Ligand Interactions in Solution

Total Page:16

File Type:pdf, Size:1020Kb

Ligand Interactions in Solution A cw-ENDOR investigation of metal- ligand interactions in solution Submitted in canditure for the degree of Doctor of Philosophy By Richard James Tucker, M.Chem Department of Chemistry University of Wales, Cardiff September 2005 UMI Number: U585544 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U585544 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Declaration This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree. Signed ^ ...... (candidate) Date n - 1 - oC This thesis is the result of my own investigations, except where otherwise stated. Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended. Signed (candidate) Date 0 ( 0 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed .... (7/.. .. .^V^T?^r777T (candidate) D ate 9 .^ . Summary Electron Nuclear DOuble Resonance (ENDOR) spectroscopy has been employed in this Thesis to study a range of paramagnetic metal-ligand complex systems. The investigations focussed on the observation of conformational changes, solvatochromic effects and weak diastereomeric interactions of the complexes in frozen solution. Using a combination of angular selective ENDOR spectroscopy and DFT calculations, the structure and conformations of the [Vlv=0(acac)2] complex in coordinating and non-coordinating solvents was examined. In the non-coordinating solvent (CD 2 CI2 ) the complex was found to adopt the expected square pyramidal structure, where the VO H|lg distances and coordinates obtained by DFT and ENDOR were in excellent agreement with each other confirming the expected structure. More importantly, in coordinating solvents (such as pyridine) two different stereoisomers of the resulting [Vlv=0(acac)2(C5D5N)] adduct, which differed in energy by only 3 kJmol'1, were readily identified and discriminated by ENDOR (PCCP 2002). Subtle changes to metal-ligand structures by solvatochromic effects were also examined using [Vlv=0(salen)] in both coordinating (DMF) and non-coordinating (CD2CI2) solvents. In the non-coordinating solvent (CD2CI2), the expected square pyramidal symmetry o f the V = 0 ion above the NNOO plane of the ligand was confirmed both by ENDOR and DFT. However, in the coordinating solvent (DMF), a subtle perturbation from square pyramidal structure was observed suggesting than DMF coordinated trans to the vanadyl oxo- ligand, pulling Vlv= 0 back into the ligand plane. This was evidenced through analysis of the VO....H|jg distances determined by ENDOR and confirmed by DFT (Chem. Phys. Lett. 2003). ENDOR was also used to explore the weak enantioselective binding between vanadyl based chiral salen complexes (abbreviated to [VO(Jacobsen)]) and chiral propylene epoxide. Differences in epoxide binding by enatiomers of the complex was evidenced by changes to the 'H epoxide derived peaks in the ENDOR spectra. These changes were assigned to the small structural differences between the diastereomeric metal-epoxide adducts. Simulation of the spectra revealed differences in the VO.-.'Hepoxide distances for the diastereomeric pairs, which was confirmed by DFT. While the epoxide molecule was very weakly coordinated, ENDOR measurements of the racemic complex in racemic epoxide nevertheless indicated the preferential coordination of the /?-[VO(Jacobsen)] to /?