Trivalent Praseodymium-Doped Yttrium Lithium Fluoride Visible Lasers Pumped by Gallium Nitride Series Laser Diodes

Total Page:16

File Type:pdf, Size:1020Kb

Trivalent Praseodymium-Doped Yttrium Lithium Fluoride Visible Lasers Pumped by Gallium Nitride Series Laser Diodes Trivalent Praseodymium-doped Yttrium Lithium Fluoride Visible Lasers Pumped by Gallium Nitride Series Laser Diodes August 2018 Hiroki Tanaka Abstract This study deals with the demonstration of continuous-wave and passively Q-switched trivalent praseodymium (Pr3+)-doped solid-state lasers directly pumped by indium gallium nitride (InGaN)-based blue laser diodes 3+ (LDs). As the laser gain medium, Pr -doped yttrium lithium fluoride (LiYF4, YLF) was adopted in this study. Recent progress of InGaN-based blue LDs are remarkable, and nowadays, an output power of 5 W is available around 450 nm from a 9-mm CAN single emitter device. By utilizing the high power blue LDs, the pump power was increased up to 20 W, the highest pump level for visible Pr3+ lasers ever reported, and continuous output powers of 6.7 W and 3.7 W were obtained from Pr3+:YLF lasers operated at 640 and 607 nm, respectively. The onset of strong negative thermal lensing for π-polarization inhibited the scaling at 523 nm. The highest efficiency of 640-nm diode-pumped Pr3+:YLF laser was achieved by directly exciting the 479-nm line by a cyan-blue LD providing 1-W pump power. The highest slope efficiency of 62.9% was obtained. Using a fiber-coupled pump module provided >20 W pump power at 445 nm, the pump-limited scaling of an end-pumped Pr3+:YLF laser at 640 nm was demonstrated. The laser performance exhibited an onset of strong thermally-induced diffraction loss when high transmission output couplers were used. Using an output coupler of 1.1% transmission, an output power of 3.4 W was obtained with a slope efficiency of 25%. For passive Q-switching of Pr3+ visible lasers, a variety of transition-metal-doped crystals were experimentally investigated as saturable absorbers. tetravalent chromium- and divalent cobalt-doped oxide crystals were mainly 4+ 2+ focused on. Cr in Y3Al5O12 (YAG) and Mg2SiO4 (forsterite), and Co in MgAl2O4 spinel, LiGa5O8, and Gd3Ga5O12 (GGG) exhibited attractive saturable absorption for passive Q-switching. Passive Q-switching 3+ 4+ 2+ 2+ of diode-pumped Pr :YLF visible lasers were achieved using Cr :YAG, Co :MgAl2O4, and Co :GGG saturable absorbers. The proposed rate equation model showed a good agreement with the experimental results. The numerical models allow to optimize laser parameters and to examine the possibility to obtain Q-switching of other gain media. Frequency doubling and tripling were applied to continuous-wave and passive Q-switching Pr3+:YLF lasers at 640 nm to generate ultraviolet. Intracavity frequency doubling of Pr3+:YLF laser is a promising approach to efficiently generate continuous-wave ultraviolet laser. Using a lithium triborate3 (LiB O5, LBO), a 320-nm output power of 880 mW was obtained at an absorbed pump power of 5.9 W. Intracavity frequency doubling was also applied to a passive Q-switching Pr3+:YLF laser, and 50-ns ultraviolet pulses were successfully generated with a repetition rate of 52-kHz. The numerical model for passive Q-switching were extended for frequency doubling. 213-nm deep ultraviolet pulse generation as third harmonic of visible laser was realized for the first time. The use of visibly oscillating frond end enables to simplify the conversion processes. The 213-nm deep ultraviolet has conventionally been achieved as fifth harmonic of 1-µm lasers, and requires three conversion steps, while 640-nm laser can reach 213 nm by only two steps of conversion. In the proof-of-concept demonstration, 213-nm deep UV pulses were successfully generated from an actively Q-switched Pr3+:YLF laser which only provided a pulse energy of 56 µJ. i Acknowledgements