Cumulus Spread Out

Total Page:16

File Type:pdf, Size:1020Kb

Cumulus Spread Out CUMULUS SPREAD OUT The ruin of many a good day Tom Bradbury from SAILPLANE & GLIDING HE EXASPERATING FEATURE of most way from 2000 to 5300 feet and was only 0.7° Critical factors These two soundings show spread out days is that they share many at the base of the inversion. up the difference between widely scattered Tfair weather indicators, so it can be hard cu and a total spread out. Scattered cu exist to distinguish between good and bad days. • The condensation level (marked CL) was in a dry atmosphere with more than 5°C sepa- low, near 955 mb or about 1500 feet. This ration between air temperature and dew point Cases of spread out Spread out is due suggests a cloud depth of some 3800 feet. under a weak inversion. Spread out is likely mainly to excessive moisture in the atmos- Anything more than 2000 feet depth of cloud with a very marked inversion, 2° or less sepa- phere but it is strongly influenced by the de- favours persistent spread out. An inversion at ration between dew point and air temperature velopment of an inversion. The problem is 7000–8000 feet with a big depth of cloud un- with a cloud depth of at least 2000 feet. The caused by very slow evaporation of older der it tends to give so much spread out that inversion is important because it concentrates masses of cloud. cross–country flying is nearly impossible. On all the lifted moisture at much the same level this occasion very little surface heating was just under the inversion. If the inversion is • In a dry atmosphere thermals carry mois- needed to start convection. The extra energy destroyed the moisture is spread out over ture up from low level to form clouds. When from release of latent heat is shown by the greater depth and a complete layer of cloud the thermal ends evaporation into the shaded area. The larger this shaded area the takes longer to form. surrounding dry air disperses the cloud more energy is available for forming cloud. If and cooling makes the sink stronger. Thus the shaded area grows wider with height the The development of spread out Figure 3 scattered cumulus are often separated by early morning cu tend to shoot up like rockets illustrates a typical sequence of events from areas of strong sink in clear air. until they hit the inversion. The first clouds early morning to midday. Time runs from left • If the air aloft is already moist it takes much may not have the energy to go so far; these to right. Letters mark stages of development. longer for evaporation to dissolve the de- tend to slow down and become tilted over if caying patches of cloud. The sky begins there is a stronger wind aloft. A shows lots of scruffy bits of cu which form to fill up with bits of cloud at many levels. soon after sunrise. This early appearance Sink is weaker under an overcast of spread Figure 2 shows a sounding made at the same shows little heat is needed to start convection out stratocu but this is offset by a lack of time to illustrate the difference which often and suggests the air is too moist, thus giving sunshine to set off fresh thermals. occurs over a distance of 300 or 400 miles. a low cloudbase. An early warning It is often a bad sign if • The air was much drier, the separation be- B shows columns of cu rocketing up in the cumulus start to form soon after the sun has tween air temperature and dew point was moist unstable air. These have not yet enough risen. It means that the air is so moist that at least 10°C between 1000 and 5000 feet. energy to reach the inversion so they slow little heat is needed to form cloud which al- down and become tilted over by the wind. most always has a low base. Tall cu with a • The inversion (which was just below 5000 low cloudbase often precedes spread out. feet asl) was much less marked; the tem- C At this stage the cu have become stronger perature only rose 1° in the next 900 feet. and their ascent pushes up some of the moist Figure 1 shows a temperature sounding on a Much more heat was needed to start con- air aloft. This results in lenticular cloud caps day of extensive spread out. The tephigram vection and the condensation level was called pileus. They are smooth because they shows some factors which nearly always pro- much higher than in Figure 1. are not part of a bubbly cumulus; they are duce a spread out layer soon after convec- rather like bow waves ahead of a blunt nosed tion starts: Since the air was drier at the surface the con- barge. The pileus tend to stay in the moist densation level was much higher, being nearly zone and the cumulus may build through them. • A marked inversion (this day at 832 mb, 4000 feet asl. Much heat was needed before Pileus are a reliable sign of spread out later nearly 5300 msl). Above this level the tem- any thermals reached this level so cumulus on but they do not appear on every occasion. perature rose some 6.5° in just over 700 feet. formed much later. The depth of cloud was much smaller too. The small shaded area D shows the cumulus big enough to carry • The separation between dew point and air above CL on Figure 2 shows very little extra moisture up to the inversion where it spread temperature was less than 2°C nearly all the energy was released by condensation. out horizontally. Figure 1 -5 0 5 Figure 2 -5 0 5 10 10 800 800 dew point temp SALR CL 15 15 900 900 CL DALR 1000 1000 mb mb 6 free flight 2/94 