The Great Ice Age Owned Public Lands and Natural and Cultural Resources

Total Page:16

File Type:pdf, Size:1020Kb

The Great Ice Age Owned Public Lands and Natural and Cultural Resources U.S. Department of the Interior / U.S. Geological Survey____ As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally The Great Ice Age owned public lands and natural and cultural resources. This includes fostering wise use of our land and water resources, protecting our fish and wildlife, preserving the environ­ mental and cultural values of our national parks and histor­ ical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also promotes the goals of the Take Pride in America campaign by encouraging stewardship and citizen responsibility for the public lands and promoting citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in Island Territories under U.S. Administration. Blue Glacier, Olympic National Park, Washington. The Great Ice Age land, indicating that conditions somewhat similar to those which produced the Great Ice by Louis L. Ray Age are still operating in polar and subpolar climates. The Great Ice Age, a recent chapter in the Much has been learned about the Great Ice Earth's history, was a period of recurring Age glaciers because evidence of their pres­ widespread glaciations. During the Pleistocene ence is so widespread and because similar Epoch of the geologic time scale, which conditions can be studied today in Greenland, began about a million or more years ago, in Antarctica, and in many mountain ranges mountain glaciers formed on all continents, where glaciers still exist. It is possible, there­ the icecaps of Antarctica and Greenland were fore, to reconstruct in large part the extent more extensive and thicker than today, and and general nature of the glaciers of the past vast glaciers, in places as much as several and to interpret their impact on the physical thousand feet thick, spread across northern and biological environments. North America and Eurasia. So extensive were During the long course of Earth history, the these glaciers that almost a third of the pres­ climate has fluctuated, just as the general ent land surface of the Earth was intermittent­ character of the Earth's surface has changed. ly covered by ice. Even today remnants of the In fact, there is evidence that glaciations oc­ great glaciers cover almost a tenth of the curred long before the Great Ice Age. After a period of warm and equable climate, Prior to the 19th century, observant Swiss a worldwide climatic refrigeration initiated the peasants concluded that the glaciers in the Great Ice Age glaciers. At times during the Alps had formerly been much larger. They Great Ice Age, the climate was cooler and noted that the existing glaciers were slowly wetter and at times warmer and drier than to­ transporting and depositing boulders down- day. Many attempts have been made to ac­ valley and correctly inferred that the boulders count for these climatic fluctuations, but their (erratics) strewn about their pastures had been ultimate cause remains unclear. Although we transported and deposited in the same manner cannot predict a period of climatic cooling, long ago. Also, they observed that the polished another Ice Age in the future is a possibility. and scratched or finely grooved and rounded Although the Great Ice Age began a million bedrock knobs (roches moutonnees) along the or more years ago, the last major ice sheet to valley walls and floors were similar to those spread across the North Central United States emerging from beneath the melting ice of the reached its maximum extent about 20,000 existing glaciers. The similarity suggested that years ago. Waning through a succession of the roches moutonnees had been produced by retreats and relatively minor advances, it the moving glacial ice at a time when the lingered in Canada until about 6,000 years glaciers extended farther down the mountain ago, when it finally melted. Mountain glaciers valleys. are the only remnants of the great glaciers on In Germany and Scandinavia similar features, the mainland of North America. though far removed from existing mountain Land areas formerly covered by glaciers Map of North America showing extent of the Great Ice Age glaciers. Roche moutonnee surface, Alaska. This concept was enlarged and popularized rounded and mantled by glacial debris; and ground moraine in the Midwest in places cover by the eminent Swiss geologist, Louis Agassiz, valleys were choked by sand and gravel and conceal the preglacial hills and valleys. whose arrival in the United States in 1846 deposited by glacial melt waters. All evidence On such plains the position of maximum ad­ marks the beginning of the study of this fasci­ indicates that slowly advancing ice sheets vance of a glacier is commonly well marked nating period of Earth history in North America. plowed up the soil and loose rock, plucked by deposits of till pushed up or dumped as Since that time many significant contributions and gouged boulders from