The work presented in this thesis was carried out in the group of Prof. Dr. Fumihiko Kannari at the Graduate School of Science and Technology in Keio University. I am highly grateful to him for giving me the opportunity to conduct this research in his group. He kindly accepted me in his group from my master course even though I had never learnt the laser physics and engineering before. He was always available to discuss on experiments and results although he was always busy. Through the discussions with him, I could learn a lot from him not only things related to my research. I would like to thank Prof. Dr. Hiroyuki Sasada, Prof. Dr. Hiroyuki Tsuda, and Prof. Dr. Takasumi Tanabe for being the vice chairs in my dissertation committee, and for carefully reviewing and giving advices and corrections to improve this thesis. I would like to thank Dr. Kenichi Hirosawa, a previous research associate in the group of Prof. Kannari, for his knowledge on laser engineering. I could learn a lot of know-how through experiments with him. A part of work presented in this thesis was conducted from August 2017 to January 2018 in the Center for Laser Materials of Leibniz Institute for Crystal Growth (Institut für Kristallzuchtung, IKZ) in Berlin. I would like to express my appreciation to Dr. Christian Kränkel, the group leader of the Center for Laser Materials, for accepting me as a visiting student of his group. Although he was always busy, he occasionally gave me lectures on physics in laser materials and was always available for discussing on results and ideas. I also thank Elena Castellano-Hernández, a Ph.D. student in the Center for Laser Materials in IKZ, for helping me when I got difficulties in the institute. I appreciate her effortto excavate old crystals at the Institute of Laser-Physics in Hamburg University to be investigated. I would also like to thank Maxim Demesh, a visiting student at IKZ from Beralusian National Technical University, for allowing me to use a Cr:forsterite crystal for my measurements. I would like to acknowledge to all the members of Kannari laboratory. Particularly, Ryosuke Kariyama, Kodai Iijima and Shogo Fujita, who had been working together for praseodymium lasers, were huge help for completing this thesis. I would also like to thank Aruto Hosaka, a Ph.D. student in the lab., for his insightful advices on my experiments and results. His comments at meetings were always helpful. I am grateful to Nichia Corp. for providing high-power GaN blue laser diodes. These were indispensable devices to accomplish all the laser experiments presented in this thesis. I would like to thank all the technical staffs in the manufacturing center of Keio University. I frequently used the facility to make mechanical pieces to be integrated in laser setups. The facility and support of the technical staffs were important to carry out experiments. I would like to express my appreciation to the Program of Leading Graduate Schools of Keio University for “Science for Development of Super Mature Society” for its financial support for travels expenses of international ii conferences, for article publication fees, and for the six-month research visit at the Leibniz Institute for Crystal Growth in Berlin. Help and supports of the project professors and staffs are appreciated. I would like to acknowledge the colleagues participating as research assistants in the Program of Leading Graduate Schools of Keio University. Although we have completely different research backgrounds, discussion with them were always exciting, and allowed me to keep my motivation for research. I would like to express my sincere gratitude to Yuri Yamamoto for her mental support allowing me to complete this Ph.D. study. Finally, I express my gratitude to my family for allowing me to continue my whole student life. iii List of Abbreviations AOM Acousto-Optic Modulator AR