Review of Antibiotic Use in Crops and Associated Risk of Antimicrobial

Total Page:16

File Type:pdf, Size:1020Kb

Review of Antibiotic Use in Crops and Associated Risk of Antimicrobial Review of Antibiotic Use in Crops, Associated Risk of Antimicrobial Resistance and Research Gaps Report to Department for Environment, Food and Rural Affairs (Defra) & The Food Standards Agency (FSA) March 2020 Dr Edward Haynes, Dr Carmel Ramwell, Dr Tom Griffiths, Mr Don Walker, Mr Julian Smith Fera Science Ltd. https://doi.org/10.46756/sci.fsa.vnq132 Contents Glossary ..................................................................................................................... 4 Executive Summary ................................................................................................... 5 Introduction ................................................................................................................ 6 Use of Antibiotics in Crops ......................................................................................... 8 Information Gathering ............................................................................................. 8 Summary of Responses .......................................................................................... 9 Regulation of Antibiotics ........................................................................................... 10 Antibiotics Used in Plant Agriculture......................................................................... 11 Data on Use .......................................................................................................... 12 Crops and Diseases .............................................................................................. 13 Farming Practice ................................................................................................... 14 Misuse .................................................................................................................. 20 Risks ..................................................................................................................... 21 Summary............................................................................................................... 22 Prevalence of Antibiotics and Antimicrobial Resistance Genes in Crops ................. 23 Antibiotics in Crops ............................................................................................... 23 Compound ............................................................................................................ 25 Plant Type ............................................................................................................. 26 Manure Type ......................................................................................................... 27 Exposure Duration ................................................................................................ 27 Irrigation Water ..................................................................................................... 28 Hydroponics .......................................................................................................... 32 Antimicrobial Resistance Genes in Crops ............................................................. 35 Summary............................................................................................................... 37 Selection Pressure for Antimicrobial Resistance from Non-Antibiotic Sources ........ 38 Metals ................................................................................................................... 38 Pesticides.............................................................................................................. 39 Pollutants .............................................................................................................. 42 Biocides ................................................................................................................ 42 Summary............................................................................................................... 42 Detection of Antibiotics ............................................................................................. 44 Methods of Analysis .............................................................................................. 44 Extraction and Sample Clean-up .......................................................................... 53 2 Determination of Veterinary Medicines ................................................................. 54 Summary............................................................................................................... 54 Detection of Antibiotic Resistance ............................................................................ 55 Detection of Phenotypic Antimicrobial Resistance and Susceptibility ................... 55 Targeted Molecular Detection ............................................................................... 56 Non-Targeted Molecular Detection ....................................................................... 57 Summary............................................................................................................... 58 Conclusions .............................................................................................................. 59 Research Gaps ........................................................................................................ 61 Technical Improvements ....................................................................................... 61 Antibiotics and AMR in the Crop Environment ...................................................... 61 Antibiotic Use ........................................................................................................ 