outcrops, and car­ ridges or hummocky belts (moraines). In some have been made to the understanding of the ried this material forward, often for great places narrow, hummocky, sinuous ridges glaciations, as continuing studies, especially in distances. Using the material in transit as an (eskers) may occur, or perhaps swarms of the United States, Greenland, and Antarctica, abrasive, the glaciers smoothed, polished, and rounded, elongate hills (drumlins). reveal the complex history of glaciers and of scratched the rock outcrops, producing a more Where great river valleys such as the past glaciations. subdued landscape. The great glaciers com­ Mississippi and Ohio were overwhelmed by Early observations in the country indicated monly softened the contours by wearing down ice sheets, the rivers were forced into new that large parts of the North Central and North­ the tops of hills and filling the valleys. channels. Where smaller preglacial drainage eastern United States had once been overrid­ As the glaciers melted, unsorted mixtures of systems were completely covered by glacial den by thick ice sheets. Telltale traces of clay, sand, gravel, and boulders (till) were ice, they were commonly obliterated. Glacial glacial erosion and deposition were wide­ generally deposited as an unconsolidated deposits remaining after disappearance of the spread. Rock outcrops were smoothed, pol­ mantle on the countryside (ground moraine). ice were usually poorly drained. Bogs, swamps, ished, and scratched or striated; hills were Extensive level to gently rolling plains of thick and many lakes, typical of parts of Wisconsin and Minnesota, characterize such areas. In mountain areas, valley glaciers modified the landscape in an entirely different manner. Scooping out and widening the valleys through which they moved, the glaciers produced valleys with a U-shaped cross profile, in con­ trast to the normal V-shaped profile produced by stream erosion. Intervalley divides were Shaped, scratched, and finely grooved glacial cobble, sharpened, valley walls were oversteepened, Indiana (actual size). and precipitous cliffs were developed. As a glaciers, were recognized to be of glacial result, glaciated mountain areas are often origin. The idea that such features resulted scenically spectacular, as in Glacier National from an expansion of distant mountain glaciers Park, Mont., and Yosemite, Calif. Arcuate or was gradually modified by the early naturalists. curved moraines loop across the mountain They reached the conclusion that widespread valleys or out onto the plains at the foot of the sheets of moving ice had advanced from the mountains. These moraines mark terminal far north to the plains of northern Germany. positions of valley glaciers that either have This conclusion was supported by the fact that disappeared or survive only as small ice many of the erratics on the north German masses or short tongues moving down valleys plains were of rock types common to Scan­ from the theater-shaped valley heads dinavia. Such an ice sheet, moving from north (cirques). to south, had to be distinct from the expanded Debris of all sizes transported by glaciers mountain glaciers of the Alps. Thus was born was released by the melting ice and was car­ the concept of the Great Ice Age the time ried forward by melt-water streams or deposit­ when vast glaciers spread as ice sheets over ed near the ice margin. Melt-water streams the northern lands and mountain glaciers were were commonly so loaded that they could not transport all the debris supplied to them, and greatly expanded. Drumlins, Canada. valleys became clogged with sand and gravel. 9 U-shaped glaciated valley with moraine in foreground, Glacier National Park, Montana. At times such streams flowed in a shifting In lakes that formed in front of retreating ice maze of shallow channels across the exposed sheets, glacial melt waters deposited well- surface of the valley fill they had deposited sorted sediments. Where only finer sediments (valley train). Winds sweeping across valley- were deposited, alternate layers of silt and train surfaces picked up the finer particles ex­ clay accumulated in the lake basins. It is posed between the shifting channels and generally believed that the lighter silty layer spread them as a dustlike mantle (loess) over was deposited in summer and the dark clayey the countryside. The loess of the last great layer in winter, the two layers forming an an­ glaciation may be as much as 20 feet thick. It nual deposit (varve). By counting the varves is thickest near the great river valleys, such as and matching thicknesses of varves deposited the Mississippi, that served as sluiceways for simultaneously in the many lakes along a glacial melt water. Throughout large parts of retreating glacier margin, scientists can deter­ the Central United States, soils have been mine both the time in years necessary for developed on a mantle of loess whose source varve deposition and the rate of retreat of the areas were the great river valleys.