Anti-Reflection b b BBO -Barium Borate ( -BaB2O4) BRF Birefringent Filter BS Beam Splitter BYF BY3F10 CLBO Cesium Lithium Borate (CsLiB6O10) CMOS Complimentary Metal-Oxide-Semiconductor CW Continuous-Wave DM Dichroic Mirror DUV Deep Ultraviolet ESA Excited State Absorption FWHM Full Width at Half Maximum GaN Gallium Nitride GAP Gallium Aluminum Perovskite (GaAlO3) GGG Gadolinium Gallium Garnet (Gd3Ga5O12) GSA Ground State Absorption HR High Reflectivity KYF KY3F10 LASER Light Amplification by Stimulated Emission of Radiation LBO Lithium Triborate (LiB3O5) LD Laser Diode LED Light Emitting Diode LGO LiGa5O8 LLF Lutetium Lithium Fluoride (LiLuF4) LuAP Lutetium Aluminum Perovskite (LuAlO3) MALO MgAl2O4 MOPA Master Oscillator Power Amplifier NA Numerical Aperture NIR Near-Infrared OC Output Coupler OPO Optical Parametric Oscillator OPSL Optically Pumped Semiconductor Laser PBS Polarizing Beam Splitter PD Photo-Detector PID Proportional-Integral-Differential PM Plane Mirror PMT Photomultiplier Tube iv QD Quantum Dot QPM Quasi Phase Matching RE Rare Earth RF Radio Frequency SH Second Harmonic SHG Second Harmonic Generation SRA Strontium Hexaaluminate (SrAl12O19) UV Ultraviolet VECSEL Vertical External Cavity Surface Emitting Laser YAG Yttrium Aluminum Garnet (Y3Al5O12) YAP Yttrium Aluminum Perovskite (YAlO3) YLF Yttrium Lithium Fluoride (LiYF4) ZBLAN ZrF4-BaF2-LaF3-AlF3-NaF v Physical Constants Speed of light c = 2:998 × 108 m=s Planck constant h = 6:626 × 10−34 J · s Reduced Planck constant ~ = h=2π −12 −1 Electric constant "0 = 8:854 × 10 F · m Elementary charge e = 1:602 × 10−19 C −31 Electron mass me = 9:109 × 10 kg −23 −1 Boltzmann constant kB = 1:380 × 10 J · K vi List of Symbols A21 Einstein’s A coefficient A~ A-element of ABCD matrix B Racah B parameter B12;B21 Einstein’s B coefficient B~ B-element of ABCD matrix C Racah C parameter C~ C-element of ABCD matrix Dq Crystal field strength D~ D-element of ABCD matrix E Energy E0 Young modulus F Fluence of laser pulse f Focal length fp Ratio of excited state absorption cross section
Recommended publications
  • Light and Color
    Light and Color Light is a complex phenomenon that is classically explained with a simple model based on rays and wavefronts. The Molecular Expressions Microscopy Primer explores many of the aspects of visible light starting with an introduction to electromagnetic radiation and continuing through to human vision and the perception of color. Each section outlined below is an independent treatise on a limited aspect of light and color. We hope you enjoy your visit and find the answers to your questions. Electromagnetic Radiation - Visible light is a complex phenomenon that is classically explained with a simple model based on propagating rays and wavefronts, a concept first proposed in the late 1600s by Dutch physicist Christiaan Huygens. Electromagnetic radiation, the larger family of wave-like phenomena to which visible light belongs (also known as radiant energy ), is the primary vehicle transporting energy through the vast reaches of the universe. The mechanisms by which visible light is emitted or absorbed by substances, and how it predictably reacts under varying conditions as it travels through space and the atmosphere, form the basis of the existence of color in our universe. Light: Particle or a Wave? - Many distinguished scientists have attempted to explain how electromagnetic radiation can display what has now been termed duality , or both particle-like and wave-like behavior. At times light behaves as if composed of particles, and at other times as a continuous wave. This complementary, or dual, role for the properties of light can be employed to describe all of the known characteristics that have been observed experimentally, ranging from refraction, reflection, interference, and diffraction, to the results with polarized light and the photoelectric effect.