overshoot spread out time pileus mamma H W ABCDE FG Figure 3 E shows a cu top overshooting the inversion pen after the task has been set and before A continuous sheet of cloud off Ireland or the and pushing a dome into the warmer and any satellite picture is available to show what west coast of Scotland often indicates cu usually very dry air aloft. At this stage there is is happening. It does not always need an old spread out over England the next day when usually lots of lift under the cloud and climbs front; a weak trough may trigger off a wide the wind is northwesterly. The cloud sheet can be made which bring you out into clear band of spread out. may disperse over the cold land during the air above the inversion. The lift of such a cu night but it will usually form again a few hours which has its width “W” equal or greater than Going round or pushing through? after cu have developed. its height “H” is usually at least 15 minutes An active cloud edge offers the chance of a and may be longer if there is a steady feed of fairly fast diversion round the spread out; un- On days when the air is moving slowly from new thermals into the cloudbase. fortunately it does not often go far enough the west an area of spread out over Ireland though it may take you to a rift which heads in during the afternoon gives warning that the F shows the column of cumulus narrowing. the direction you want to go. The active edge same may occur over England the next day. The chimney carrying moisture upwards is no is often a good place to take a climb under (Since moisture is a major reason for spread longer supported by buttresses of younger one of the stronger cu. out Ireland seems to suffer from it even more cells as at E. At this stage the overshooting than England.) For Europeans the arrival of top probably starts to collapse. The descend- Lift under the gloom The soundings on spread out over England is a warning of prob- ing air sinks down and appears on the under- spread out days are almost always very un- lems for them the next day. However, a long side of the cloud sheet like a set of upside– stable beneath the inversion and need little land track often dries up the air enough to down cumuli. These are termed mammatus extra heat to set off more thermals. These are break up a stratocu sheet. The North Sea clouds. Mammatus is an indication of the col- apt to be much weaker than those formed coasts from the Low Countries round to Den- lapse of powerful cu which have overshot the under a sunny sky. The weakness is some- mark suffer from stratocu at least as much as inversion and are now falling back. Mamma times compensated for by the thermals being the UK but the cloud sheet usually breaks up usually have a short life; they change their larger and much smoother. Sink does not over Eastern Europe. shape and size rapidly. Thunderstorms often entirely vanish but is often much less than produce an area of mamma on the inactive between scattered cumulus. As a result one Shelter effect The stratocu sheet often side. It is often a good idea to avoid the re- can go quite long distances under an unwel- breaks up on crossing high ground if the cloud gion underneath mammatus cloud as the sink coming sky. On such days it can be extremely top is not more than 2000 feet above the hills.
Recommended publications
  • Soaring Weather
    Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven­ contributions to meteorology. For example, soar­ tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun­ altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be­ denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur­ a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • The Secrets of the Best Rainbows on Earth Steven Businger
    Article The Secrets of the Best Rainbows on Earth Steven Businger ABSTRACT: This paper makes a case for why Hawaii is the rainbow capital of the world. It begins by briefly touching on the cultural and historical significance of rainbows in Hawaii. Next it provides an overview of the science behind the rainbow phenomenon, which provides context for exploring the meteorology that helps explain the prevalence of Hawaiian rainbows. Last, the paper discusses the art and science of chasing rainbows. KEYWORDS: Tropics; Atmospheric circulation; Dispersion; Orographic effects; Optical phenomena; Machine learning https://doi.org/10.1175/BAMS-D-20-0101.1 Corresponding author: Dr. Steven Businger, [email protected] In final form 15 October 2020 ©2021 American Meteorological Society For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy. AFFILIATION: Businger—University of Hawai'i at Mānoa, Honolulu, Hawaii AMERICAN METEOROLOGICAL SOCIETY FEBRUARY 2021 E1 ainbows are some of the most spectacular R optical phenomena in the natural world, and Hawaii is blessed with an amazing abundance of them. Rainbows in Hawaii are at once so common and yet so stunning that they appear in Hawaiian chants and legends, on license plates, and in the names of Hawaiian sports teams and local businesses (Fig. 1). Visitors and locals alike frequently leave their cars by the side of the road in order to photograph these brilliant bands of light. Fig. 1. Collage of Hawaii rainbow references. The cultural importance of rainbows is reflected in the Hawaiian language, which has many words and phrases to describe the variety of manifestations in Hawaii, a few of which are provided in Table 1.