Recommended publications
  • Wisconsinan and Sangamonian Type Sections of Central Illinois
    557 IL6gu Buidebook 21 COPY no. 21 OFFICE Wisconsinan and Sangamonian type sections of central Illinois E. Donald McKay Ninth Biennial Meeting, American Quaternary Association University of Illinois at Urbana-Champaign, May 31 -June 6, 1986 Sponsored by the Illinois State Geological and Water Surveys, the Illinois State Museum, and the University of Illinois Departments of Geology, Geography, and Anthropology Wisconsinan and Sangamonian type sections of central Illinois Leaders E. Donald McKay Illinois State Geological Survey, Champaign, Illinois Alan D. Ham Dickson Mounds Museum, Lewistown, Illinois Contributors Leon R. Follmer Illinois State Geological Survey, Champaign, Illinois Francis F. King James E. King Illinois State Museum, Springfield, Illinois Alan V. Morgan Anne Morgan University of Waterloo, Waterloo, Ontario, Canada American Quaternary Association Ninth Biennial Meeting, May 31 -June 6, 1986 Urbana-Champaign, Illinois ISGS Guidebook 21 Reprinted 1990 ILLINOIS STATE GEOLOGICAL SURVEY Morris W Leighton, Chief 615 East Peabody Drive Champaign, Illinois 61820 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/wisconsinansanga21mcka Contents Introduction 1 Stopl The Farm Creek Section: A Notable Pleistocene Section 7 E. Donald McKay and Leon R. Follmer Stop 2 The Dickson Mounds Museum 25 Alan D. Ham Stop 3 Athens Quarry Sections: Type Locality of the Sangamon Soil 27 Leon R. Follmer, E. Donald McKay, James E. King and Francis B. King References 41 Appendix 1. Comparison of the Complete Soil Profile and a Weathering Profile 45 in a Rock (from Follmer, 1984) Appendix 2. A Preliminary Note on Fossil Insect Faunas from Central Illinois 46 Alan V.
    [Show full text]
  • The Climate of the Last Glacial Maximum: Results from a Coupled Atmosphere-Ocean General Circulation Model Andrew B
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. D20, PAGES 24,509–24,525, OCTOBER 27, 1999 The climate of the Last Glacial Maximum: Results from a coupled atmosphere-ocean general circulation model Andrew B. G. Bush Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada S. George H. Philander Program in Atmospheric and Oceanic Sciences, Department of Geosciences, Princeton University Princeton, New Jersey Abstract. Results from a coupled atmosphere-ocean general circulation model simulation of the Last Glacial Maximum reveal annual mean continental cooling between 4Њ and 7ЊC over tropical landmasses, up to 26Њ of cooling over the Laurentide ice sheet, and a global mean temperature depression of 4.3ЊC. The simulation incorporates glacial ice sheets, glacial land surface, reduced sea level, 21 ka orbital parameters, and decreased atmospheric CO2. Glacial winds, in addition to exhibiting anticyclonic circulations over the ice sheets themselves, show a strong cyclonic circulation over the northwest Atlantic basin, enhanced easterly flow over the tropical Pacific, and enhanced westerly flow over the Indian Ocean. Changes in equatorial winds are congruous with a westward shift in tropical convection, which leaves the western Pacific much drier than today but the Indonesian archipelago much wetter. Global mean specific humidity in the glacial climate is 10% less than today. Stronger Pacific easterlies increase the tilt of the tropical thermocline, increase the speed of the Equatorial Undercurrent, and increase the westward extent of the cold tongue, thereby depressing glacial sea surface temperatures in the western tropical Pacific by ϳ5Њ–6ЊC. 1. Introduction and Broccoli, 1985a, b; Broccoli and Manabe, 1987; Broccoli and Marciniak, 1996].