    [Show full text]
  • Clinical Optics Elkington
    Document file:///C|/download/www.netlibrary.com/nlreader/nlreader.dll@bookid=51924&Filename=cover.html9/30/2006 2:34:05 PM Document Page i Clinical Optics file:///C|/download/www.netlibrary.com/nlreader/nlreader.dll@bookid=51924&Filename=Page_I.html9/30/2006 2:34:28 PM Document Page ii Other books of interest Clinical Orthoptics Fiona Rowe 0 632 04274 5 Diagnosis and Management of Ocular Mobility Disorders Second Edition A. Anson & H. Davis 0 632 04798 4 Ocular Anatomy and Physiology T. Saude 0 632 03599 4 Clinical Anatomy of the Eye R.S. Snell & M.A. Lemp 0 632 04344 X Orthoptic Assessment and Management Second Edition D. Stidwill 0 632 05012 8 file:///C|/download/www.netlibrary.com/nlreader/nlreader.dll@bookid=51924&Filename=Page_II.html9/30/2006 2:34:29 PM Document Page iii Clinical Optics Third Edition Andrew R. Elkington CBE, MA, FRCS, FRCOphth Consultant Ophthalmologist Southampton Eye Unit Southampton General Hospital. Professor of Ophthalmology University of Southampton. President, Royal College of Ophthalmologists (1994–1997). Helena J. Frank BMedSci, FRCS, FRCOphth Consultant Ophthalmologist Royal Victoria Hospital Bournemouth. Michael J. Greaney MD, FRCSEd, FRCOphth Specialist Registrar Southampton Eye Unit Southampton General Hospital. file:///C|/download/www.netlibrary.com/nlreader/nlreader.dll@bookid=51924&Filename=Page_III.html (1 of 2)9/30/2006 2:34:30 PM Document Page iv © 1984, 1991, 1999 by Blackwell Science Ltd Editorial Offices: Osney Mead, Oxford OX2 0EL 25 John Street, London WC1N 2BL 23 Ainslie Place, Edinburgh EH3 6AJ 350 Main Street, Malden MA 02148 5018, USA 54 University Street, Carlton Victoria 3053, Australia 10, rue Casimir Delavigne 75006 Paris, France Other Editorial Offices: Blackwell Wissenschafts-Verlag GmbH Kurfürstendamm 57 10707 Berlin, Germany Blackwell Science KK MG Kodenmacho Building 7–10 Kodenmacho Nihombashi Chuo-ku, Tokyo 104, Japan The right of the Author to be identified as the Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.
    [Show full text]
  • Generation of Green Second Harmonic Radiation in LBO, Bibo, KTP, And
    Generation of green second harmonic radiation in LBO, BiBO, KTP, and PPLN crystals using passively Q-switched sub-nanosecond microchip laser by Kostyantyn Sukhoy A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements for the degree of Master of Science Department of Electrical and Computer Engineering University of Manitoba Winnipeg, Manitoba Canada Copyright © 2011 by Kostyantyn Sukhoy Author’s Declaration I hereby declare that I am the sole author of this thesis. This is not a finalized copy of my thesis. This is a nearly finalized draft of my thesis submitted to my examining committee for their consideration. I understand that an electronic copy of the finalized draft of my thesis may be made electronically available to the public. II Abstract A sub-nanosecond green laser source has big demand in such fields like spectroscopy, micromachining, fluorescence imaging, and laser displays. Most often green light is produced by frequency doubling of pulsed laser sources based on Nd3+-ion or Yb3+-ion doped gain media that oscillate in the near-IR range. For creating compact and relatively small source of green light suitable for broad type of applications a passively Q-switched Nd:YAG microchip laser (Teem Photonics) operating at 1064 nm with 6.9 kHz repetition rate was chosen. It delivers 560 ps long pulses with 10 µJ energy, corresponding to an average output power of 69 mW. Crystals of BiBO, KTP, LBO, and PPLN were chosen for frequency doubling. Main goal of this work was to study the characteristics of these crystals under similar experimental conditions and to select the most efficient one for this task.
