Evidence for Ice Particles in the Tropical Stratosphere from In-Situ Measurements
Atmos. Chem. Phys., 9, 6775–6792, 2009 www.atmos-chem-phys.net/9/6775/2009/ Atmospheric © Author(s) 2009. This work is distributed under Chemistry the Creative Commons Attribution 3.0 License. and Physics Evidence for ice particles in the tropical stratosphere from in-situ measurements M. de Reus1,2,*, S. Borrmann1,2, A. Bansemer3, A. J. Heymsfield3, R. Weigel2, C. Schiller4, V. Mitev5, W. Frey2, D. Kunkel1,2, A. Kurten¨ 6, J. Curtius6, N. M. Sitnikov7, A. Ulanovsky7, and F. Ravegnani8 1Max Planck Institute for Chemistry, Particle Chemistry Department, Mainz, Germany 2Institute for Atmospheric Physics, Mainz University, Germany 3National Center for Atmospheric Research, Boulder, USA 4Institute of Chemistry and Dynamics of the Geosphere, Research Centre Julich,¨ Germany 5Swiss Centre for Electronics and Microtechnology, Neuchatel,ˆ Switzerland 6Institute for Atmospheric and Environmental Sciences, Goethe University of Frankfurt, Germany 7Central Aerological Observatory, Dolgoprudny, Moskow Region, Russia 8Institute of Atmospheric Sciences and Climate, Bologna, Italy *now at: Elementar Analysensysteme GmbH, Hanau, Germany Received: 19 August 2008 – Published in Atmos. Chem. Phys. Discuss.: 14 November 2008 Revised: 26 August 2009 – Accepted: 27 August 2009 – Published: 18 September 2009 Abstract. In-situ ice crystal size distribution measurements shape of the size distribution of the stratospheric ice clouds are presented within the tropical troposphere and lower are similar to those observed in the upper troposphere. stratosphere. The measurements were performed using a In the tropical troposphere the effective radius of the ice combination of a Forward Scattering Spectrometer Probe cloud particles decreases from 100 µm at about 10 km alti- (FSSP-100) and a Cloud Imaging Probe (CIP), which were tude, to 3 µm at the tropopause, while the ice water content installed on the Russian high altitude research aircraft M55 decreases from 0.04 to 10−5 g m−3.
[Show full text]