    [Show full text]
  • AC 00-57 Hazardous Mountain Winds
    AC 00-57 Hazardous Mountain Winds And Their Visual Indicators U.S. DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Office of Communications, Navigation, and Surveillance Systems Washington, D.C. FOREWORD This advisory circular (A C) contains Comments regarding this publication information on hazardous mountain winds should be directed to the Department of and their effects on flight operations near Transportation, Federal Aviation mountainous regions. The primary Administration, Flight Standards purpose of thls AC is to assist pilots Service, Technical Programs Division, involved in aviation operations to 800 Independence Avenue, S.W. diagnose the potential for severe wind Washington, DC 20591. events in the vicinity of mountainous areas and to provide information on pre-flight planning techniques and in-flight evaluation strategies for avoiding destructive turbulence and loss of aircraft control. Additionally, pilots and others who must deal with weather phenomena in aviation operations also will benefit from the information contained in this AC. Pilots can review the photographs and section summaries to learn about and recognize common indicators of wind motion in the atmosphere. The photographs show physical processes and provide visual clues. The summaries cover the technical and "wonder" aspects of why certain things occur what caused it? How does it affect pre-flight and in-flight decisions? The physical aspects are covered more in-depth through the text. v Acknowledgments Thomas Q. Carney Purdue University, Department of Aviation Technology and Consultant in Aviation Operations and Applied Meteorology A. J. Bedard, Jr. National Oceanic and Atmospheric Administration Environmental Technology Laboratory John M. Brown National Oceanic and Atmospheric Administration Forecast Systems Laboratory John McGinley National Oceanic and Atmospheric Administration Forecast Systems Laboratory Tenny Lindholm National Center for Atmospheric Research Research Applications Program Michael J.
    [Show full text]
  • Talking Points for “Satellite Interpretation of Orographic Clouds / Effects”
    Talking points for “Satellite Interpretation of Orographic clouds / effects” 1. Title page 2. Objectives 3. Topics 4. Gap wind event over New Mexico. Strong winds affect Albuquerque and introduce moist airmass which may impact convective forecast the next day. 5. Topography of New Mexico. In easterly flow, winds may be funneled through Tijeras gap east of Albuquerque and produce locally strong winds in the city. 6. Surface observations (METARs) from 00:00 – 12:00 UTC (3 hour increments) 12 June 1999. At 00:00 UTC we observe a warm and dry air mass and southwest flow over most of central New Mexico (including Albuquerque). As time goes on, the easterly flow advects westward. Eventually, the easterly flow makes it to Albuquerque where the dewpoint goes from the 20’s to the low 50’s. The gap wind effects are very localized, at the Albuquerque airport winds gusted up to 30 mph, while on the west side of town at Double Eagle airport winds were southeast at 10 mph. 7. Fog Product 02:46 – 10:30 UTC 12 June 1999. This loop shows the origin of the easterly flow which helped produce the gap winds in Albuquerque. Deep convection on the plains of eastern New Mexico produced strong outflow that moved westward. Since this loop is at night, we can utilize the fog product to identify the outflow boundaries readily. The fog product is good at distinguishing low-level outflow boundaries at night. The outflow pushes westward towards Albuquerque, as it reaches the Tijeras gap the gap wind event begins. The fog product can be used in this way (at night) to determine when the conditions favorable for gap winds will begin.