62 Acknowledgments .................................................................................................... 64 Supplementary Materials 1: Questionnaire on Use of Antibiotics in Crop Production ................................................................................................................................. 65 References ............................................................................................................... 68 3 Glossary ARB- Antimicrobial Resistant Bacteria ARG- Antimicrobial Resistance Genes AMR- Antimicrobial Resistance FAO- Food and Agriculture Organisation of the United Nations IPPC- International Plant Protection Convention LMICs- Low- and Middle-Income Countries LOD- Limit of Detection LOQ- Limit of Quantification MGE- Mobile Genetic Element MIC- Minimum Inhibitory Concentration Suggested Citation: Haynes et al., Fera Science Ltd. 2020. Review of Antibiotic Use in Crops, Associated Risk of Antimicrobial Resistance and Research Gaps. Report to Department for Environment, Food and Rural Affairs (Defra) & The Food Standards Agency (FSA). https://doi.org/10.46756/sci.fsa.vnq132 4 Executive Summary • Relatively few countries have national legislation in place regulating the use of antibiotics in crop agriculture. Furthermore, in many countries the compounds and volumes applied are not well monitored. • Where antibiotic use is regulated, there are some specific antibiotics (such as streptomycin, oxytetracycline, and kasugamycin) and crops (such as pome fruit and citrus fruit) where use is repeatedly reported. In general, where information is available, antibiotic use in crop agriculture appears to be at a significantly lower level than in livestock agriculture. However, in many countries official information is unavailable, and use may be considerably higher. • Soil amendments may constitute a more important source of antibiotics than direct application, especially when these are of livestock (e.g. manure) or human (e.g. sewage sludge) origin. Soil amendments can also introduce antimicrobial resistant organisms or antimicrobial resistance (AMR) genes on to crops. • Uptake of antibiotics by crops differs widely according to many factors, including antibiotic class, crop type and variety, and soil type. • Methods exist for the detection of antibiotics in a range of crops, but are limited, certainly in comparison with methods for animal products. Multi-class, multi- residue methods to monitor for a range of residues are available, but further work is required to extend the range of compounds tested for. • Rapid methods have been developed to test for both AMR genes and phenotypic antimicrobial resistance in bacteria. High throughput sequencing-based techniques, including metagenomics, can be used to simultaneously test for multiple gene targets in multiple organisms and can provide data on the genomic and environmental context of the AMR genes detected. • The risk of AMR arising in crop agriculture in the UK is likely relatively low, given the lack of antibiotic use on crops in this country. The risk of AMR arising due to co-selection from other agrichemicals is difficult to assess due to a lack of information about the co-selection properties of most pesticides. Some agriculturally important chemicals, such as copper compounds, do co-select for AMR. The possibility of importing AMR bacteria or genes on crops or plant products treated with antibiotics in countries where they are either used or misused is likely higher. Without more quantitative information on antibiotic use in crop agriculture in countries from which the UK sources plant products, or testing of imported products, it is difficult to draw firmer conclusions. 5 Introduction Antimicrobial resistance (AMR) is an increasingly important global health problem, with the potential to render antibiotics unusable, and negate medical treatments such as chemotherapy and organ transplant
Recommended publications
  • Screening 36 Veterinary Drugs in Animal Origin Food by LC/MS/MS Combined with Modified Quechers Method
    Screening 36 Veterinary Drugs in Animal Origin Food by LC/MS/MS Combined with Modified QuEChERS Method Application Note Food Testing and Agriculture Authors Abstract Jin-Lan Sun, Chang Liu, Yue Song This application note introduces a modified QuEChERS method that screens food for Agilent Technologies Co., Ltd., four classes of veterinary drugs-sulfanilamides, macrocyclic lactones, quinolones, and Shanghai, 200131 China clopidols. The modified QuEChERS consists of an extraction kit (4 g Na2SO4+ Jian-Zhong Li 1 g NaCl) and a dispersive-SPE kit (50 mg PSA, 150 mg, C18EC, 900 mg Na2SO4); the Agilent Technologies Co., Ltd., extraction solvent is 1% acetic acid in acetonitrile. Satisfactory recoveries were Beijing, 100102 China achieved by this method for all four classes of veterinary drugs. The veterinary drugs were quantified by LC/ESI/MS/MS using Dynamic Multiple Reaction Monitoring (DMRM). The observed limits of detection are in accordance with the various MRLs for the four classes of veterinary drugs, and the average recoveries exceed 50%, thus meeting the requirement for routine analysis. Introduction Solutions and standards A 1% formic acid solution in ACN was made fresh daily by The QuEChERS method was first introduced for the extraction adding 1 mL of formic acid to 100 mL of ACN, then mixing of pesticides from fruits and vegetables [1]. The QuEChERS well. A 1% acetic acid solution in ACN was made fresh daily methodology can be divided into two steps, extraction/parti- by adding 1 mL of acetic acid to 100 mL of ACN, then mixing tioning and dispersive SPE (d-SPE). In the first step, acetoni- well.
