fujian province, its intensity was greatly reduced to be a tropical storm category. LINFA landed on Jinjiang of the Fujian province, China at 12:30 UTC 21 June with the maximum wind at 23m/s near its centre.
    [Show full text]
  • MEMBER REPORT [Republic of Korea]
    MEMBER REPORT [Republic of Korea] ESCAP/WMO Typhoon Committee 14th Integrated Workshop Guam, USA 4 – 7 November 2019 CONTENTS I. Overview of tropical cyclones which have affected/impacted Member’s area since the last Committee Session 1. Meteorological Assessment 2. Hydrological Assessment 3. Socio-Economic Assessment II. Summary of Progress in Priorities supporting Key Result Areas 1. The Web-based Portal to Provide Products of Seasonal Typhoon Activity Outlook for TC Members (POP1) 2. Technology Transfer of Typhoon Operation System (TOS) to the Macao Meteorological and Geophysical Bureau (POP4) 3. 2019 TRCG Research Fellowship Scheme by KMA 4. Co-Hosted the 12th Korea-China Joint Workshop on Tropical Cyclones 5. Improved KMA’s Typhoon Intensity Classification 6. Operational Service of GEO-KOMPSAT-2A 7. Developing Typhoon Analysis Technique for GEO-KOMPSAT-2A 8. Preliminary Research on Establishment of Hydrological Data Quality Control in TC Members 9. Task Improvement to Increase Effects in Flood Forecasting 10. Enhancement of Flood Forecasting Reliability with Radar Rainfall Data 11. Flood Risk Mapping of Korea 12. Expert Mission 13. Setting up Early Warning and Alert System in Lao PDR and Vietnam 14. The 14th Annual Meeting of Typhoon Committee Working Group on Disaster Risk Reduction 15. Sharing Information Related to DRR I. Overview of tropical cyclones which have affected/impacted Member’s area since the last Committee Session 1. Meteorological Assessment (highlighting forecasting issues/impacts) Twenty typhoons have occurred up until 18 October 2019 in the western North Pacific basin. The number of typhoons in 2019 was below normal, compared to the 30-year (1981-2010) average number of occurrences (25.6).
    [Show full text]
  • Typhoon 31W "Haiyan", Philippines: “Yolanda”
    Thursday, 7 November 2013 Update on Super-Typhoon “Haiyan” WHAT: Typhoon 31W "Haiyan", Philippines: “Yolanda” WHERE: Central Philippines / Earthquake affected area on BOHOL / CEBU WHEN: Night November 7/8 and Friday 8 November 2013 INTENSITY: Maximum intensity right now, 7 November, 12 UTC average wind speed 150 kt (278 kph), gusts 180 kt (333 kph), Cat 5 crossing central Philippines as Cat 4 and Cat 3 typhoon (gusts 296 kph near storm center) CONSEQUENCES FOR BOHOL 07/08 NOVEMBER 2013: - Gusts 80-140 kph - Torrential rain - landslides - flash floods - significant storm surge (~2-3 m above normal) - damage in crop - interrupted infrastructure (power lines, streets, water supply….) - very muddy surface PROBABILITY: Landfall on the island of Leyte (or Samar) around 8 November, 03 UTC Center of storm expected to pass Bohol in a distance of 150 km to the north, so most damaging winds and rain areas won’t strike directly Manila also will be outside most damaging storm area CEDIM - Haiyan is a very strong typhoon (will be probably one of the strongest ever) - will affect BOHOL earthquake area (multihazard scenario). Most intense wind and rain probably not on BOHOL. However, flash floods, landslides, storm gusts and storm surge are imminent. PRELIMINARY INFORMATION as of 7 November 2013, 12 UTC Haiyan is the fourth Cat 5 storm in the Western Pacific so far in 2013 Haiyan is the fifth Cat 5 storm on Earth so far in 2013 this is the highest number of Cat 5s since 2009, which had four Cat 5s in the Western Pacific and one in the Eastern Pacific.
    [Show full text]
  • Capital Adequacy (E) Task Force RBC Proposal Form
    Capital Adequacy (E) Task Force RBC Proposal Form [ ] Capital Adequacy (E) Task Force [ ] Health RBC (E) Working Group [ ] Life RBC (E) Working Group [ x ] Catastrophe Risk (E) Subgroup [ ] Investment RBC (E) Working Group [ ] Op Risk RBC (E) Subgroup [ ] C3 Phase II/ AG43 (E/A) Subgroup [ ] P/C RBC (E) Working Group [ ] Stress Testing (E) Subgroup DATE: 11/8/2019 FOR NAIC USE ONLY CONTACT PERSON: Eva Yeung Agenda Item # 2019-14-CR TELEPHONE: 816-783-8407 Year 2019 EMAIL ADDRESS: [email protected] DISPOSITION ON BEHALF OF: Catastrophe Risk (E) Subgroup [ x ] ADOPTED 12/8/19 NAME: Tom Botsko [ ] REJECTED TITLE: Chair [ ] DEFERRED TO AFFILIATION: Ohio Department of Insurance [ ] REFERRED TO OTHER NAIC GROUP ADDRESS: 50 West Town Street, Suite 300 [ x ] EXPOSED 11/8/19 / 1/7/20 [ ] OTHER (SPECIFY) Columbus, OH 43215 IDENTIFICATION OF SOURCE AND FORM(S)/INSTRUCTIONS TO BE CHANGED [ ] Health RBC Blanks [ ] Property/Casualty RBC Blanks [ ] Life RBC Instructions [ ] Fraternal RBC Blanks [ ] Health RBC Instructions [ ] Property/Casualty RBC Instructions [ ] Life RBC Blanks [ ] Fraternal RBC Instructions [ x ] OTHER __Cat Event Lists___ DESCRIPTION OF CHANGE(S) 2019 U.S. and non-U.S. Catastrophe Event Lists REASON OR JUSTIFICATION FOR CHANGE ** New events were determined based on the sources from Swiss Re and Aon Benfield. Additional Staff Comments: 11/8/19 The Catastrophe Risk SG exposed the proposal for 14 days public comment period ending 11/24/19. 12/6/19 The Catastrophe Risk SG adopted the lists. For any additional events that occur between 11/1 and 12/31, the SG will either schedule a call or conduct an email vote to adopt the updated list.
    [Show full text]