Styrene-Maleic Anhydride Copolymers for Bioapplications and Their Preparation

Total Page:16

File Type:pdf, Size:1020Kb

Styrene-Maleic Anhydride Copolymers for Bioapplications and Their Preparation (19) & (11) EP 2 502 943 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 26.09.2012 Bulletin 2012/39 C08F 212/08 (2006.01) C08F 222/08 (2006.01) C08F 2/02 (2006.01) (21) Application number: 12173168.1 (22) Date of filing: 30.03.2007 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Colt, Monica HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE 76300 Rehovot (IL) SI SK TR • Bucevschi, Mircea Dan Designated Extension States: 76300 Rehovot (IL) AL BA HR MK RS (74) Representative: Zeestraten, Albertus W. J. (30) Priority: 30.03.2006 US 787191 P Exter Polak & Charlouis B.V. (EP&C) P.O. Box 3241 (62) Document number(s) of the earlier application(s) in 2280 GE Rijswijk (NL) accordance with Art. 76 EPC: 07759822.5 / 2 007 824 Remarks: This application was filed on 22-06-2012 as a (71) Applicant: Exotech Bio Solutions Ltd. divisional application to the application mentioned 32100 Kiryat Gat (IL) under INID code 62. (54) Styrene-maleic anhydride copolymers for bioapplications and their preparation (57) The present invention discloses styrene-maleic maleic anhydride monomers, which makes the copoly- anhydride copolymers preparations using solventless mers particularly suitable for bioapplications. techniques. The solventless method resulted in reduced amounts of residues, such as unreacted styrene and/or EP 2 502 943 A1 Printed by Jouve, 75001 PARIS (FR) 1 EP 2 502 943 A1 2 Description study, and antimicrobial properties of acriflavine bound to SMA. Patel, H. A. et al. Die Angewandte Makromole- Related Applications kulare Chemie 1998, 263, 25-30. Patel, H. A. et al. report similar findings for SMA bound ampicillin. Patel, H. A. et [0001] This application claims the benefit of priority to 5 al. Die Angewandte Makromolekulare Chemie 1999, United States Provisional Patent Application serial 271, 24-27. In both cases, advanced purification of the number 60/787,191, filed March 30, 2006, which is here- SMA copolymer was necessary to make the composition by incorporated by reference in its entirety. suitable for bio-application. [0008] Ottenbrite, R. M. and Spiridon, D. disclose the Field of the Invention 10 use of SMA copolymers as antitumor effectors. Ot- tenbrite, R. M. and Spiridon, D demonstrate the biocom- [0002] The invention relates to, in part, styrene- maleic patibility of the SMA copolymers but only after rigorous anhydride copolymers. It relates to methods of synthe- purification steps. Ottenbrite, R. M. J. Macromol. sizing such polymers using bulk polymerization methods Sci.-Chem. 1985, A22(5-7), 819-832; Spiridon D. Poly- which yield partially hydrolysed polymers in acidic form. 15 mer International, 1997, 43, 175-181. The invention also relates to methods of preparing sty- [0009] US Pat. Nos. 3,980,663 and US Pat. No rene-maleic anhydride copolymers that have a low resid- 4,381,784 disclose using SMA copolymers as water ab- ual content of monomers (styrene and maleic acid) and sorbing materials for hygienic care. US Pat. No. which are suited to bioapplications as solutions, hydro- 3,939,108 and US Pat. No. 6,590,019 disclose SMA co- gels or solids for medical bioengineering, tissue engi- 20 polymers as an adhesive useful for bottle labeling. US neering, pharmaceutical products, hygienic care, cos- Pat. No. 5,080,888 discloses SMA copolymers in cos- metics, biotechnology, food industry, agriculture, absorb- metics. US Pat. No. 4,980,403; US Pat. No. 5,104,957; ent textiles and the like. US Pat. No. 5,480,427; and US Pat. No. 6,127,451 dis- close using SMA copolymers as biomaterials. US Pat. Background of the Invention 25 No.4,153,682; US Pat. No. 6,500,447; and US Pat. No. 6,531,160 disclose using SMA copolymers in pharma- [0003] Styrene-maleic anhydride copolymers (SMA ceutical products as drug delivery systems. copolymers) are used in numerous applications but their [0010] A condition for using SMA copolymers in a bio- use in bio-applications is hindered by their lack of purity application is that its chemical purity be as high as pos- and residual hazardous contaminates. 