    [Show full text]
  • Stratigraphy and Pollen Analysis of Yarmouthian Interglacial Deposits
    22G FRANK R. ETTENSOHN Vol. 74 STRATIGRAPHY AND POLLEN ANALYSIS OP YARMOUTHIAN INTERGLACIAL DEPOSITS IN SOUTHEASTERN INDIANA1 RONALD O. KAPP AND ANSEL M. GOODING Alma College, Alma, Michigan 48801, and Dept. of Geology, Earlham College, Richmond, Indiana 47374 ABSTRACT Additional stratigraphic study and pollen analysis of organic units of pre-Illinoian drift in the Handley and Townsend Farms Pleistocene sections in southeastern Indiana have provided new data that change previous interpretations and add details to the his- tory recorded in these sections. Of particular importance is the discovery in the Handley Farm section of pollen of deciduous trees in lake clays beneath Yarmouthian colluvium, indicating that the lake clay unit is also Yarmouthian. The pollen diagram spans a sub- stantial part of Yarmouthian interglacial time, with evidence of early temperate and late temperate vegetational phases. It is the only modern pollen record in North America for this interglacial age. The pollen sequence is characterized by extraordinarily high per- centages of Ostrya-Carpinus pollen, along with Quercus, Pinus, and Corylus at the beginning of the record; this is followed by higher proportions of Fagus, Carya, and Ulmus pollen. The sequence, while distinctive from other North American pollen records, bears recogniz- able similarities to Sangamonian interglacial and postglacial pollen diagrams in the southern Great Lakes region. Manuscript received July 10, 1973 (73-50). THE OHIO JOURNAL OF SCIENCE 74(4): 226, July, 1974 No. 4 YARMOUTH JAN INTERGLACIAL DEPOSITS 227 The Kansan glaeiation in southeastern Indiana as discussed by Gooding (1966) was based on interpretations of stratigraphy in three exposures of pre-Illinoian drift (Osgood, Handley, and Townsend sections; fig.
    [Show full text]
  • The History of Ice on Earth by Michael Marshall
    The history of ice on Earth By Michael Marshall Primitive humans, clad in animal skins, trekking across vast expanses of ice in a desperate search to find food. That’s the image that comes to mind when most of us think about an ice age. But in fact there have been many ice ages, most of them long before humans made their first appearance. And the familiar picture of an ice age is of a comparatively mild one: others were so severe that the entire Earth froze over, for tens or even hundreds of millions of years. In fact, the planet seems to have three main settings: “greenhouse”, when tropical temperatures extend to the polesand there are no ice sheets at all; “icehouse”, when there is some permanent ice, although its extent varies greatly; and “snowball”, in which the planet’s entire surface is frozen over. Why the ice periodically advances – and why it retreats again – is a mystery that glaciologists have only just started to unravel. Here’s our recap of all the back and forth they’re trying to explain. Snowball Earth 2.4 to 2.1 billion years ago The Huronian glaciation is the oldest ice age we know about. The Earth was just over 2 billion years old, and home only to unicellular life-forms. The early stages of the Huronian, from 2.4 to 2.3 billion years ago, seem to have been particularly severe, with the entire planet frozen over in the first “snowball Earth”. This may have been triggered by a 250-million-year lull in volcanic activity, which would have meant less carbon dioxide being pumped into the atmosphere, and a reduced greenhouse effect.
    [Show full text]
  • Overkill, Glacial History, and the Extinction of North America's Ice Age Megafauna
    PERSPECTIVE Overkill, glacial history, and the extinction of North America’s Ice Age megafauna PERSPECTIVE David J. Meltzera,1 Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved September 23, 2020 (received for review July 21, 2020) The end of the Pleistocene in North America saw the extinction of 38 genera of mostly large mammals. As their disappearance seemingly coincided with the arrival of people in the Americas, their extinction is often attributed to human overkill, notwithstanding a dearth of archaeological evidence of human predation. Moreover, this period saw the extinction of other species, along with significant changes in many surviving taxa, suggesting a broader cause, notably, the ecological upheaval that occurred as Earth shifted from a glacial to an interglacial climate. But, overkill advocates ask, if extinctions were due to climate changes, why did these large mammals survive previous glacial−interglacial transitions, only to vanish at the one when human hunters were present? This question rests on two assumptions: that pre- vious glacial−interglacial transitions were similar to the end of the Pleistocene, and that the large mammal genera survived unchanged over multiple such cycles. Neither is demonstrably correct. Resolving the cause of large mammal extinctions requires greater knowledge of individual species’ histories and their adaptive tolerances, a fuller understanding of how past climatic and ecological changes impacted those animals and their biotic communities, and what changes occurred at the Pleistocene−Holocene boundary that might have led to those genera going extinct at that time. Then we will be able to ascertain whether the sole ecologically significant difference between previous glacial−interglacial transitions and the very last one was a human presence.