    [Show full text]
  • ICA Vol. 1 (1956 Edition)
    ·wMo o '-" I q Sb 10 c. v. i. J c.. A INTERNATIONAL CLOUD ATLAS Volume I WORLD METEOROLOGICAL ORGANIZATION 1956 c....._/ O,-/ - 1~ L ) I TABLE OF CONTENTS Pages Preface to the 1939 edition . IX Preface to the present edition . xv PART I - CLOUDS CHAPTER I Introduction 1. Definition of a cloud . 3 2. Appearance of clouds . 3 (1) Luminance . 3 (2) Colour .... 4 3. Classification of clouds 5 (1) Genera . 5 (2) Species . 5 (3) Varieties . 5 ( 4) Supplementary features and accessory clouds 6 (5) Mother-clouds . 6 4. Table of classification of clouds . 7 5. Table of abbreviations and symbols of clouds . 8 CHAPTER II Definitions I. Some useful concepts . 9 (1) Height, altitude, vertical extent 9 (2) Etages .... .... 9 2. Observational conditions to which definitions of clouds apply. 10 3. Definitions of clouds 10 (1) Genera . 10 (2) Species . 11 (3) Varieties 14 (4) Supplementary features and accessory clouds 16 CHAPTER III Descriptions of clouds 1. Cirrus . .. 19 2. Cirrocumulus . 21 3. Cirrostratus 23 4. Altocumulus . 25 5. Altostratus . 28 6. Nimbostratus . 30 " IV TABLE OF CONTENTS Pages 7. Stratoculllulus 32 8. Stratus 35 9. Culllulus . 37 10. Culllulonimbus 40 CHAPTER IV Orographic influences 1. Occurrence, structure and shapes of orographic clouds . 43 2. Changes in the shape and structure of clouds due to orographic influences 44 CHAPTER V Clouds as seen from aircraft 1. Special problellls involved . 45 (1) Differences between the observation of clouds frolll aircraft and frolll the earth's surface . 45 (2) Field of vision . 45 (3) Appearance of clouds. 45 (4) Icing .
    [Show full text]
  • Metar Abbreviations Metar/Taf List of Abbreviations and Acronyms
    METAR ABBREVIATIONS http://www.alaska.faa.gov/fai/afss/metar%20taf/metcont.htm METAR/TAF LIST OF ABBREVIATIONS AND ACRONYMS $ maintenance check indicator - light intensity indicator that visual range data follows; separator between + heavy intensity / temperature and dew point data. ACFT ACC altocumulus castellanus aircraft mishap MSHP ACSL altocumulus standing lenticular cloud AO1 automated station without precipitation discriminator AO2 automated station with precipitation discriminator ALP airport location point APCH approach APRNT apparent APRX approximately ATCT airport traffic control tower AUTO fully automated report B began BC patches BKN broken BL blowing BR mist C center (with reference to runway designation) CA cloud-air lightning CB cumulonimbus cloud CBMAM cumulonimbus mammatus cloud CC cloud-cloud lightning CCSL cirrocumulus standing lenticular cloud cd candela CG cloud-ground lightning CHI cloud-height indicator CHINO sky condition at secondary location not available CIG ceiling CLR clear CONS continuous COR correction to a previously disseminated observation DOC Department of Commerce DOD Department of Defense DOT Department of Transportation DR low drifting DS duststorm DSIPTG dissipating DSNT distant DU widespread dust DVR dispatch visual range DZ drizzle E east, ended, estimated ceiling (SAO) FAA Federal Aviation Administration FC funnel cloud FEW few clouds FG fog FIBI filed but impracticable to transmit FIRST first observation after a break in coverage at manual station Federal Meteorological Handbook No.1, Surface
    [Show full text]
  • Chapter 6 Clouds
    Chapter 6 Clouds Chapter overview • Processes causing saturation o Cooling, moisturizing, mixing • Cloud identification and classification • Cloud Observations • Fog Why do we care about clouds in the atmosphere? Cloud Development Clouds form when air becomes saturated. How can unsaturated air become saturated? • Cooling • Adding moisture • Mixing Cooling and moisturizing The amount of cooling needed for air to become saturated is given by ΔT = Td - T The amount of additional moisture needed for air to become saturated is given by Δr = rs - r The change in temperature (ΔT) or the change in moisture (Δr) can be determined by evaluating the heat or moisture budget of an air parcel. Most clouds form as a result of rising air. How does the temperature and relative humidity of an air parcel change as it rises adiabatically? What processes are responsible for causing air to rise? Cumuliform clouds form in air that rises due to its buoyancy. Stratiform clouds form in are that is forced to rise. Mixing Mixing of two unsaturated air parcels can result in a saturated mixture. Why can the mixing of unsaturated air result in air becoming saturated? What are some examples of air becoming saturated in this way? The temperature and mixing ratio of the mixture can be calculated using: mx = mB + mC mBTB + mCTC Tx = mx mBrB + mCrC rx = mx Where the m is the mass of the air parcel, subscripts B and C indicate the two original air parcels, and subscript X indicates the mixture. Vapor pressure or specific humidity can be used in place in mixing ratio.