30 sible, while its hazardous contaminant content be as low [0004] The FDA approved SMA copolymers as indirect as possible. Contamination of SMA copolymers has two food additives for use as articles or components of arti- causes derived from the polymerization processes used: cles that contact food items (Code of Federal Regula- 1) non-reacted monomers, and 2) auxiliaries of polym- tions, Sec. 177.1820 "Styrene-maleic anhydride copoly- erization such as: organic solvents, initiators...etc. mers", Title 21, Volume 3 p 304-305, revised as of April 35 [0011] For example, SMA coplymers are prepared 1, 2000). The FDA specified that SMA copolymers have mainly by solvent based methods, but these methods are a minimum average molecular mass of 70,000 and con- also the most contaminating because, besides unreacted tain not more that 15 weight percent maleic anhydride, monomers and initiators, there is residual solvent to re- 0.3 weight percent residual styrene monomer, 0.1 weight move. See US Pat. No. 2,286,062; US Pat. No. percent residual maleic anhydride monomer, 0.00640 2,378,629; US Pat. No. 2,866,775; US Pat. No. weight percent maximum extractible fractions in distillat- 3,157,595; US Pat. No. 3,989,586; 4,105,649; and US ed water at reflux temperature for 1 hr, and 0.02 weight Pat. No. 4,126,549. The additional purification steps re- percent maximum extractible fractions in n-heptane at quired represent an important economical restriction to 73 °F for 2 hr. using SMA copolymers in bio-applications compared to [0005] Sethi, N. et al. demonstrated the biocompatibil- 45 other category of polymers. ity of SMA commercial products, but a multistep, complex [0012] Bulk polymerization is less contaminating than purification procedure was required before utilization. solution polymerization because there are no organic sol- Sethi, N. et al. Contraception 1989, 39, 217-226. The vents. See Voss, A. et al. in US Pat. No. 2,047,398; same conclusion was reported by Lohiya, N. K et al. Lo- Graves, G. D. in US Pat No. 2,205,882 and Lee Y. C. et hiya, N. K. et al. Int. J. Androl. 2000, 23, 36-42. 50 al. in US Pat No. 4,051,311 disclosing maleic anhydride [0006] Wagner J. G. et al in US Pat. No. 2,897,121 and copolymers of styrene, vinyl acetate, and others by bulk Chen, Y. R. et al in Colloids and Surfaces A: Physico- polymerization methods, with and without peroxidic initi- chem. Eng. Aspects, 2004, 242, 17-20 present the utili- ators. The content of maleic anhydride monomers is less zation of SMA copolymers as additives for a pharmaceu- than 55% by weight in the initial mixture of comonomers. tical carrier for oral administration. Although the authors 55 Baer, M. in US Pat. No. 2,971,939 presents the synthesis assert that the polymers can be used for bio-applications, of styrene maleic anhydride copolymers with a content supporting data, such as purity, is not presented. of maleic anhydride less than 12% by weight using bulk [0007] Patel, H. A. et al. disclose the synthesis, release polymerization methods. In these disclosures, a mixture 2 3 EP 2 502 943 A1 4 of styrene and peroxidic initiator is allowed to homopol- number of potential bio-applications. ymerize until a 3-5% conversion. At this point, maleic [0016] Copolymerization yields are highest (approxi- anhydride monomer is added at a constant rate to form mately 95%) when using equimolecular monomer feeds, a maleic anhydride in styrene solution. The SMA copol- and with processes that achieve good mass transfer of ymer is then extracted from the reaction mass with ben- 5 reactants (such as those achieved by polymerization in zene and ultimately separated from the solution by pre- organic solvent media). Processes that don’t use equi- cipitation with methanol. molecular monomer feeds induce a high value of con- [0013] Disadvantages with these bulk polymerization version only for the monomer which is present in the least methods include a) incomplete conversion of monomers amount. Klumperman, B. et al. Polymer 1993, 34, to copolymer due to increasing impedance of diffusion 10 1032-1037; Klumperman, B. Macromolecules, 1994, 27, of the reactants to reaction centers because of increasing 6100-6101; Klumperman, B. et al. Eur. Polym. J. 1994, reaction mass viscosity; b) purification to remove non- 30, 955-960. reacted monomer is difficult and realized by dissolution [0017] The most difficult aspect of purifying SMA co- into specific solvents (such as acetone or benzene), fol- polymers is removal of unreacted styrene because it is lowed by precipitation, extraction with alcohols or water, 15 an organic compound liquid, insoluble in water, but sol- and drying; c) generation of large amounts of reaction uble in organic solvents with high boiling points that make heat risking explosion; d) handling of reaction mass is it difficult to dry, even in high vacuum. Boundy, R. H. difficult; and e) purification solids after precipitation by "Styrene, its polymers, Copolymers and Derivatives," Re- extraction is neither cost effective nor ecologically friend- inhold Publishing Corporation, New York, 1952, pp. ly. 20 860-865. [0014] Cutter, L. A. in US Pat. No. 4,145,375 presents [0018] Unreacted maleic anhydride can be removed a process for copolymerizing styrene and maleic anhy- by simple hydrolysis with water to form maleic acid which dride which involves a sequence of operations in which has a high solubility in water (greater than 4.4 x 10 5 ppm maleic anhydride is first gradually admixed with styrene (wt) at 25°C; Yaws C.L.