    [Show full text]
  • Modelling the Concentration of Atmospheric CO2 During the Younger Dryas Climate Event
    Climate Dynamics (1999) 15:341}354 ( Springer-Verlag 1999 O. Marchal' T. F. Stocker'F. Joos' A. Indermu~hle T. Blunier'J. Tschumi Modelling the concentration of atmospheric CO2 during the Younger Dryas climate event Received: 27 May 1998 / Accepted: 5 November 1998 Abstract The Younger Dryas (YD, dated between 12.7}11.6 ky BP in the GRIP ice core, Central Green- 1 Introduction land) is a distinct cold period in the North Atlantic region during the last deglaciation. A popular, but Pollen continental sequences indicate that the Younger controversial hypothesis to explain the cooling is a re- Dryas cold climate event of the last deglaciation (YD) duction of the Atlantic thermohaline circulation (THC) a!ected mainly northern Europe and eastern Canada and associated northward heat #ux as triggered by (Peteet 1995). This event has been dated by annual layer counting between 12 700$100 y BP and glacial meltwater. Recently, a CH4-based synchroniza- d18 11550$70 y BP in the GRIP ice core (72.6 3N, tion of GRIP O and Byrd CO2 records (West Antarctica) indicated that the concentration of atmo- 37.6 3W; Johnsen et al. 1992) and between 12 940$ 260 !5. y BP and 11 640$ 250 y BP in the GISP2 ice core spheric CO2 (CO2 ) rose steadily during the YD, sug- !5. (72.6 3N, 38.5 3W; Alley et al. 1993), both drilled in gesting a minor in#uence of the THC on CO2 at that !5. Central Greenland. A popular hypothesis for the YD is time. Here we show that the CO2 change in a zonally averaged, circulation-biogeochemistry ocean model a reduction in the formation of North Atlantic Deep when THC is collapsed by freshwater #ux anomaly is Water by the input of low-density glacial meltwater, consistent with the Byrd record.
    [Show full text]
  • Pleistocene - the Ice Ages
    Pleistocene - the Ice Ages Sleeping Bear Dunes National Lakeshore Pleistocene - the Ice Ages • Stage is now set to understand the nature of flora and vegetation of North America and Great Lakes • Pliocene (end of Tertiary) - most genera had already originated (in palynofloras) • Flora was in place • Vegetation units (biomes) already derived Pleistocene - the Ice Ages • In the Pleistocene, earth experienced intensification towards climatic cooling • Culminated with a series of glacial- interglacial cycles • North American flora and vegetation profoundly influenced by these “ice-age” events Pleistocene - the Ice Ages What happened in the Pleistocene? 18K ya • Holocene (Recent) - the present interglacial started ~10,000 ya • Wisconsin - the last glacial (Würm in Europe) occurred between 115,000 ya - 10,000 ya • Height of Wisconsin glacial activity (most intense) was 18,000 ya - most intense towards the end of the glacial period Pleistocene - the Ice Ages What happened in the Pleistocene? • up to 100 meter drop in sea level worldwide • coastal plains become extensive • continental islands disappeared and land bridges exposed 100 m line Beringia Pleistocene - the Ice Ages What happened in the Pleistocene? • up to 100 meter drop in sea level worldwide • coastal plains become extensive • continental islands disappeared and land bridges exposed Malaysia to Asia & New Guinea and New Caledonia to Australia Present Level 100 m Level Pleistocene - the Ice Ages What happened in the Pleistocene? • up to 100 meter drop in sea level worldwide • coastal
    [Show full text]
  • Glacial/Interglacial Variations in Atmospheric Carbon Dioxide
    review article Glacial/interglacial variations in atmospheric carbon dioxide Daniel M. Sigman* & Edward A. Boyle² * Department of Geosciences, Guyot Hall, Princeton University, Princeton, New Jersey 08544, USA ² Department of Earth, Atmospheric, and Planetary Sciences, Room E34-258, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Massachusetts 02139, USA ............................................................................................................................................................................................................................................................................ Twenty years ago, measurements on ice cores showed that the concentration of carbon dioxide in the atmosphere was lower during ice ages than it is today. As yet, there is no broadly accepted explanation for this difference. Current investigations focus on the ocean's `biological pump', the sequestration of carbon in the ocean interior by the rain of organic carbon out of the surface ocean, and its effect on the burial of calcium carbonate in marine sediments. Some researchers surmise that the whole-ocean reservoir of algal nutrients was larger during glacial times, strengthening the biological pump at low latitudes, where these nutrients are currently limiting. Others propose that the biological pump was more ef®cient during glacial times because of more complete utilization of nutrients at high latitudes, where much of the nutrient supply currently goes unused. We present a version of the latter hypothesis that focuses on the open ocean surrounding Antarctica, involving both the biology and physics of that region. he past two million years have been characterized by of these mechanisms with data from the recent geological and large cyclic variations in climate and glaciation. During glaciological record has been a challenging and controversial task, cold `ice age' periods, large continental ice sheets cover leading as yet to no consensus on a fundamental mechanism.