    [Show full text]
  • Evidence for Ice Particles in the Tropical Stratosphere from In-Situ Measurements
    Atmos. Chem. Phys., 9, 6775–6792, 2009 www.atmos-chem-phys.net/9/6775/2009/ Atmospheric © Author(s) 2009. This work is distributed under Chemistry the Creative Commons Attribution 3.0 License. and Physics Evidence for ice particles in the tropical stratosphere from in-situ measurements M. de Reus1,2,*, S. Borrmann1,2, A. Bansemer3, A. J. Heymsfield3, R. Weigel2, C. Schiller4, V. Mitev5, W. Frey2, D. Kunkel1,2, A. Kurten¨ 6, J. Curtius6, N. M. Sitnikov7, A. Ulanovsky7, and F. Ravegnani8 1Max Planck Institute for Chemistry, Particle Chemistry Department, Mainz, Germany 2Institute for Atmospheric Physics, Mainz University, Germany 3National Center for Atmospheric Research, Boulder, USA 4Institute of Chemistry and Dynamics of the Geosphere, Research Centre Julich,¨ Germany 5Swiss Centre for Electronics and Microtechnology, Neuchatel,ˆ Switzerland 6Institute for Atmospheric and Environmental Sciences, Goethe University of Frankfurt, Germany 7Central Aerological Observatory, Dolgoprudny, Moskow Region, Russia 8Institute of Atmospheric Sciences and Climate, Bologna, Italy *now at: Elementar Analysensysteme GmbH, Hanau, Germany Received: 19 August 2008 – Published in Atmos. Chem. Phys. Discuss.: 14 November 2008 Revised: 26 August 2009 – Accepted: 27 August 2009 – Published: 18 September 2009 Abstract. In-situ ice crystal size distribution measurements shape of the size distribution of the stratospheric ice clouds are presented within the tropical troposphere and lower are similar to those observed in the upper troposphere. stratosphere. The measurements were performed using a In the tropical troposphere the effective radius of the ice combination of a Forward Scattering Spectrometer Probe cloud particles decreases from 100 µm at about 10 km alti- (FSSP-100) and a Cloud Imaging Probe (CIP), which were tude, to 3 µm at the tropopause, while the ice water content installed on the Russian high altitude research aircraft M55 decreases from 0.04 to 10−5 g m−3.