Recommended publications
  • Maleic Anhydride ______
    MALEIC ANHYDRIDE ______________________________________________________________________________ _______________ Method no.: 86 Matrix: Air Target concentration: 0.25 ppm (1 mg/m3) Procedure: Samples are collected by drawing air through glass fiber filters coated with 2 mg of 3,4- dimethoxybenzylamine (veratrylamine). Samples are extracted with 90:10 (v/v) acetonitrile/dimethylsulfoxide and analyzed by HPLC using a UV detector. Recommended air volume and sampling rate: 60 L at 0.5 L/min Reliable quantitation limit: 8.3 ppb (33 µg/m3) Standard error of estimate at the target concentration: 8.86% (Section 4.7.) Special requirement: Submit the samples for analysis as soon as possible after sampling. If delay is unavoidable, store the samples in a refrigerator. Store samples in a refrigerator upon receipt at the laboratory. Status of method: Evaluated method. This method has been subjected to the established evaluation procedures of the Organic Methods Evaluation Branch. Date: December 1990 C h e m i s t : Yihlin Chan Organic Methods Evaluation Branch OSHA Analytical Laboratory Salt Lake City, Utah 1. General Discussion 1.1. Background 1.1.1. History In OSHA Method 25 (Ref. 5.1.), maleic anhydride is collected and derivatized on p-anisidine-coated XAD-2 tubes. An untreated XAD-2 tube is connected in series to trap the p-anisidine that is partly leached from the first tube during sampling. In trying to develop sampling and analytical methods for a series of anhydrides (acetic, maleic, phthalic, and trimellitic), derivatizing agents other than p-anisidine were investigated to obviate the use of the second tube. 1-(2-Pyridyl)piperazine, the agent used in earlier methods for a series of isocyanates (Refs.
    [Show full text]
  • 469 Subpart D—Exemptions from Tolerances
    Environmental Protection Agency § 180.1001 oxo-1,2,3-benzotriazin-3(4H)-ylmethyl] (1-methylethyl) benzeneacetate in or phosphorodithioate in soybean oil re- on the following raw agricultural com- sulting from application of the insecti- modities: cide to the raw agricultural commodity soybeans. Commodity Parts per million (2) The following tolerances are es- Eggs, whole ................................... 0.03 tablished for residues of the insecticide Lettuce, head ................................. 5.0 O,O- dimethyl S-[4-oxo-1,2,3- Poultry, fat ...................................... 0.3 Poultry, meat .................................. 0.03 benzotriazin-3(4H)-ylmethyl] Poultry, mbyp (except liver) ........... 0.3 phosphorodithioate in the indicated Poultry, liver ................................... 0.03 commodities when used for the feed of Sorghum, fodder ............................ 10.0 Sorghum, forage ............................ 10.0 cattle, goats, and sheep. Such residues Sorghum, grain .............................. 5.0 may be present therein only as a result Sugarbeet, pulp ............................. 2.5 of the application of the insecticide to Sugarbeet, root .............................. 0.5 the growing agricultural crop. Sugarbeet, top ............................... 5.0 (b) Section 18 emergency exemptions. Commodity Parts per million [Reserved] Citrus pulp, dried ............................................... 5 (c) Tolerances with regional registra- Sugarcane bagasse ........................................... 1.5 tions.