    [Show full text]
  • How Did Marine Isotope Stage 3 and Last Glacial Maximum Climates Differ? – Perspectives from Equilibrium Simulations
    Clim. Past, 5, 33–51, 2009 www.clim-past.net/5/33/2009/ Climate © Author(s) 2009. This work is distributed under of the Past the Creative Commons Attribution 3.0 License. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? – Perspectives from equilibrium simulations C. J. Van Meerbeeck1, H. Renssen1, and D. M. Roche1,2 1Department of Earth Sciences - Section Climate Change and Landscape Dynamics, Faculty of Earth and Life Sciences, VU University Amsterdam, de Boelelaan 1085, 1081HV Amsterdam, The Netherlands 2Laboratoire des Sciences du Climat et de l’Environnement (LSCE/IPSL), Laboratoire CEA/INSU-CNRS/UVSQ, C.E. de Saclay, Orme des Merisiers Bat. 701, 91190 Gif sur Yvette Cedex, France Received: 15 August 2008 – Published in Clim. Past Discuss.: 6 October 2008 Revised: 14 January 2009 – Accepted: 20 February 2009 – Published: 5 March 2009 Abstract. Dansgaard-Oeschger events occurred frequently mimics stadials over the North Atlantic better than both con- during Marine Isotope Stage 3 (MIS3), as opposed to the fol- trol experiments, which might crudely estimate interstadial lowing MIS2 period, which included the Last Glacial Max- climate. These results suggest that freshwater forcing is nec- imum (LGM). Transient climate model simulations suggest essary to return climate from warm interstadials to cold sta- that these abrupt warming events in Greenland and the North dials during MIS3. This changes our perspective, making the Atlantic region are associated with a resumption of the Ther- stadial climate a perturbed climate state rather than a typical, mohaline Circulation (THC) from a weak state during sta- near-equilibrium MIS3 climate.
    [Show full text]
  • Observed Climate Variations and Change
    7 Observed Climate Variations and Change C.K. FOLLAND, T.R. KARL, K.YA. VINNIKOV Contributors: J.K. Angell; P. Arkin; R.G. Barry; R. Bradley; D.L. Cadet; M. Chelliah; M. Coughlan; B. Dahlstrom; H.F. Diaz; H Flohn; C. Fu; P. Groisman; A. Gruber; S. Hastenrath; A. Henderson-Sellers; K. Higuchi; P.D. Jones; J. Knox; G. Kukla; S. Levitus; X. Lin; N. Nicholls; B.S. Nyenzi; J.S. Oguntoyinbo; G.B. Pant; D.E. Parker; B. Pittock; R. Reynolds; C.F. Ropelewski; CD. Schonwiese; B. Sevruk; A. Solow; K.E. Trenberth; P. Wadhams; W.C Wang; S. Woodruff; T. Yasunari; Z. Zeng; andX. Zhou. CONTENTS Executive Summary 199 7.6 Tropospheric Variations and Change 220 7.6.1 Temperature 220 7.1 Introduction 201 7.6.2 Comparisons of Recent Tropospheric and Surface Temperature Data 222 7.2 Palaeo-Climatic Variations and Change 201 7.6.3 Moisture 222 7.2.1 Climate of the Past 5,000,000 Years 201 7.2.2 Palaeo-climate Analogues for Three Warm 7.7 Sub-Surface Ocean Temperature and Salinity Epochs 203 Variations 222 7.2.2.1 Pliocene climatic optimum (3,000,000 to 4,300,000 BP) 203 7.8 Variations and Changes in the Cryosphere 223 7.2.2.2 Eemian interglacial optimum (125,000 to 7.8.1 Snow Cover 223 130,000 years BP) 204 7.8.2 Sea Ice Extent and Thickness 224 7.2.2.3 Climate of the Holocene optimum (5000 to 7.8.3 Land Ice (Mountain Glaciers) 225 6000 years BP) 204 7.8.4 Permafrost 225 7.9 Variations and Changes in Atmospheric 7.3 The Modern Instrumental Record 206 Circulation 225 7.9.1 El Nino-Southern Oscillation (ENSO) Influences 226 7.4 Surface Temperature Variations and
    [Show full text]
  • The Ice Age in the North American Arctic