    [Show full text]
  • Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: a Review
    resources Review Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review Laurence Kavanagh * , Jerome Keohane, Guiomar Garcia Cabellos, Andrew Lloyd and John Cleary EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny, Road, Co., R93-V960 Carlow, Ireland; [email protected] (J.K.); [email protected] (G.G.C.); [email protected] (A.L.); [email protected] (J.C.) * Correspondence: [email protected] Received: 28 July 2018; Accepted: 11 September 2018; Published: 17 September 2018 Abstract: Lithium is a key component in green energy storage technologies and is rapidly becoming a metal of crucial importance to the European Union. The different industrial uses of lithium are discussed in this review along with a compilation of the locations of the main geological sources of lithium. An emphasis is placed on lithium’s use in lithium ion batteries and their use in the electric vehicle industry. The electric vehicle market is driving new demand for lithium resources. The expected scale-up in this sector will put pressure on current lithium supplies. The European Union has a burgeoning demand for lithium and is the second largest consumer of lithium resources. Currently, only 1–2% of worldwide lithium is produced in the European Union (Portugal). There are several lithium mineralisations scattered across Europe, the majority of which are currently undergoing mining feasibility studies. The increasing cost of lithium is driving a new global mining boom and should see many of Europe’s mineralisation’s becoming economic. The information given in this paper is a source of contextual information that can be used to support the European Union’s drive towards a low carbon economy and to develop the field of research.
    [Show full text]
  • X-Ray Spectroscopic Characterization of Laser–Produced Hot Dense Plasmas
    THESIS presented at École Polytechnique to obtain the degree of DOCTOR OF ECOLE POLYTECHNIQUE specialization : physics by Nikolaos Kontogiannopoulos Title of the thesis : X-ray spectroscopic characterization of laser–produced hot dense plasmas defended publicly in 6 December 2007 in front of the jury composed of : Jean–Claude Gauthier President Anne Sylvie Gary Referee Jean–Francois Wyart Referee Patrick Audebert Victor Malka Claude Chenais–Popovics Invited Michel Poirier Research Director Acknowledgements This thesis was realized in the laboratory LULI (“Laboratoire pour l’Utilisation des Lasers Intenses”) of Ecole Polytechnique between 2004 and 2007. I would like to thank Francois Amiranoff director of laboratory for providing all the technical and material support and resources for implementing this work. I thank all the members of the jury. Especially Anne Sylvie Gary and Jean–Francois Wyart who carried out the demanding work of being referees. Also, Jean–Claude Gauthier, Patrick Audebert and Victor Malka, who accepted to judge this work. This work had the particular advantage to be accomplished, having as directors Claude Chenais–Popovics and Michel Poirier, which I gratefully thanks for their continuous help in every different problem that I found during my thesis. My gratitude to the members of research group that I had the pleasure to work with : Serena Bastiani–Ceccoti, Jean–Raphael Marques, and Olivier Peurysse. Special thanks to Thomas Blenski the theoretical work of which was a invaluable support in accomplishing my thesis. My grateful thanks to Frederic Thais. Apart from physics, its humor and its positive view gave to me a real reference to continue over the difficulties that I found during this work.
    [Show full text]
  • A Contribution to the Development of Wide Band-Gap Nonlinear Optical and Laser Materials
    AN ABSTRACT OF THE THESIS OF Jennifer L. Stone-Sundberg for the degree of Doctor of Philosophy in Chemistry presented on December 3, 2001. Title: A Contribution to the Development of Wide Band-Gap Nonlinear Optical and Laser Materials Redacted for privacy Abstract approved: Douglas A. Keszler The primary focus of this work is on examining structure-property relationships of interest for high-power nonlinear optical and laser crystals. An intuitive and simply illustrated method for assessing the nonlinear optical potentialofstructurallycharacterizednoncentrosymmetricmaterialsis introduced.This method is applied to materials including common quartz and tourmaline and then extended to synthetic materials including borates, silicates, aluminates, and phosphates. Particularly,the contributions of symmetric tetrahedral and triangular anionic groups are inspected.It is shown that both types of groups significantly contribute to the optical frequency converting abilities of noncentrosymmetric crystals.In this study, several known materials are included as well as several new materials.The roles of the orientation, composition, and packing density of these anionic groups are also discussed. The structures and optical properties of the known materials BPO4, NaAlO2, LaCa4O(B03)3, and tourmaline; the new compounds Lao.8Y0.2Sc3(B03)4 and Ba2B10O17; and the laser host Sr3Y075Yb025(B03)3 are described. Copyright © December 3, 2001 by Jennifer Stone-Sundberg A Contribution to the Development of Wide Band-Gap Nonlinear Optical and Laser Materials by Jennifer L. Stone-Sundberg A THESIS Submitted to Oregon State University In partial fulfillment of The requirements for the Degree of Doctor of Philosophy Completed December 3, 2001 Commencement June 2002 Doctor of Philosophy dissertation of Jennifer L.
