Evaluation of Commercially Available Styrene-Co-Maleic Acid Polymers For
European Polymer Journal 114 (2019) 485–500 Contents lists available at ScienceDirect European Polymer Journal journal homepage: www.elsevier.com/locate/europolj Evaluation of commercially available styrene-co-maleic acid polymers for T the extraction of membrane proteins from spinach chloroplast thylakoids ⁎ Olena Korotycha,b, , Jyotirmoy Mondala, Kerim M. Gattás-Asfurac, Jessica Hendricksa, ⁎ Barry D. Brucea,d, a Department of Biochemistry, and Cellular, and Molecular Biology, University of Tennessee at Knoxville, 1311 Cumberland Avenue, Knoxville, TN 37996-1939, United States b Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611-6131, United States c Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611-6131, United States d Department of Microbiology, University of Tennessee at Knoxville, 1311 Cumberland Avenue, Knoxville, TN 37996-1937, United States ARTICLE INFO ABSTRACT Keywords: Solubilization of membrane proteins by poly(styrene-co-maleic acid) salts (pSMA-S) has significant potential for styrene-co-maleic acid lipid particle (SMALP) membrane protein studies. This approach provides an opportunity to overcome many disadvantages associated styrene-maleic acid (SMA) copolymer with a traditional detergent-based technique including protein denaturation and displacement of boundary lipids poly(styrene-co-maleic acid) salt (pSMA-S) which may offer both structural and functional stability to membrane proteins. Thylakoid membranes (TMs) membrane protein from photosynthetic organisms are well studied protein-rich membranes that host several multi-subunit protein thylakoid complexes associated with oxygenic photosynthesis. These protein complexes are important for applied pho- solubilization efficacy tosynthesis and by being extracted and purified they can be used in the near future for direct energy conversion.
[Show full text]