    [Show full text]
  • Xyfluor Chemical Compatibility Guide
    456456 Xyfluor® Chemical Compatibility Xyfluor® is a proprietary, highly fluorinated elastomer. The oxygen in the polymer backbone provides outstanding low-temperature capabilities - far better than FKM or FFKM elastomers. The polymer provides improved resistance to many harsh chemicals that can attack the hydrogen in FKM elastomers. The chemical resistance of Xyfluor® approaches but is not equivalent to FFKM elastomers. A = Swell < 10% after exposure. Suitable. B = Swell > 10% & < 20% after exposure. Generally suitable. C = Swell >20% & < 40% after exposure. May be suitable in some situations. D = Swell > 40% after exposure. Not suitable. N = Insufficient data. Test: Full immersion, Room Temperature, 3 days The information contained herein is believed to be reliable, but no representation, guarantees or warranties of any kind are made to its accuracy or suitability for any purpose. Full-scale testing and end-product performance are the responsibility of the user. CHEMICAL RATING CHEMICAL RATING acetaldehyde A amomnium phosphate A acetic acid, ammonium stearate A glacial A ammonium sulfate A hot A ammonium thiocyanate A 5% A amyl acetate A/B acetic anhydride A amyl alcohol A acetone A amyl nitrate A acetone cyanohydrin A aniline A acetyl chloride A aniline hydrochloride A acetylene gas A anti-freeze, alcohol or glycol based A acrylonitrile A aqua regia N adipic acid A argon gas A alcohol, denatured A arsenic acid A alkyl benzene A ash slurry A alkyl-arylsulphonic acid A asphalt A alumina trihydrate N barium chloride A aluminum acetate
    [Show full text]
  • 6.5 Phthalic Anhydride
    6.5 Phthalic Anhydride 6.5.1 General1 Phthalic anhydride (PAN) production in the United States in 1972 was 0.9 billion pounds per year; this total is estimated to increase to 2.2 billion pounds per year by 1985. Of the current production, 50 percent is used for plasticizers, 25 percent for alkyd resins, 20 percent for unsaturated polyester resins, and 5 percent for miscellaneous and exports. PAN is produced by catalytic oxidation of either orthoxylene or naphthalene. Since naphthalene is a higher-priced feedstock and has a lower feed utilization (about 1.0 lb PAN/lb o-xylene versus 0.97 lb PAN/lb naphthalene), future production growth is predicted to utilize o-xylene. Because emission factors are intended for future as well as present application, this report will focus mainly on PAN production utilizing o-xylene as the main feedstock. The processes for producing PAN by o-xylene or naphthalene are the same except for reactors, catalyst handling, and recovery facilities required for fluid bed reactors. In PAN production using o-xylene as the basic feedstock, filtered air is preheated, compressed, and mixed with vaporized o-xylene and fed into the fixed-bed tubular reactors. The reactors contain the catalyst, vanadium pentoxide, and are operated at 650 to 725EF (340 to 385EC). Small amounts of sulfur dioxide are added to the reactor feed to maintain catalyst activity. Exothermic heat is removed by a molten salt bath circulated around the reactor tubes and transferred to a steam generation system. Naphthalene-based feedstock is made up of vaporized naphthalene and compressed air.
    [Show full text]
  • Partial Oxidation of N-Pentane Over Vanadium Phosphorus Oxide Supported on Hydroxyapatites
    RESEARCH ARTICLE S. Singh, 1 S. Afr. J. Chem., 2016, 69, 1–8, <http://journals.sabinet.co.za/sajchem/>. Partial Oxidation of n-Pentane over Vanadium Phosphorus Oxide supported on Hydroxyapatites Sooboo Singh School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4000, South Africa. E-mail: [email protected] Received 14 August 2015, revised 13 November 2015, accepted 20 November 2015. ABSTRACT The selective oxidation of n-pentane to value-added products, maleic anhydride or phthallic anhydride by vanadium phosphorus oxide loaded on hydroxyapatites as catalysts and oxygen as oxidant was investigated. Hydroxyapatite (HAp) and cobalt- hydroxyapatite (Co-HAp) were prepared by the co-precipitation method and VPO with varying weight percentages (2.5–15.0 %) were loaded on the hydroxyapatite supports by the wet impregnation technique. The catalyst materials were characterized by surface area measurements, elemental analysis, powder X-ray diffraction (XRD), infrared spectroscopy (IR) and temperature- programmed reduction (TPR). VPO is present in two phases, viz.(VO)2P2O7 and VOPO4. With increase in the VPO loading on the hydroxyapatites, the (VO)2P2O7 phase also increased. From catalytic results, a conversion of 75 % of n-pentane and selectivity towards maleic anhydride, about 50 % and phthalic anhydride, about 25 %, were consistently achieved with loadings of 5.0 and 7.5 wt. % VPO at 360 °C for GHSVs of 1900 and 2300 h–1. Under optimum conditions, product yields of up to 40 % maleic anhydride and 20 % phthalic anhydride were obtained. It is proposed that the products formed through the diene intermediate. KEYWORDS Selective oxidation, n-pentane, vanadium phosphorus oxide, hydroxyapatite, maleic anhydride, phthalic anhydride.