    [Show full text]
  • Antibacterial Residue Excretion Via Urine As an Indicator for Therapeutical Treatment Choice and Farm Waste Treatment
    antibiotics Article Antibacterial Residue Excretion via Urine as an Indicator for Therapeutical Treatment Choice and Farm Waste Treatment María Jesús Serrano 1, Diego García-Gonzalo 1 , Eunate Abilleira 2, Janire Elorduy 2, Olga Mitjana 1 , María Victoria Falceto 1, Alicia Laborda 1, Cristina Bonastre 1 , Luis Mata 3 , Santiago Condón 1 and Rafael Pagán 1,* 1 Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; [email protected] (M.J.S.); [email protected] (D.G.-G.); [email protected] (O.M.); [email protected] (M.V.F.); [email protected] (A.L.); [email protected] (C.B.); [email protected] (S.C.) 2 Public Health Laboratory, Office of Public Health and Addictions, Ministry of Health of the Basque Government, 48160 Derio, Spain; [email protected] (E.A.); [email protected] (J.E.) 3 Department of R&D, ZEULAB S.L., 50197 Zaragoza, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-9-7676-2675 Abstract: Many of the infectious diseases that affect livestock have bacteria as etiological agents. Thus, therapy is based on antimicrobials that leave the animal’s tissues mainly via urine, reaching the environment through slurry and waste water. Once there, antimicrobial residues may lead to antibacterial resistance as well as toxicity for plants, animals, or humans. Hence, the objective was to describe the rate of antimicrobial excretion in urine in order to select the most appropriate molecule while reducing harmful effects. Thus, 62 pigs were treated with sulfamethoxypyridazine, Citation: Serrano, M.J.; oxytetracycline, and enrofloxacin. Urine was collected through the withdrawal period and analysed García-Gonzalo, D.; Abilleira, E.; via LC-MS/MS.
    [Show full text]
  • Multi-Residue Determination of Sulfonamide and Quinolone Residues in Fish Tissues by High Performance Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
    674 Journal of Food and Drug Analysis, Vol. 20, No. 3, 2012, Pages 674-680 doi:10.6227/jfda.2012200315 Multi-Residue Determination of Sulfonamide and Quinolone Residues in Fish Tissues by High Performance Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) CHUNG-WEI TSAI1, CHAN-SHING LIN1 AND WEI-HSIEN WANG1,2* 1. Division of Marine Biotechnology, Asia-Pacific Ocean Research Center, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C. 2. National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, R.O.C. (Received: August 30, 2010; Accepted: April 26, 2012) ABSTRACT A LC-MS/MS method was validated for the simultaneous quantification of 4 quinolones (oxolinic acid, enrofloxacine, ciprofloxacine, norfloxacine) and 4 sulfonamides (sulfamethoxypyridazine, sulfadoxine, sulfadimidine, sulfamerazine) on fish muscle following the Euro- pean Union’s (EU) criteria for the analysis of veterinary drug residues in foods. One gram of sample was extracted by acidic acetonitrile (0.5 mL of 0.1% formic acid in 7 mL of ACN), followed by LC-MS/MS analysis using an electrospray ionization interface. Typical recoveries of the 4 quinolones in the fish tissues ranged from 85 to 104%. While those of the sulfonamides ranged from 75 to 94% at the fortification level of 5.0 μg/kg. The decision limits (CCα) and detection capabilities (CCβ) of the quinolones were 1.35 to 2.10 μg/kg and 1.67 to 2.75 μg/kg, respectively. Meanwhile, the CCα and CCβ of the sulfonamides ranged from 1.62 μg/kg to 2.53μg/kg and 2.01μg/kg to 3.13 μg/kg, respectively.
    [Show full text]
  • Transdermal Drug Delivery Device Including An
    (19) TZZ_ZZ¥¥_T (11) EP 1 807 033 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61F 13/02 (2006.01) A61L 15/16 (2006.01) 20.07.2016 Bulletin 2016/29 (86) International application number: (21) Application number: 05815555.7 PCT/US2005/035806 (22) Date of filing: 07.10.2005 (87) International publication number: WO 2006/044206 (27.04.2006 Gazette 2006/17) (54) TRANSDERMAL DRUG DELIVERY DEVICE INCLUDING AN OCCLUSIVE BACKING VORRICHTUNG ZUR TRANSDERMALEN VERABREICHUNG VON ARZNEIMITTELN EINSCHLIESSLICH EINER VERSTOPFUNGSSICHERUNG DISPOSITIF D’ADMINISTRATION TRANSDERMIQUE DE MEDICAMENTS AVEC COUCHE SUPPORT OCCLUSIVE (84) Designated Contracting States: • MANTELLE, Juan AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Miami, FL 33186 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • NGUYEN, Viet SK TR Miami, FL 33176 (US) (30) Priority: 08.10.2004 US 616861 P (74) Representative: Awapatent AB P.O. Box 5117 (43) Date of publication of application: 200 71 Malmö (SE) 18.07.2007 Bulletin 2007/29 (56) References cited: (73) Proprietor: NOVEN PHARMACEUTICALS, INC. WO-A-02/36103 WO-A-97/23205 Miami, FL 33186 (US) WO-A-2005/046600 WO-A-2006/028863 US-A- 4 994 278 US-A- 4 994 278 (72) Inventors: US-A- 5 246 705 US-A- 5 474 783 • KANIOS, David US-A- 5 474 783 US-A1- 2001 051 180 Miami, FL 33196 (US) US-A1- 2002 128 345 US-A1- 2006 034 905 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Sulfonamides and Sulfonamide Combinations*