    [Show full text]
  • Review of the Rare Earth Elements and Lithium Mining Sectors
    CHEMINFO Review of the Rare Earth Elements and Lithium Mining Sectors FINAL REPORT March 2012 Prepared for: Environment Canada Mining Section Mining and Processing Division Prepared By: Cheminfo Services Inc. 30 Centurian Drive, Suite 205 Markham, Ontario L3R 8B8 Phone: (905) 944-1160 Fax: (905) 944-1175 CHEMINFO Table of Contents 1. EXECUTIVE SUMMARY .....................................................................................1 1.1 INTRODUCTION ....................................................................................................1 1.2 RARE EARTHS .....................................................................................................1 1.2.1 Presence in Canada ...................................................................................5 1.3 LITHIUM ..............................................................................................................5 1.3.1 Presence in Canada ...................................................................................7 1.4 RARE EARTHS AND LITHIUM MINING AND PROCESSING METHODS .....................7 1.4.1 Rare Earth Mining and Processing Methods.............................................7 1.4.2 Lithium Mining and Processing Methods..................................................8 1.5 SUBSTANCES OF ENVIRONMENTAL CONCERN IN RARE EARTH AND LITHIUM MINING AND PROCESSING ...............................................................................................8 1.5.1 Substances of Concern for Rare Earths.....................................................9
    [Show full text]
  • Design and Commission of the Driven Laser System for Advanced Superconducting Test Accelerator∗
    Proceedings of FEL2012, Nara, Japan MOPD56 DESIGN AND COMMISSION OF THE DRIVEN LASER SYSTEM FOR ADVANCED SUPERCONDUCTING TEST ACCELERATOR∗ J. Ruan, J. Santucci, M.Church, Fermi lab, PO Box 500, Batavia, IL 60510, USA Abstract &ŝďĞƌĂƐĞĚƐĞĞĚůĂƐĞƌ ϲϬŵtWƵůƐĞƉŝĐŬĞƌ ϭŵt WƌĞͲĂŵƉ ϭϬŵt DĂŝŶĨŝďĞƌ Currently an advanced superconducting test accelerator ϭ͘ϯ',njƐĞĞĚůĂƐĞƌ ;ϴϭ͘ϮϱD,njͿ ;ϴϭ͘ϮϱD,njͿ ĂŵƉůŝĨŝĞƌ (ASTA) is being built at Fermilab. The accelerator will ϱϬϬŵt consist of an photo electron gun, injector, ILC-type cry- omodules, multiple downstream beam lines for testing cry- ^ŝŶŐůĞƉĂƐƐ Εϯµ: ^ŝŶŐůĞƉĂƐƐ Εϭµ: DW ϲŶ: WƵůƐĞWŝĐŬĞƌ omodules and carrying advanced accelerator research. In ĂŵƉůŝĨŝĞƌ;džϯͿ ƉƵůƐĞ ĂŵƉůŝĨŝĞƌ;džϯͿ ƉƵůƐĞ ĂŵƉůŝĨŝĞƌ ƉƵůƐĞ ;ϯ D,nj Ϳ this paper we will describe the design and commission- Εϵµ: ƉƵůƐĞ ing of the drive laser system for this facility. It consists ^ŝŶŐůĞƉĂƐƐƉŽǁĞƌ ΕϭϴϬµ: ŽƵďůŝŶŐĐƌLJƐƚĂů ΕϴϬµ: YƵĂĚƌŝƉůŝŶŐ ĐƌLJƐƚĂů ΕϮϱµ: of a fiber laser system properly locked to the master fre- ĂŵƉůŝĨŝĞƌ;džϮϬͿ ƉƵůƐĞ ϭϬϱϰͲхϱϮϳŶŵ ƉƵůƐĞ ϱϮϳͲхϮϲϯŶŵ ƉƵůƐĞ quency, a multi-pass amplifier, several power amplifier and &ƌĞĞƐƉĂĐĞĚĂŵƉůŝĨŝĞƌĐŚĂŝŶĂŶĚĨƌĞƋƵĞŶĐLJĐŽŶǀĞƌƐŝŽŶƐƚĂŐĞ final wavelength conversion stage. We will also report the initial characterization of the fiber laser system and the cur- Figure 1: Designed flow chart of the whole photocathode rent commissioning status of the laser system. laser system. The number is the expected power level at each stage.The top box is the fiber based seed laser stage INTRODUCTION and the bottom box is solid state based amplifier chain. A future superconducting RF accelerator test facility is currently being commisioned at Fermilab in the existing pump to the end-pumped active medium has several prac- New Muon Lab (NML) building.