-epoxide. This demonstrates the unique power of the ENDOR technique to resolve weak chiral interactions for which EPR spectroscopy alone lacks sufficient resolution (./ACS 2004). Finally, the diastereomeric interactions between chiral amines and copper based chiral salen complexes (abbreviated to [Cu(Jacobsen)]) was investigated, as a comparison with the previous weak interactions in the VO(Jacobsen)-epoxide case. Diastereomeric discrimination was once again evidenced by ENDOR. The slight differences in the Cu-amine distances, constrained by the chirality of the anchoring site, resulted in subtle difference in the spin densities to the ligand nitrogens, which was detected in the ENDOR experiment. Acknowledgments There are many people to whom I am deeply indebted for their advice and continuous support in the preparation of this thesis and execution of this research. This acknowledgement seeks to provide my deepest thanks to these people. Firstly, among these people are Dr. Damien Murphy and Dr. Ian Fallis, who were my supervisors during the project. They provided the highest Evel of support, encouragement, and guidance and scientific advice of the highest quality. I would also like to thank Dr. Robert Farley who was a post doctoral research assistant in the department. Dr. Farley provided excellent technical assistance on both the EPR and ENDOR analysis. I would like to acknowledge Dr. David Willock for his kind assistance in providing the DFT data. Additionally, I would like to acknowledge my fellow postgraduates in both the EPR laboratory and the surface science department, as well as the postgraduates in the coordination chemistry laboratories. Finally, I would like to thank my parents for their support and financial influence whilst undertaking this study. Thank you all 'Nothing exists until it is measured' Niels Bohr, 1930 “I am further inclined to think that when are views are sufficiently to enable us to reason with precision concerning the proportions of elementary atoms we shall find the arithmetical relation alone will not be sufficient to explain their mutual action and that we shall be obliged to acquire a geometrical conception of their relative arrangement in all three dimensions o f solid extension " William Hyde Wo/lison, 1808 Contents Section Title___________________________________________________ Page 1.0 Introduction 1 1.1 Asymmetric homogeneous catalysts 4 1.2 Oxo-transfer oxidants 5 1.3 Stoichiometric oxidants 7 1.4 Characterization of metal-oxo complexes 7 1.5 Ligand design 7 1.6 Kinetic Resolution in catalysis for asymmetric synthesis 10 1.6.1 Chirality 10 1.6.2 Hydrolytic Kinetic Resolution (HKR) 11 1.6.3 Stereoselectivity in salen-type epoxidations 13 1.7 Spectroscopic investigation of metal Schiff-base complexes 15 1.7.1 Paramagnetic cobalt complexes 15 1.7.2 Manganese salen-type complexes 21 1.7.3 Nickel salen-type complexes 25 1.7.4 Oxovanadium (IV) complexes 34 1.7.4.1 Spectral properties 34 1.7.4.2 Electronic structure of oxovanadium (IV) complexes 35 1.7.4.3 Solvent effects 36 1.7.4.4 Structure and mobility aspects 39 1.7.5 Copper salen-type complexes 42 1.8 References 46 2.0 Basic principles of cw EPR and ENDOR spectroscopy 54 2.1 Introduction 55 2.2 Basic principles of EPR spectroscopy 55 2.2.1 Spin populations 57 2.2.2 Relaxation processes 58 2.2.3 Hyperfine structure 59 Section Title Page 2.2.4 Mechanism of hyperfme interaction 60 (a) Dipole-dipole interactions 61 (b) Isotropic or Fermi contact interactions 63 2.2.5 Hyperconjugation 65 2.2.6 The powder spectra of polycrystalline materials: Lineshape considerations 66 2.3 Basic principles of ENDOR spectroscopy 69 2.3.1 Level populations of a simple description of the ENDOR effect 69 2.3.2 Relaxation mechanisms in ENDOR spectroscopy 72 2.3.3 The electric circuit analogy of the ENDOR effect 75 2.2.4 Angle selective ENDOR spectroscopy and simulation of spectra 78 2.3.5 Powder ENDOR simulation procedure 81 2.4 References 83 Experimental 85 3.0 3.1 Synthesis of Inorganic complexes 86 3.2 Manipulation of air-sensitive compounds 100 3.2.1 Inert atmosphere techniques 100 3.3 Experimental conditions 101 3.3.1 EPR and ENDOR experimental 101 3.3.2 Initial ENDOR setup 103 3.4 Gas Chromatography 105 3.4.1 Industrial components 105 3.4.1.1 Carrier gas 105 3.4.1.2 Sample injection port 105 3.4.1.3 