    [Show full text]
  • Preparation, Characterization, and Crystallization of Naphthalene-Labeled Polypropylene
    Polymer Journal, Vol. 32, No. 12, pp 995~993 (2000) Preparation, Characterization, and Crystallization of Naphthalene-Labeled Polypropylene Jun YANG, t Guangxin CHEN, Wanjun LIU, and Jingjiang LIU State Key Laboratory of Poymer Physics and Chemistry, Changchun Institute ofApplied Chemistry, Chinese Academy ofSciences, Changchun 130022, People's Republic of China (Received April 10, 2000; Accepted August 18, 2000) ABSTRACT: Naphthalene-labeled polypropylene (PP) was prepared by melt reaction of maleic anhydride-grafted­ polypropylene (PP-g-MA) with 1-aminonaphthalene in a Barabender mixer chamber. The structure of the product was analyzed with fourier transform infrared (FT-IR), ultraviolet (UV) and fluorescence. The results showed that naphthyl groups grafted onto the PP molecular chains through the imide bonds formed between MA and 1-aminonaphthalene. 4 The content of the chromophores was 1.8 X 10 ·· mo! g - i measured by elemental analysis. Isothermal crystallization be­ havior was studied by differential scanning calorimeter (DSC). Labeled PP had a higher crystallization rate than PP-g­ MA. Wide-angle X-Ray diffraction (WAXD) analysis revealed that labeled PP had higher crystallinity than PP-g-MA. KEY WORDS Melt Reaction I Excimer Fluorescence/ Polypropylene/Naphthalene/ Excimer formation has been widely used to study poly­ DSC analysis of isothermal crystallization revealed that mer physics and processing. This fluorescence quench­ labeled PP has a higher crystallization rate than PP-g­ ing can give information about miscibility of polymer MA as well as a higher crystallinity measured by blends, 1 residual strains in polymer materials,2 chain WAXD. To our knowledge, labeling fluorescent chromo­ folding,3 distribution of functional groups grafted onto a phores to a polymer in melt instead of in solution is polymer backbone,4 chain interactions,5 and conforma­ scarcely reported.
    [Show full text]
  • Maleic Anhydride 1 Maleic Anhydride
    Maleic anhydride 1 Maleic anhydride Maleic anhydride[1] Identifiers [2] CAS number 108-31-6 [3] PubChem 7923 [4] ChemSpider 7635 [5] UNII V5877ZJZ25 [6] EC-number 203-571-6 [7] ChEBI CHEBI:474859 [8] ChEMBL CHEMBL374159 RTECS number UE5950000 [9] Jmol-3D images Image 1 Properties Molecular formula C H O 4 2 3 Molar mass 98.06 g/mol Appearance White crystals Density 1.48 g/cm3 Melting point 52.8 °C (127.0 °F; 325.9 K) Boiling point 202 °C (396 °F; 475 K) Solubility in water Reacts Hazards Maleic anhydride 2 [10] MSDS MSDS at J. T. Baker EU classification Corrosive (C) R-phrases R22, R34, R42/43 S-phrases (S2), S22, S26, S36/37/39, S45 NFPA 704 Flash point 102 °C (216 °F; 375 K) Related compounds Related acid anhydrides Succinic anhydride Related compounds Maleic acid Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa) [11] (verify) (what is: / ?) Infobox references Maleic anhydride is an organic compound with the formula C H (CO) O. It is the acid anhydride of maleic acid. it 2 2 2 is a colourless or white solid with an acrid odour. It is produced industrially on a large scale for applications in coatings and polymers. Production Maleic anhydride was traditionally produced by the oxidation of benzene or other aromatic compounds. As of 2006, only a few smaller plants continue to use benzene. Instead, most maleic anhydride plants is produced by vapor-phase oxidation of n-butane. The overall process converts the methyl groups to carboxylate and dehydrogenates the backbone.