    Sulfonamides and Sulfonamide Combinations* Overview Due to low cost and relative efficacy against many common bacterial infections, sulfonamides and sulfonamide combinations with diaminopyrimidines are some of the most common antibacterial agents utilized in veterinary medicine. The sulfonamides are derived from sulfanilamide. These chemicals are structural analogues of ρ-aminobenzoic acid (PABA). All sulfonamides are characterized by the same chemical nucleus. Functional groups are added to the amino group or substitutions made on the amino group to facilitate varying chemical, physical and pharmacologic properties and antibacterial spectra. Most sulfonamides are too alkaline for routine parenteral use. Therefore the drug is most commonly administered orally except in life threatening systemic infections. However, sulfonamide preparations can be administered orally, intramuscularly, intravenously, intraperitoneally, intrauterally and topically. Sulfonamides are effective against Gram-positive and Gram-negative bacteria. Some protozoa, such as coccidians, Toxoplasma species and plasmodia, are generally sensitive. Chlamydia, Nocardia and Actinomyces species are also sensitive. Veterinary diseases commonly treated by sulfonamides are actinobacillosis, coccidioidosis, mastitis, metritis, colibacillosis, pododermatitis, polyarthritis, respiratory infections and toxo- plasmosis. Strains of rickettsiae, Pseudomonas, Klebsiella, Proteus, Clostridium and Leptospira species are often highly resistant. Sulfonamides are bacteriostatic antimicrobials
    [Show full text]
  • E3 Appendix 1 (Part 1 of 2): Search Strategy Used in MEDLINE
    This single copy is for your personal, non-commercial use only. For permission to reprint multiple copies or to order presentation-ready copies for distribution, contact CJHP at [email protected] Appendix 1 (part 1 of 2): Search strategy used in MEDLINE # Searches 1 exp *anti-bacterial agents/ or (antimicrobial* or antibacterial* or antibiotic* or antiinfective* or anti-microbial* or anti-bacterial* or anti-biotic* or anti- infective* or “ß-lactam*” or b-Lactam* or beta-Lactam* or ampicillin* or carbapenem* or cephalosporin* or clindamycin or erythromycin or fluconazole* or methicillin or multidrug or multi-drug or penicillin* or tetracycline* or vancomycin).kf,kw,ti. or (antimicrobial or antibacterial or antiinfective or anti-microbial or anti-bacterial or anti-infective or “ß-lactam*” or b-Lactam* or beta-Lactam* or ampicillin* or carbapenem* or cephalosporin* or c lindamycin or erythromycin or fluconazole* or methicillin or multidrug or multi-drug or penicillin* or tetracycline* or vancomycin).ab. /freq=2 2 alamethicin/ or amdinocillin/ or amdinocillin pivoxil/ or amikacin/ or amoxicillin/ or amphotericin b/ or ampicillin/ or anisomycin/ or antimycin a/ or aurodox/ or azithromycin/ or azlocillin/ or aztreonam/ or bacitracin/ or bacteriocins/ or bambermycins/ or bongkrekic acid/ or brefeldin a/ or butirosin sulfate/ or calcimycin/ or candicidin/ or capreomycin/ or carbenicillin/ or carfecillin/ or cefaclor/ or cefadroxil/ or cefamandole/ or cefatrizine/ or cefazolin/ or cefixime/ or cefmenoxime/ or cefmetazole/ or cefonicid/ or cefoperazone/
    [Show full text]
  • (Phacs) in the Snow Deposition Near Jiaozhou Bay, North China
    applied sciences Article Characterization, Source and Risk of Pharmaceutically Active Compounds (PhACs) in the Snow Deposition Near Jiaozhou Bay, North China Quancai Peng 1,2,3,4, Jinming Song 1,2,3,4,*, Xuegang Li 1,2,3,4, Huamao Yuan 1,2,3,4 and Guang Yang 1,2,3,4 1 CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; [email protected] (Q.P.); [email protected] (X.L.); [email protected] (H.Y.); [email protected] (G.Y.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China 4 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China * Correspondence: [email protected]; Tel: +86-0532-8289-8583 Received: 20 February 2019; Accepted: 8 March 2019; Published: 14 March 2019 Abstract: The occurrence and distribution of 110 pharmaceutically active compounds (PhACs) were investigated in snow near Jiaozhou Bay (JZB), North China. All target substances were analyzed using solid phase extraction followed by liquid chromatography coupled to tandem mass spectrometry.A total of 38 compounds were detected for the first time in snow, including 23 antibiotics, eight hormones, three nonsteroidal anti-inflammatory drugs, two antipsychotics, one beta-adrenergic receptor and one hypoglycemic drug. The total concentration of PhACs in snow ranged from 52.80 ng/L to 1616.02 ng/L. The compounds found at the highest mean concentrations included tetracycline (125.81 ng/L), desacetylcefotaxime (17.73 ng/L), ronidazole (8.79 ng/L) and triamcinolone diacetate (2.84 ng/L).