Detectors 106 3.5 References 107 Section Title Page 4.0 Conformational changes of a bis(acetylacetonato)oxovanadium(IV) complex-)Vlv=0(acac)2| in coordinating and non-coordinating solvents 108 4.1 Introduction 109 4.2 Experimental 111 4.2.1 Measurement and analysis of EPR / ENDOR spectra 111 4.2.2 DFT calculations 111 4.3 Results and Discussion 1 12 4.3.1 EPR analysis of VO(acac )2 in coordinating and non­ coordinating solvents 112 4.3.2 ENDOR and DFT analysis of VO(acac )2 in non-coordinating solvent (CD 2CI2) 115 4.3.3 ENDOR and DFT analysis of VO(acac )2 in coordinating solvents (C 5 D5N and 2 (CD3)-CsD4N) 121 4.4 Conclusions 130 4.5 References 132 Solvatochromic effects of a A^,Ar,-ethylene-bis(salicylideneamine) 5.0 oxovanadium(lV) complex-[Vlv=0(salen)] 134 5.1 Introduction 135 5.2 Experimental 136 5.2.1 Measurement and analysis of EPR / ENDOR spectra 136 5.3 Results and Discussion 137 5.3.1 EPR analysis of VO(salen) in coordinating and non­ coordinating solvents 137 5.3.2 ENDOR analysis 139 5.3.3 Structure of [Vlv=0(salen)] in non-coordinating solvent (CD2CI2) 139 Section Title Page 5.3.4 Structure of [Vlv=0(salen)] in coordinating solvent (C3D7NO) 144
Recommended publications
  • Redalyc.Immobilization of Jacobsen Type Catalysts on Modified Silica
    Revista Facultad de Ingeniería Universidad de Antioquia ISSN: 0120-6230 [email protected] Universidad de Antioquia Colombia Cubillos, Jairo; Grajales, Edwing; Vásquez, Santiago; Montes de Correa, Consuelo Immobilization of Jacobsen type catalysts on modified silica Revista Facultad de Ingeniería Universidad de Antioquia, núm. 57, enero, 2011, pp. 38-48 Universidad de Antioquia Medellín, Colombia Available in: http://www.redalyc.org/articulo.oa?id=43021212005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Rev. Fac. Ing. Univ. Antioquia N.° 57 pp. 38-48. Enero, 2011 Immobilization of Jacobsen type catalysts on modified silica Inmovilización de catalizadores tipo Jacobsen en sílica modificada Jairo Cubillos1*, Edwing Grajales2, Santiago Vásquez2, Consuelo Montes de Correa2 1Escuela de Ciencias Químicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia-UPTC. Avenida Central del Norte- Tunja, Boyacá, Colombia. 2Grupo Catálisis Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Apartado Aéreo 1226, Medellín, Colombia (Recibido el 26 de enero de 2010. Aceptado el 15 de octubre de 2010) Abstract Several immobilized Jacobsen type catalysts were covalently anchored on modified SiO2 using 3-aminopropyltriethoxysilane (3-APTES) as a reactive surface modifier. Characterization of the heterogeneous catalysts, as well as their precursors, by FTIR, DR UV–VIS, TGA and AAS confirms the successful immobilization of chiral Mn(III) salen complexes. These catalysts were examined for the diastereoselective epoxidation of R-(+)-limonene with in situ generated dimethyldioxirane (DMD) as oxidizing agent, yielding 1,2-epoxide as the main product.
    [Show full text]
  • Page 1 of 35 Dalton Transactions
    Dalton Transactions Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/dalton Page 1 of 35 Dalton Transactions Synthesis and aggregation behaviour of luminescent mesomorphic zinc(II) complexes with ‘salen’ type asymmetric Schiff base ligand Sutapa Chakraborty, a Chira R. Bhattacharjee,* a Paritosh Mondal, a S. Krishna Prasad, b and D. S. Shankar Rao b a Department of Chemistry, Assam University, Silchar 788011, Assam, India. b Centre for Nano and Soft Matter Sciences, Jalahalli, Bangalore 560013, India. * Corresponding author. Tel.: +91-03842-270848; fax: +91-03842-270342 Email: [email protected] Manuscript Accepted Transactions Dalton 1 Dalton Transactions Page 2 of 35 Table of Contents Synthesis and aggregation behaviour of luminescent mesomorphic zinc(II) complexes with ‘salen’ type asymmetric Schiff base ligand Sutapa Chakraborty, a Chira R.