    [Show full text]
  • Spectroscopy and Excitation Dynamics of the Trivalent Lanthanides Tm and Ho in Liyf4
    /N- 5- NASA Contractor Report 4689 Spectroscopy and Excitation Dynamics of the Trivalent Lanthanides Tm 3+ and Ho 3+ in LiYF4 Brian M. Walsh Grant NAG1-955 NASA Contractor Report 4689 Spectroscopy and Excitation Dynamics of the Trivalent Lanthanides Tm 3+ and Ho 3+ in LiYF4 Brian M. Walsh Boston College Chestnut Hill, Massachusetts National Aeronautics and Space Administration Prepared for Langley Research Center Langley Research Center Hampton, Virginia 23681-0001 under Grant NAGi -955 August 1995 Printed copies available from the following: NASA Center for Aerospace Information National Technical Information Service (NTIS) 800 EIkridge Landing Road 5285 Port Royal Road Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171 (301) 621-0390 (703) 487-4650 Dedication This thesis is dedicated to the memory of Clayton H. Bair Spectroscopy and Excitation Dynamics of the Trivalent Lanthanides Tm3+ and H03+ in LiYF4 by Brian M. Walsh Thesis Advisor: Dr. Baldassare Di Bartolo Abstract A detailed study of the spectroscopy and excitation dynamics of the trivalent lanthanides Tm3+ and Ho3+ in Yttrium Lithium Fluoride, LiYF4 (YLF), has been done. YLF is a very versatile laser host that has been used to produce laser action at many different wavelengths when doped with trivalent lanthanides. Since the early 1970's YLF has been the subject of many studies, the main goal of which has been to produce long wavelength lasers in the eye safe 2pm region. This study concentrates on a presentation and analysis of the spectroscopic features, and the temporal evolution of excitation energy in YLF crystals doped with Tm3+ and Ho3+ ions.
    [Show full text]
  • Nonlinear Optical Frequency Conversion for Lasers in Space
    Nonlinear Optical Frequency Conversion for Lasers in Space Diplomarbeit vorgelegt von Arne Potreck am Institut für Astronomie und Astrophysik, Eberhard-Karls Universität Tübingen und Institut für Technische Physik, Stuttgart Deutsches Zentrum für Luft- und Raumfahrt e.V. Juni 2014 F¨urAndrea Sophie Contents Deutsche Zusammenfassung 1 1 Introduction 3 1.1 Nonlinear frequency conversion onboard ADM-Aeolus . 4 1.2 Investigation of frequency conversion . 4 2 Background of the Diploma thesis 7 2.1 The ADM-Aeolus Mission . 7 2.1.1 Science . 9 2.1.2 The active instrument Aladin . 11 2.2 Nonlinear optical frequency conversion . 13 2.2.1 Introduction . 13 2.2.2 Theory of harmonic generation . 16 3 Choosing nonlinear crystals for the ADM-Aeolus Mission 23 3.1 Qualification of optics for space applications . 23 3.1.1 Bismuth Triborate . 25 3.1.2 Potassium Titanyl Phosphate . 26 3.1.3 Lithium Triborate . 27 4 Frequency conversion experiments 31 4.1 Experimental set-up . 31 4.1.1 Second harmonic generation . 32 4.1.2 Infrared-Lasersystem . 34 4.1.3 Mounting of the crystals . 35 4.1.4 Monitoring of the crystal's temperature . 36 4.1.5 Wavefront measurements . 37 4.1.6 Third harmonic generation . 43 4.1.7 Long term operation . 45 4.2 Results . 47 4.2.1 Qualification of the mount design . 47 4.2.2 Second harmonic generation . 50 v Contents 4.2.3 Third harmonic generation . 53 4.2.4 Longterm operation . 54 5 Laser calorimetric absorption measurements 59 5.1 Metrology of the absorption coefficient .