    [Show full text]
  • Third ESVAC Report
    Sales of veterinary antimicrobial agents in 25 EU/EEA countries in 2011 Third ESVAC report An agency of the European Union The mission of the European Medicines Agency is to foster scientific excellence in the evaluation and supervision of medicines, for the benefit of public and animal health. Legal role Guiding principles The European Medicines Agency is the European Union • We are strongly committed to public and animal (EU) body responsible for coordinating the existing health. scientific resources put at its disposal by Member States • We make independent recommendations based on for the evaluation, supervision and pharmacovigilance scientific evidence, using state-of-the-art knowledge of medicinal products. and expertise in our field. • We support research and innovation to stimulate the The Agency provides the Member States and the development of better medicines. institutions of the EU the best-possible scientific advice on any question relating to the evaluation of the quality, • We value the contribution of our partners and stake- safety and efficacy of medicinal products for human or holders to our work. veterinary use referred to it in accordance with the • We assure continual improvement of our processes provisions of EU legislation relating to medicinal prod- and procedures, in accordance with recognised quality ucts. standards. • We adhere to high standards of professional and Principal activities personal integrity. Working with the Member States and the European • We communicate in an open, transparent manner Commission as partners in a European medicines with all of our partners, stakeholders and colleagues. network, the European Medicines Agency: • We promote the well-being, motivation and ongoing professional development of every member of the • provides independent, science-based recommenda- Agency.
    [Show full text]
  • Sales of Veterinary Antimicrobial Agents in 29 European Countries in 2014
    Sales of veterinary antimicrobial agents in 29 European countries in 2014 Trends across 2011 to 2014 Sixth ESVAC report An agency of the European Union The mission of the European Medicines Agency is to foster scientific excellence in the evaluation and supervision of medicines, for the benefit of public and animal health. Legal role • publishes impartial and comprehensible information about medicines and their use; The European Medicines Agency is the European Union body responsible for coordinating the existing scientific resources • develops best practice for medicines evaluation and put at its disposal by Member States for the evaluation, supervision in Europe, and contributes alongside the supervision and pharmacovigilance of medicinal products. Member States and the European Commission to the harmonisation of regulatory standards at the international The Agency provides the Member States and the institutions level. of the European Union (EU) and the European Economic Area (EEA) countries with the best-possible scientific advice Guiding principles on any questions relating to the evaluation of the quality, safety and efficacy of medicinal products for human or • We are strongly committed to public and animal health. veterinary use referred to it in accordance with the provisions of EU legislation relating to medicinal products. • We make independent recommendations based on scien- tific evidence, using state-of-the-art knowledge and The founding legislation of the Agency is Regulation (EC) expertise in our field. No 726/2004. • We support research and innovation to stimulate the Principal activities development of better medicines. Working with the Member States and the European Commission as partners in a European medicines network, the European • We value the contribution of our partners and stakeholders Medicines Agency: to our work.