    [Show full text]
  • DETECTION of SALEN-TYPE TRACERS for SUBTERRANEAN FLUID FLOW MONITORING USING SURFACE- ENHANCED RAMAN SPECTROSCOPY Jenny C
    University of New Mexico UNM Digital Repository Chemistry ETDs Electronic Theses and Dissertations Spring 5-12-2018 DETECTION OF SALEN-TYPE TRACERS FOR SUBTERRANEAN FLUID FLOW MONITORING USING SURFACE- ENHANCED RAMAN SPECTROSCOPY Jenny C. Sanchez University of New Mexico Follow this and additional works at: https://digitalrepository.unm.edu/chem_etds Part of the Inorganic Chemistry Commons, and the Physical Chemistry Commons Recommended Citation Sanchez, Jenny C.. "DETECTION OF SALEN-TYPE TRACERS FOR SUBTERRANEAN FLUID FLOW MONITORING USING SURFACE-ENHANCED RAMAN SPECTROSCOPY." (2018). https://digitalrepository.unm.edu/chem_etds/88 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Chemistry ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Jenny C. Sanchez Candidate Chemistry and Chemical Biology Department This thesis is approved, and it is acceptable in quality and form for publication: Approved by the Thesis Committee: Richard A. Kemp, Chairperson Terefe G. Habteyes Ramesh Giri i DETECTION OF SALEN-TYPE TRACERS FOR SUBTERRANEAN FLUID FLOW MONITORING USING SURFACE-ENHANCED RAMAN SPECTROSCOPY by JENNY C. SANCHEZ B.S., NEW MEXICO STATE UNIVERSITY, 2004 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Chemistry The University of New Mexico Albuquerque, New Mexico May, 2018 ii DEDICATION This work is lovingly dedicated to my little sister, Vivian. iii ACKNOWLEDGEMENTS I gratefully acknowledge my co-advisors, Dr. Richard Kemp and Dr. Terefe Habteyes, for their support and patience during my time working on this research project.
    [Show full text]
  • The Preparation and Use of Metal Salen Complexes Derived from Cyclobutane Diamine
    THE PREPARATION AND USE OF METAL SALEN COMPLEXES DERIVED FROM CYCLOBUTANE DIAMINE by SMITA S. PATIL B. Tech., University of Mumbai, 2005 M. Tech., University of Mumbai, 2007 AN ABSTRACT OF A DISSERTATION Submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Chemistry College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2014 Abstract The helix is an important chiral motif in nature, there is increasing development in field of helical transition metal complexes and related supramolecular structures. Hence, the goals of this work are to apply the principles of helicity in order to produce metal complexes with predictable molecular shapes and to study their properties as asymmetric catalysts. Computational studies suggest that the (1R,2R)-cyclobutyldiamine unit can produce highly twisted salen complexes with a large energy barrier between the M and P helical forms. To test this prediction, the tartrate salt of (1R,2R)-cyclobutyldiamine was synthesized and condensed with a series of saliclaldehydes to produce novel salen ligands. The salicylaldehydes chosen have extended phenanthryl or benz[a]anthryl sidearms to encourage formation of helical coordination complexes. These ligands were metallated with zinc, iron and manganese salts to produce salen metal complexes which were characterized by NMR analysis, high-resolution mass spectrometry, and IR spectroscopy. A second ligand type, neutral bis(pyridine-imine) has also been synthesized from (1R,2R)-cyclobutyldiamine and quinolylaldehydes. The synthesis of bis(pyridine-imine) ligands was conducted using greener method, solvent assisted grinding. These ligands, in-situ with nickel metal salts, showed good catalytic activity for asymmetric Diels-Alder reactions.
    [Show full text]
  • Preparation and Spectral Properties of Oxomolybdenum(V) Complexes. Harry Edmond Pence II Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1968 Preparation and Spectral Properties of Oxomolybdenum(v) Complexes. Harry Edmond Pence II Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Pence, Harry Edmond II, "Preparation and Spectral Properties of Oxomolybdenum(v) Complexes." (1968). LSU Historical Dissertations and Theses. 1411. https://digitalcommons.lsu.edu/gradschool_disstheses/1411 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 68-10,753 PENCE n , Harry Edmond, 1937- PREPARATION AND SPECTRAL PROPERTIES OF OXOMOLYBDENUM(V) COMPLEXES. Louisiana State University and Agricultural and Mechanical College, Ph.D., 1968 Chemistry, inorganic University Microfilms, Inc., Ann Arbor, Michigan PREPARATION AND SPECTRAL PROPERTIES OF OXOMOLYBDENUM ( V) COMPLEXES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Harry Edmond Pence II B.S., Bethany College, Bethany, W.Va., 1958 M.S., West Virginia University, Morgantown, W.Va., 1962 February, 1968 To Ginn ACKNOWLEDGMENTS The final creation of this dissertation has been assisted by many different individuals and it is appropriate to attempt to indicate some of these contributors and offer the sincere thanks of the author,, The most important component of this assistance has been the continual encouragement offered by parents and family.