    [Show full text]
  • Clouds and Precipitation
    Chapter 9 CLOUDS AND PRECIPITATION Fire weather is usually fair weather. Clouds, fog, and precipitation do not predominate during the fire season. The appearance of clouds during the fire season may have good portent or bad. Overcast skies shade the surface and thus temper forest flammability. This is good from the wildfire standpoint, but may preclude the use of prescribed fire for useful purposes. Some clouds develop into full-blown thunderstorms with fire-starting potential and often disastrous effects on fire behavior. The amount of precipitation and its seasonal distribution are important factors in controlling the beginning, ending, and severity of local fire seasons. Prolonged periods with lack of clouds and precipitation set the stage for severe burning conditions by increasing the availability of dead fuel and depleting soil moisture necessary for the normal physiological functions of living plants. Severe burning conditions are not erased easily. Extremely dry forest fuels may undergo superficial moistening by rain in the forenoon, but may dry out quickly and become flammable again during the afternoon. 144 CLOUDS AND PRECIPITATION Clouds consist of minute water droplets, ice crystals, or a mixture of the two in sufficient quantities to make the mass discernible. Some clouds are pretty, others are dull, and some are foreboding. But we need to look beyond these aesthetic qualities. Clouds are visible evidence of atmospheric moisture and atmospheric motion. Those that indicate instability may serve as a warning to the fire-control man. Some produce precipitation and become an ally to the firefighter. We must look into the processes by which clouds are formed and precipitation is produced in order to understand the meaning and portent of clouds as they relate to fire weather.
    [Show full text]
  • Stratus Clouds Characteristics
    •Clouds are classified mainly by their visual characteristics and height •They look different because they have different contents •3 primary types and many sub-types Stratus Cumulus Cirrus Stratus Clouds Characteristics: •Can be at any altitude – stratus just means that they form a horizontal layer •They are often at low altitude in bad weather (nimbostratus) •Fog is a stratus cloud hugging the ground •They are formed by weak, but widespread vertical motion (~10 cm/s) •The are made of a moderate density of cloud drops , LWC~.1 g/m3 •Cumulus or cirrus can also form a layer (Stratocumulus and cirrostratus) Cumulus Clouds Characteristics: •Can be at any altitude – cumulus means “heaping” •They develop more vertically than horizontally. •When they form rain they become cumulonimbus •They are formed by strong vertical motion, sometimes 25 m/s updrafts •Strong vertical motion and cumulus clouds result from free convection that comes from instability •If that vertical motion is deep enough, ice can form in upper part of the cloud •Ice crystals and strong motion -> charge separation ->lightning •They have the greatest LWC: from .5 to 4 g/m3 depending of updraft rate Cirrus Clouds Characteristics: •Are composed of tiny ice crystals, not liquid cloud drops •Usually form only when T< -25 C •They are formed by weak vertical motion (~5 cm/s) •The are made of a small density of ice crystals , IWC~.05 g/m3 •Sometimes generated by jet exhaust (contrail) •Often initiated as anvils of cumulus clouds striking the tropopause-lid •Important effects due to
    [Show full text]
  • The Ten Different Types of Clouds
    THE COMPLETE GUIDE TO THE TEN DIFFERENT TYPES OF CLOUDS AND HOW TO IDENTIFY THEM Dedicated to those who are passionately curious, keep their heads in the clouds, and keep their eyes on the skies. And to Luke Howard, the father of cloud classification. 4 Infographic 5 Introduction 12 Cirrus 18 Cirrocumulus 25 Cirrostratus 31 Altocumulus 38 Altostratus 45 Nimbostratus TABLE OF CONTENTS TABLE 51 Cumulonimbus 57 Cumulus 64 Stratus 71 Stratocumulus 79 Our Mission 80 Extras Cloud Types: An Infographic 4 An Introduction to the 10 Different An Introduction to the 10 Different Types of Clouds Types of Clouds ⛅ Clouds are the equivalent of an ever-evolving painting in the sky. They have the ability to make for magnificent sunrises and spectacular sunsets. We’re surrounded by clouds almost every day of our lives. Let’s take the time and learn a little bit more about them! The following information is presented to you as a comprehensive guide to the ten different types of clouds and how to idenify them. Let’s just say it’s an instruction manual to the sky. Here you’ll learn about the ten different cloud types: their characteristics, how they differentiate from the other cloud types, and much more. So three cheers to you for starting on your cloud identification journey. Happy cloudspotting, friends! The Three High Level Clouds Cirrus (Ci) Cirrocumulus (Cc) Cirrostratus (Cs) High, wispy streaks High-altitude cloudlets Pale, veil-like layer High-altitude, thin, and wispy cloud High-altitude, thin, and wispy cloud streaks made of ice crystals streaks
    [Show full text]