    [Show full text]
  • Sales of Veterinary Antimicrobial Agents in 30 European Countries in 2016
    Sales of veterinary antimicrobial agents in 30 European countries in 2016 Trends from 2010 to 2016 Eighth ESVAC report An agency of the European Union Mission statement The mission of the European Medicines Agency is to foster scientific excellence in the evaluation and supervision of medicines, for the benefit of public and animal health. Legal role • involves representatives of patients, healthcare professionals and other stakeholders in its work, to facilitate dialogue on The European Medicines Agency (hereinafter ‘the Agency’ issues of common interest; or EMA) is the European Union (EU) body responsible for coordinating the existing scientific resources put at its disposal • publishes impartial and comprehensible information about by Member States for the evaluation, supervision and medicines and their use; pharmacovigilance of medicinal products. • develops best practice for medicines evaluation and The Agency provides the Member States and the institutions supervision in Europe, and contributes alongside the Member of the EU and the European Economic Area (EEA) countries States and the EC to the harmonisation of regulatory with the best-possible scientific advice on any questions standards at the international level. relating to the evaluation of the quality, safety and efficacy of medicinal products for human or veterinary use referred to it in accordance with the provisions of EU legislation Guiding principles relating to medicinal products. • We are strongly committed to public and animal health. The founding legislation of the Agency is Regulation (EC) No • We make independent recommendations based on scien- 726/2004 of the European Parliament and the Council of 31 tific evidence, using state-of-the-art knowledge and March 2004 laying down Community procedures for the expertise in our field.
    [Show full text]
  • Pharmaceuticals (Monocomponent Products) ………………………..………… 31 Pharmaceuticals (Combination and Group Products) ………………….……
    DESA The Department of Economic and Social Affairs of the United Nations Secretariat is a vital interface between global and policies in the economic, social and environmental spheres and national action. The Department works in three main interlinked areas: (i) it compiles, generates and analyses a wide range of economic, social and environmental data and information on which States Members of the United Nations draw to review common problems and to take stock of policy options; (ii) it facilitates the negotiations of Member States in many intergovernmental bodies on joint courses of action to address ongoing or emerging global challenges; and (iii) it advises interested Governments on the ways and means of translating policy frameworks developed in United Nations conferences and summits into programmes at the country level and, through technical assistance, helps build national capacities. Note Symbols of United Nations documents are composed of the capital letters combined with figures. Mention of such a symbol indicates a reference to a United Nations document. Applications for the right to reproduce this work or parts thereof are welcomed and should be sent to the Secretary, United Nations Publications Board, United Nations Headquarters, New York, NY 10017, United States of America. Governments and governmental institutions may reproduce this work or parts thereof without permission, but are requested to inform the United Nations of such reproduction. UNITED NATIONS PUBLICATION Copyright @ United Nations, 2005 All rights reserved TABLE OF CONTENTS Introduction …………………………………………………………..……..……..….. 4 Alphabetical Listing of products ……..………………………………..….….…..….... 8 Classified Listing of products ………………………………………………………… 20 List of codes for countries, territories and areas ………………………...…….……… 30 PART I. REGULATORY INFORMATION Pharmaceuticals (monocomponent products) ………………………..………… 31 Pharmaceuticals (combination and group products) ………………….……........
    [Show full text]
  • Statistical Analysis Plan / Data Specifications the Risk of Acute Liver Injury Associated with the Use of Antibiotics. a Replica
    WP6 validation on methods involving an extended audience Statistical analysis plan / data specifications The risk of acute liver injury associated with the use of antibiotics. A replication study in the Utrecht Patient Oriented Database Version: July 11, 2013 Authors: Renate Udo, Marie L De Bruin Reviewers: Work package 6 members (David Irvine, Stephany Tcherny-Lessenot) 1 1. Context The study described in this protocol is performed within the framework of PROTECT (Pharmacoepidemiological Research on Outcomes of Therapeutics by a European ConsorTium). The overall objective of PROTECT is to strengthen the monitoring of the benefit-risk of medicines in Europe. Work package 6 “validation on methods involving an extended audience” aims to test the transferability/feasibility of methods developed in other WPs (in particular WP2 and WP5) in a range of data sources owned or managed by Consortium Partners or members of the Extended Audience. The specific aims of this study within WP6 are: to evaluate the external validity of the study protocol on the risk of acute liver injury associated with the use of antibiotics by replicating the study protocol in another database, to study the impact of case validation on the effect estimate for the association between antibiotic exposure and acute liver injury. Of the selected drug-adverse event pairs selected in PROTECT, this study will concentrate on the association between antibiotic use and acute liver injury. On this topic, two sub-studies are performed: a descriptive/outcome validation study and an association study. The descriptive/outcome validation study has been conducted within the Utrecht Patient Oriented Database (UPOD).
    [Show full text]