    [Show full text]
  • SFU Thesis Template Files
    Elucidating the Electronic Structure of Transition Metal Complexes Featuring Redox Active Ligands by Linus Chiang B.Sc., Simon Fraser University, 2009 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Chemistry Faculty of Science Linus Chiang 2014 SIMON FRASER UNIVERSITY Fall 2014 Approval Name: Linus Chiang Degree: Doctor of Philosophy (Chemistry) Title: Elucidating the Electronic Structure of Transition Metal Complexes Featuring Redox Active Ligands Examining Committee: Chair: Hogan (Hua-Zhong) Yu Professor Tim Storr Senior Supervisor Associate Professor Daniel B. Leznoff Supervisor Professor Peter D. Wilson Supervisor Associate Professor Jeffrey J. Warren Internal Examiner Assistant Professor Alan F. Heyduk External Examiner Associate Professor Chemistry School of Physical Sciences University of California Irvine Date Defended/Approved: October 30th, 2014 ii Partial Copyright Licence iii Abstract In this thesis a number of projects involving the design and characterization of complexes bearing redox active ligands are described. Focusing on the phenolate containing ligands, the properties and electronic structure of their corresponding metal complexes were studied by a series of experimental (i.e. electrochemistry, UV-Vis-NIR, EPR, rR etc.) and theoretical (DFT) methods. Specifically, the redox processes of these metal complexes were tuned by varying the para-ring substituents. In one study, nickel- salen (salen is a common abbreviation for N2O2 bis-Schiff-base bis-phenolate ligands) complexes were investigated, where the oxidation potentials of the ligand were predictably decreased as the electron donating ability of the para-ring substituents was increased (NMe2 > OMe > tBu > CF3). Interestingly, the oxidation of these geometrically-symmetric complexes afforded an asymmetric electronic structure in a number of cases, in which the ligand radical was localized on one phenolate rather than delocalized across the ligand framework.
    [Show full text]
  • Amavadin- BASED VANADIUM COMPLEXES STRUCTURAL INVESTIGATIONS TON HUBREGTSE STRUCTURALINVESTIGATIONS
    amavadin- BASED VANADIUM COMPLEXES STRUCTURAL INVESTIGATIONS TON HUBREGTSE STRUCTURAL INVESTIGATIONS STRUCTURAL UITNODIGING VOOR HET BIJWONEN VAN DE OPENBARE VERDEDIGING VAN HET PROEFSCHRIFT OF EN DE STELLINGEN OP AMAVADIN-BASED VANADIUM COMPLEXES VANADIUM AMAVADIN-BASED DINSDAG 17 APRIL 2007 OM 12.30 UUR IN DE SENAATSZAAL ITNODIGING VAN DE TECHNISCHE UNIVERSITEIT DELFT U MEKELWEG 5 DELFT Voorafgaand aan de verdediging is er om 12.00 uur een toelichting voor niet-chemici. Na afloop van de plechtigheid bent u van harte welkom op de receptie in hetzelfde gebouw. Ton Hubregtse Anna Blamanlaan 8 2104 SE Heemstede 023-5283330 [email protected] T PARANIMFEN: . HUBREGTSE Huub Hubregtse [email protected] 06-46277320 Robert de Vries 2007 [email protected] belonging to the thesis ‘Structural investigations of amavadin-based vanadium complexes’ by Ton Hubregtse 1. Strongly acidic ion-exchange resins should not be used to purify molecules that rely on non-covalent bonds. E. M. Armstrong; D. Collison; N. Ertok; C. D. Garner, Talanta , 2000 , 53 , 75–87. H. Kneifel; E. Bayer, J. Am. Chem. Soc. , 1986 , 108 , 3075–3077. 2. The rule that states that the exception proves the rule is proven because there is no exception to this rule that can prove it. 3. The NMR data of Smith et al. can much better be explained when it is considered, given the three possible ligand stereoisomers and the two possible vanadium configurations, that six enantiomeric pairs of the [V( R,S-hidba) 2]-anion can be formed instead of three. P. D. Smith et al. , J. Chem. Soc., Dalton Trans. , 1997 , 4509–4516.