    [Show full text]
  • Spectral Analysis and Growth of Nd:YLF Crystal
    Asia-Pacific Energy Equipment Engineering Research Conference (AP3ER 2015) Spectral Analysis and Growth of Nd:YLF Crystal Dongyang Zheng, Jialin Xu, Wang Liu, Ximeng Cheng, Weizhao Jin, Chun Li, Fanming Zeng, Hai Lin, Jinghe Liu Changchun University of Science and Technology Changchun , 130022, China e-mail: [email protected] Abstract- communications and other fields.We used a dry method to Nd: YLF polycrystalline raw materials were synthezed by a optimize the process parameters of raw materials ratio and dry method and Nd:YLF laser crystal was grown by IF indu synthesize YLF polycrystalline material. And we used ction Cz method.Its process parameters were these:a pulling medium frequency induction heating pulling method to rate of 1 mm/h, the crystal rotation speed of 15 r/min and 10- 2 grow the Nd:YLF laser crystal, research the spectral Pa degree of vacuum.The absorption and fluorescence spect characteristics of the crystal and analyzed the crystal ra of crystal indicates that the Nd:YLF crystal has strong sbs doped ions in energy level transition. orptions around 808nm at room temperature which belong t o commercial laser diode band and under the 808nm diode la II. EXPERIMENT ser pumped, the fluorescence emission peaks of Nd:YLF crys 4 4 Since the growth of Nd:YLF crystal demanding purity tal are located at 1050and 1300nm ( F3/2→ I11/2) have stronge r emission. raw materials, the chemical reagents LiF, YF3 and NdF3 were selected by the purity of 99.999%.The Keywords-Nd: YLF; Crystal growth; spectral analysis polycrystalline materials were prepared by the dry method.
    [Show full text]
  • Few-Cycle Pulses Amplification for Attosecond Science Applications: Modeling and Experiments
    FEW-CYCLE PULSES AMPLIFICATION FOR ATTOSECOND SCIENCE APPLICATIONS: MODELING AND EXPERIMENTS by MICHAËL HEMMER M.S. Engineering Ecole Nationale Supérieure de Physique de Marseille, 2005 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Optics and Photonics at the University of Central Florida Orlando, Florida Spring Term 2011 Major professor: Martin Richardson © 2011 Michaël Hemmer ii ABSTRACT The emergence of mode-locked oscillators providing pulses with durations as short as a few electric-field cycles in the near infra-red has paved the way toward electric-field sensitive physics experiments. In addition, the control of the relative phase between the carrier and the pulse envelope, developed in the early 2000’s and rewarded by a Nobel price in 2005, now provides unprecedented control over the pulse behaviour. The amplification of such pulses to the millijoule level has been an on-going task in a few world-class laboratories and has triggered the dawn of attoscience, the science of events happening on an attosecond timescale. This work describes the theoretical aspects, modeling and experimental implementation of HERACLES, the Laser Plasma Laboratory optical parametric chirped pulse amplifier (OPCPA) designed to deliver amplified carrier-envelope phase stabilized 8-fs pulses with energy beyond 1 mJ at repetition rates up to 10 kHz at 800 nm central wavelength. The design of the hybrid fiber/solid-state amplifier line delivering 85-ps pulses with energy up to 10 mJ at repetition rates in the multi-kHz regime tailored for pumping the optical parametric amplifier stages is presented.
    [Show full text]