    [Show full text]
  • Evaluation of Commercially Available Styrene-Co-Maleic Acid Polymers For
    European Polymer Journal 114 (2019) 485–500 Contents lists available at ScienceDirect European Polymer Journal journal homepage: www.elsevier.com/locate/europolj Evaluation of commercially available styrene-co-maleic acid polymers for T the extraction of membrane proteins from spinach chloroplast thylakoids ⁎ Olena Korotycha,b, , Jyotirmoy Mondala, Kerim M. Gattás-Asfurac, Jessica Hendricksa, ⁎ Barry D. Brucea,d, a Department of Biochemistry, and Cellular, and Molecular Biology, University of Tennessee at Knoxville, 1311 Cumberland Avenue, Knoxville, TN 37996-1939, United States b Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611-6131, United States c Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611-6131, United States d Department of Microbiology, University of Tennessee at Knoxville, 1311 Cumberland Avenue, Knoxville, TN 37996-1937, United States ARTICLE INFO ABSTRACT Keywords: Solubilization of membrane proteins by poly(styrene-co-maleic acid) salts (pSMA-S) has significant potential for styrene-co-maleic acid lipid particle (SMALP) membrane protein studies. This approach provides an opportunity to overcome many disadvantages associated styrene-maleic acid (SMA) copolymer with a traditional detergent-based technique including protein denaturation and displacement of boundary lipids poly(styrene-co-maleic acid) salt (pSMA-S) which may offer both structural and functional stability to membrane proteins. Thylakoid membranes (TMs) membrane protein from photosynthetic organisms are well studied protein-rich membranes that host several multi-subunit protein thylakoid complexes associated with oxygenic photosynthesis. These protein complexes are important for applied pho- solubilization efficacy tosynthesis and by being extracted and purified they can be used in the near future for direct energy conversion.
    [Show full text]
  • Production of Maleic Anhydride
    Production of Maleic Anhydride Background Maleic anhydride is a versatile chemical intermediate used to make unsaturated polyester resins, lube oil additives, alkyd resins, and a variety of other products. In 1995, global production of maleic anhydride was estimated at 1.8 billion pounds, with an estimated value of $700 million. Over the last five years, world consumption has increased at an average annual rate of 5.8%, with the fastest growth occurring in Asia, where it is used as an intermediate for production of 1,4-butanediol [1]. The goal of this project is to design a grass roots facility that is capable of producing 40 million pounds of maleic anhydride per year from n-butane. Process Description Figure 1 shows a PFD for the overall process. Pure butane, Stream 2, and compressed air, Stream 3, are mixed and fed to R-101, an adiabatic reactor, where butane reacts with oxygen to form maleic anhydride. The reaction is exothermic, therefore, one could consider either a fluidized bed reactor or a packed bed reactor with heat removal to stay close to isothermal. The reactor effluent is cooled and sent to T-101, a packed bed absorber, where it is contacted with water, Stream 7, to remove the light gases and all of the maleic anhydride reacts to form maleic acid. The vapor effluent, which consists of non-condensables, Stream 8, must be sent to an after-burner to remove any carbon monoxide prior to venting to the atmosphere. This is not shown here. The liquid effluent, Stream 9, is then cooled and flashed at 101 kPa and 120°C in V-101.
    [Show full text]
  • 6.5 Phthalic Anhydride
    6.5 Phthalic Anhydride 6.5.1 General1 Phthalic anhydride (PAN) production in the United States in 1972 was 0.9 billion pounds per year; this total is estimated to increase to 2.2 billion pounds per year by 1985. Of the current production, 50 percent is used for plasticizers, 25 percent for alkyd resins, 20 percent for unsaturated polyester resins, and 5 percent for miscellaneous and exports. PAN is produced by catalytic oxidation of either orthoxylene or naphthalene. Since naphthalene is a higher-priced feedstock and has a lower feed utilization (about 1.0 lb PAN/lb o-xylene versus 0.97 lb PAN/lb naphthalene), future production growth is predicted to utilize o-xylene. Because emission factors are intended for future as well as present application, this report will focus mainly on PAN production utilizing o-xylene as the main feedstock. The processes for producing PAN by o-xylene or naphthalene are the same except for reactors, catalyst handling, and recovery facilities required for fluid bed reactors. In PAN production using o-xylene as the basic feedstock, filtered air is preheated, compressed, and mixed with vaporized o-xylene and fed into the fixed-bed tubular reactors. The reactors contain the catalyst, vanadium pentoxide, and are operated at 650 to 725EF (340 to 385EC). Small amounts of sulfur dioxide are added to the reactor feed to maintain catalyst activity. Exothermic heat is removed by a molten salt bath circulated around the reactor tubes and transferred to a steam generation system. Naphthalene-based feedstock is made up of vaporized naphthalene and compressed air.