    [Show full text]
  • Metal-Salen-Based Probes for the Selective Detection of Phosphates<I>
    252 CHIMIA 2020, 74, No. 4 LAUREATES: JUNIOR PRIZES OF THE SCS FALL MEETING 2019 doi:10.2533/chimia.2020.252 Chimia 74 (2020) 252–256 © P. Yadav, F. Zelder Metal-Salen-based Probes for the Selective Detection of Phosphates via a Disassembly Approach Prerna Yadav§ and Felix Zelder* §SCS-DSM Award for best poster presentation in Analytical Sciences Abstract: Polyoxophosphates are ubiquitous in nature and play important roles in biological systems and in the environment. Pyrophosphate (PPi), an important member of this family, is produced in over 200 biochemical reactions and is a marker in clinical diagnosis. In addition to its endogenous role, PPi alias E450 is currently used as preservative, emulsifier or taste intensifier in foodstuff. Despite this widespread occurrence and biologi- cal importance, it is rather surprising that robust chemical systems that detect selectively and sensitively PPi in challenging matrices are still lacking. This mini review focuses on metal-salen complexes as reaction-based fluorescent sensors for the selective detection of PPi and other phosphates. The mode of detection is based on a novel disassembly approach in which the metal ion is sequestered by the target analyte from the complex and the metal-free ligand hydrolyses spontaneously into its fluorescent subunits. Optimizations of the probe and applications for PPi detection in cells and foodstuff are described. Keywords: Cell studies · Disassembly approach · Foodstuff · Phosphates · Salen complex Prerna Yadav was born in Madhya Pradesh NH2 O O in India. She moved to National Institute of N N O O P O O Science Education and Research (NISER) P P O O O N N O in Odisha, to the East of India for her O O O O P O P O P O O O P O O P O Integrated Master’s degree programme.
    [Show full text]
  • Transition Metal Chelates with Schiff Bases Derived from Salicylaldehyde
    I TRANSITION METAT CHETATES \ryITH SCHIFF BASES DERIVED FROM SATICYTATDEHYDE AND DIAMINO ETHANE ALVIN PAUL SUMMERTON, a.sc. UNIVERSITY OF ADELAIDE, DEPARTMENT OF PHYSICAL AND INORGANIC CHEMISTRY November 1978 1tu¡artol q''-'t tÇ14 Pl.l CONTENTS Page SUMII{ARY STATEMENT ACKNOhTLEDGEMENTS ABBREVIATIONS CHAPTER 1: Introduction t PART Ï CHAPTER 2: Preparation and characterization of salen complexes of iron (III) 6 CHAPTER 3: Solut.ion studies 30 CHAPTER 4: Moessbauer .spectra 57 PART II CHAPTER 5: Preparation, characterization and solid state properties 84 CHAPTER 6: Solution studies 115 CHAPTER 7: Crystal structure of Fe (saen) 2C1-.H2O 143 APPENDTX I: Computer Programs APPENDÏX II: Structure Factor Tables APPENDTX III: Publication BIBLTOGRAPHY SUM¡{ARY The following study of transition metal complexes with Schiff base ligands comprises two related studies. PART I Complexes of the quadridentate ligand, sa1en. A number of complexes of general formula Fe(III)salenX, where X = Cl, Br, I, NO3, N3, NCS and C6H5COO, have been pre- pared. Of these species, two (X = NO3 and N3) have not been previously reported and only one (X = Cl) has been intensively studied. In addition, two novel octahedral complex salts KlFesalen(CN)21 and Fe(saen) 2C1-.H2O, which involve a low spin central metal ion, have been obtained. The salt Fe(saen) 2CI. H2O has several unusual properties which have been examined in Part II of this thesis. This j-nvestigation of the salen complexes has involved: (1) confirmation of structure by microanalysis, i.r. spectra and magnetism; (2\ a sÈudy of the u.v.-visible solution spectra; (3) deterinination of the Moessbauer spect.ral parameters.
    [Show full text]
  • Nouvelles Sondes Électrochimiques Pour Le Marquage De Biocapteurs D’Affinité Amani Ben Jrad
    Nouvelles sondes électrochimiques pour le marquage de biocapteurs d’affinité Amani Ben Jrad To cite this version: Amani Ben Jrad. Nouvelles sondes électrochimiques pour le marquage de biocapteurs d’affinité. Autre. Université de Perpignan, 2019. Français. NNT : 2019PERP0038. tel-02612848 HAL Id: tel-02612848 https://tel.archives-ouvertes.fr/tel-02612848 Submitted on 19 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. [Tapez une citation prise dans le document ou la synthèse d'un passage Délivré par intéressant. Vous pouvez placer la zone de texte n'importe où dans le UNIVERSITE DE PERPIGNAN VIA DOMITIA document. Utilisez l'onglet Outils de zone de texte pour modifier la mise en forme de la zone de texte de la citation.] Préparée au sein de l’école doctorale ED 305 Et de l’unité de recherche LBBM - BAE Spécialité : Chimie Présentée par Mme Amani BEN JRAD NOUVELLES SONDES ELECTROCHIMIQUES POUR LE MARQUAGE DE BIOCAPTEURS D’AFFINITE Soutenue le 13 décembre 2019 devant le jury composé de M. Pierre GROS, Pr, LGC - Université Paul Sabatier Rapporteur M. François MORVAN, DR INSERM, IBMM - Université de Montpellier Rapporteur Mme.