    THEICE AGE IN THENORTH AMERICAN ARCTIC Richard Foster Flint” Significance of glacialand interglacial ages RCTIC North America’, incommon with the rest of theworld, is now emerging from the latest of the series of glacial ages which, as a group, haveA characterized the last million years or more of geological time. During the glacial ages, each of which was a hundred thousand years or more in length, the mean temperatures at the earth’s surface were markedly lower than today. In consequence theproportion of snowfall to rainfall increased, melting diminished, and the accumulated snow formed glaciers. These great ice masses spread outward, slowly flowing under their own weight, until they covered one quarter to nearly one third of the land area of the world, principally of course in high and middle latitudes. In North America and Greenland alone, the area covered by ice amounted to seven million square miles. Between the cold glacial ages, warmer times intervened. The record of the soils formedin temperate latitudes during the warmer, interglacial ages shows that those ages were longer than the glacial ages-one of them probably lasted 300,000 years. The record of the fossil animals and plants entombed in the deposits of interglacial times establishes that one or more of those times was warmer than today; from this the inference follows that the interglacial ages probably witnessed a more extensive disappearance of ice fromthe arcticregions than is nowthe case. Infact for the world as a wholethe present is a time transitional from glacial to interglacial. The great ice sheets 1 that formerly blanketed much of North America and Eurasia have disappeared, but more than ten per cent of the world’s land area still remains covered by glacier ice.
    [Show full text]
  • The Sangamonian Stage and the Laurentide Ice Sheet Le Sangamonien Et La Calotte Glaciaire Laurentidienne Die Sangamonische Zeit Und Die Laurentische Eisdecke Denis A
    Document généré le 4 oct. 2021 02:19 Géographie physique et Quaternaire The Sangamonian Stage and the Laurentide Ice Sheet Le Sangamonien et la calotte glaciaire laurentidienne Die sangamonische Zeit und die laurentische Eisdecke Denis A. St-Onge La calotte glaciaire laurentidienne Résumé de l'article The Laurentide Ice Sheet La présente revue des travaux sur le Sangamonien (jusqu'à juin 1986) effectués Volume 41, numéro 2, 1987 dans des régions clés démontre qu'il n'y a pas encore de réponse satisfaisante à la question suivante: « À quel moment la glace, qui allait devenir la calotte URI : https://id.erudit.org/iderudit/032678ar glaciaire laurentidienne, a-t-elle commencer à s'accumuler? » Dans la plupart DOI : https://doi.org/10.7202/032678ar des régions, la séquence stratigraphique ne fait que signaler l'existence probable d'une période interglaciaire, sans toutefois permettre de déterminer le moment où la glace a commencé à s'accumuler après l'intervalle climatique Aller au sommaire du numéro chaud. Il existe toutefois quelques indices. Les sédiments d'un delta glaciolacustres de la Formation de Scarborough, dans la région de Toronto, et le Till de Bécancour, dans la région de Trois-Rivières, datent probablement du Éditeur(s) Sangamonien (sous-phases isotopiques marines 5d-b). Le Till d'Adam, dans les basses terres de la baie James, leur est probablement corrélatif. Dans les Les Presses de l'Université de Montréal régions atlantiques du Canada, en particulier à l'île du Cap-Breton, des restes de plantes indiquent que le climat au cours du Sangamonien moyen aurait été ISSN très semblable à celui de la période de 11 000 à 12 000 ans BP.
    [Show full text]