    [Show full text]
  • 3.2 N-Butane to Maleic Anhydride
    Alma Mater Studiorum – Università di Bologna DOTTORATO DI RICERCA IN Chimica Ciclo XXVII Settore Concorsuale di afferenza: 03/C2 Settore Scientifico disciplinare: CHIM/04 THE SYNTHESIS OF MALEIC ANHYDRIDE: STUDY OF A NEW PROCESS AND IMPROVEMENT OF THE INDUSTRIAL CATALYST Presentata da: Giulia Pavarelli Coordinatore Dottorato Relatore Prof. Aldo Roda prof. Fabrizio Cavani Esame finale anno 2015 Summary Summary 1 Aim of work ..............................................................................5 2 Introduction ...............................................................................7 2.1 Maleic anhydride .............................................................................. 7 2.2 Maleic anhydride production .......................................................... 10 2.3 Commercial Maleic Anhydride Technologies ............................... 13 2.3.1 Fixed bed .................................................................................. 14 2.3.2 Fluidized bed ............................................................................ 15 2.3.3 Transported bed ........................................................................ 16 2.4 Vanadyl pyrophosphate catalyst ..................................................... 17 2.4.1 Synthesis of the precursor VOHPO4·0.5H2O........................... 18 2.4.2 Thermal treatment of the precursor VOHPO4·0.5H2O: mechanism of transformation of VHP to VPP ..................................... 20 2.4.3 Activation of (VO)2P2O7 catalyst ............................................
    [Show full text]
  • Styrene-Maleic Anhydride and Styrene-Maleimide Based Copolymers As Building Blocks in Microencapsulation Procedures
    STYRENE-MALEIC ANHYDRIDE AND STYRENE-MALEIMIDE BASED COPOLYMERS AS BUILDING BLOCKS IN MICROENCAPSULATION PROCEDURES By ANNA SHULKIN, M.Sc. A Thesis Submitted to the School of Graduate Studies In Partial Fulfillment of the Requirements For the Degree Doctor of Philosophy in Chemistry McMaster University © Copyright by Anna Shulkin, May 2002 PREFORMED POLYMERS AS BUILDING BLOCKS IN MICROENCAPSULATIONS DOCTOR OF PHILOSOPHY (2002) McMaster University (Chemistry) Hamilton, Ontario TITLE: Styrene-Maleic Anhydride and Styrene-Ma1eimide Based Copolymers as Building Blocks in Microencapsulation Procedures AUTHOR: Anna Shu1kin, M. Sc. (Bar-Han University) SUPERVISOR: Professor H. D. H. Stover NUMBER OF PAGES: (xxv, 198) ii Abstract This thesis addresses the formation and properties of capsule walls formed from new types of wall-former materials such as styrene-maleic anhydride and styrene­ maleimide based preformed hydrophobic polymers. During the course of this study two new methods of encapsulation were developed: interfacial encapsulation based on the cross-linking reaction between oil-soluble styrene-maleic anhydride (SMA) copolymer and a water-soluble polyamine, or alternatively the hydrolysis reaction of tert­ butyl styrene-maleic anhydride copolymers to produce non-cross-linked microcapsules, and photoinduced phase-separation encapsulation. The internal morphologies of the produced SMA microcapsules were found to depend primarily upon polymer/core-solvent interactions and rate of amine addition. Thus, the transition from matrix structures to hollow particles was observed with increasing volume fraction of hydrophobic non-solvent, dodecyl acetate, or alternatively by slowing the rate of polyamine addition. The effect of polymer loading, type of polymer and polyamine, and molecular weight of the preformed polymer on the observed morphologies was also investigated.
    [Show full text]