    [Show full text]
  • Bis(Salicylidene)Ethylenediamine(Salen) and Bis(Salicylidene)Ethylenediamine-Metal Complexes: from Structure to Biological Activity
    Journal of Analytical & Pharmaceutical Research Bis(Salicylidene)Ethylenediamine(Salen) and Bis(Salicylidene)Ethylenediamine-Metal Complexes: from Structure to Biological Activity Abstract Review Article Schiff bases and their metal complexes have occupied a central role in the Volume 3 Issue 6 - 2016 development of co-ordination chemistry as evidenced by the vast number, ease and flexibility of the synthetic procedure, diverse properties, and use as biologically active compounds as antitumor, antibacterial, antifungal and other miscellaneous Department of Industrial Chemistry, Ebonyi State University, biological applications. Many reports have demonstrated that Salen and Salen- Nigeria metal complexes are highly active against several diseases, including cancer. The thrust of this review work is to evaluate the structural nature of Salen and assess *Corresponding author: Felix Sunday Nworie, Department the biological applications thereof. of Industrial Chemistry, Ebonyi State University, PMB 053 Abakaliki, Ebonyi State, Nigeria, Tel: +2348034813342; Keywords: Schiff base; Salen; Metal salen; Biological applications; Structural Email: characterization Received: October 31, 2016 | Published: December 15, 2016 Abbreviations: C: Carbon; N: Nitrogen; DMSO: Dimethylsulphoxide; PXRD: Powder X-ray Diffractometer; the elimination of the hemiaminal (carbinolamine) hydroxyl SOD: Superoxide Dismutase; Cu: Copper; Zn: Zinc; Fe: Iron; groupconditions, (dehydration there is unavailabilitystep) [5]. of sufficient protons to catalyze Cr: Chromium; Mn:
    [Show full text]
  • Electronic Structure and Reactivity of Transition Metal Complexes Incorporating Pro-Radical Bis- Phenoxide Ligands
    Electronic Structure and Reactivity of Transition Metal Complexes Incorporating Pro-Radical Bis- Phenoxide Ligands by Ryan Michael Clarke B.Sc. (Hons), Mount Allison University, 2012 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Chemistry Faculty of Science © Ryan Michael Clarke SIMON FRASER UNIVERSITY Spring 2018 Copyright in this work rests with the author. Please ensure that any reproduction or re-use is done in accordance with the relevant national copyright legislation. Approval Name: Ryan Michael Clarke Degree: Doctor of Philosophy (Chemistry) Title: Electronic Structure and Reactivity of Transition Metal Complexes Incorporating Pro-Radical Bis-Phenoxide Ligands Chair: Dr. Michael H. Eikerling Professor Examining Committee: Dr. Tim Storr Senior Supervisor Associate Professor Dr. Daniel B. Leznoff Supervisor Professor Dr. Vance E. Williams Supervisor Associate Professor Dr. Loren Kaake Internal Examiner Assistant Professor Dr. Andrew S. Borovik External Examiner Professor Department of Chemistry University of California, Irvine Date Defended/Approved: April 5, 2018 ii Abstract Transition metal complexes with pro-radical ligands have received considerable research attention due to their interesting electronic structures, photophysical properties, and applications in catalysis. The relative ordering of metal and ligand frontier orbitals in a complex incorporating pro-radical ligands dictates whether oxidation/reduction occurs at the metal centre or at the ligand. Many metalloenzymes couple redox events at multiple metal centres or between metals and pro-radical ligands to facilitate multielectron chemistry. Owing to the simplicity of the active sites, many structural and functional models have been studied. One class of pro-radical ligand that has been investigated extensively are bis-imine bis-phenoxide ligands (i.e.
    [Show full text]