The Evolution of Sexually Selected Traits

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Sexually Selected Traits The Evolution of Sexually Selected Traits Comparative Morphology and Chemistry of the Cephalic Glands of Beewolves (Hymenoptera, Crabronidae) Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Biologie und Vorklinische Medizin der Universität Regensburg vorgelegt von Katharina Weiß aus Amberg im Jahr 2017 The Evolution of Sexually Selected Traits Comparative Morphology and Chemistry of the Cephalic Glands of Beewolves (Hymenoptera, Crabronidae) Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Biologie und Vorklinische Medizin der Universität Regensburg vorgelegt von Katharina Weiß aus Amberg im Jahr 2017 Das Promotionsgesuch wurde eingereicht am: Die Arbeit wurde angeleitet von: Prof Dr. Erhard Strohm Unterschrift: I can entertain no doubt, after the most deliberate study and dispassionate judgment of which I am capable, that the view which most naturalists entertain, and which I formerly entertained - namely, that each species has been independently created - is erroneous. Charles Darwin, The Origin of Species (1859) Intelligent life on a planet comes of age when it first works out the reaso for its o eistee. […] Liig orgaiss had eisted o earth, without ever knowing why, for over three thousand million years before the truth finally dawned on one of them. His name was Charles Darwin. Richard Dawkins, The Selfish Gene (1976) CONTENTS List of Publications ............................................................................................................ 4 CHAPTER 1: General Introduction .................................................................................. 5 1.1 Sexual selection and the evolution of interspecific variation ...................................... 6 1.1.1 Dari’s uresoled prole: The asetr of seual seletio ..................... 6 1.1.2 The evolution of secondary sexual characters ..................................................... 7 1.1.3 Sexual selection and interspecific variation ......................................................... 8 1.2 Chemical communication and mate choice ................................................................. 8 1.2.1 Pheromones in mate choice ................................................................................ 8 1.2.2 The origin of pheromone diversity ...................................................................... 9 1.3 Exocrine glands in Hymenoptera ................................................................................. 10 1.3.1 The morphology of exocrine glands ..................................................................... 10 1.3.2 Exocrine glands and antimicrobial defense ......................................................... 11 1.3.3 Exocrine glands and sexual communication ........................................................ 12 1.4 The Philanthinae .......................................................................................................... 13 1.4.1 Systematics and geographic distribution ............................................................. 13 1.4.2 General biology.................................................................................................... 14 1.5 Outline of the thesis .................................................................................................... 17 1.6 References ................................................................................................................... 19 CHAPTER 2: Comparative Morphology of the Postpharyngeal Gland in the Philanthinae (Hymenoptera, Crabronidae) and the Evolution of an Antimicrobial Brood Protection Mechanism ...................................................................................... 34 2.1 Summery ..................................................................................................................... 34 2.2 Introduction ................................................................................................................. 35 2.3 Methods ...................................................................................................................... 37 2.3.1 Prey embalming in Philanthus gibbosus .............................................................. 37 2.3.2 Comparative morphology of head glands ............................................................ 38 2.4 Results ......................................................................................................................... 41 2.4.1 Prey embalming in Philanthus gibbosus .............................................................. 41 2.4.2 Comparative morphology of head glands ............................................................ 43 2.5 Discussion .................................................................................................................... 50 2.5.1 Prey embalming in Philanthus gibbosus .............................................................. 50 2.5.2 Comparative morphology of head glands ............................................................ 51 2.5.3 Evolution of prey embalming and complex PPGs ................................................ 53 2.5.4 Conclusion ........................................................................................................... 55 2.6 Supplementary material .............................................................................................. 56 2.6.1 Prey embalming in Philanthus gibbosus .............................................................. 56 2.6.2 Comparative morphology of head glands: Coding of character states ................ 59 2.6.3 Supplementary table and figure .......................................................................... 63 2.7 References ................................................................................................................... 66 CHAPTER 3: Evolution and phylogenetic Distribution of antimicrobial Brood Defense in Beewolves (Hymenoptera, Crabronidae): Evidence from Postpharyngeal Gland Chemistry ......................................................................................................................... 71 3.1 Summery ..................................................................................................................... 71 3.2 Introduction ................................................................................................................. 72 3.3 Methods ...................................................................................................................... 74 3.3.1 Specimens ............................................................................................................ 74 3.3.2 Chemical analysis ................................................................................................. 74 3.3.3 Data analysis ........................................................................................................ 77 3.4 Results ......................................................................................................................... 79 3.5 Discussion .................................................................................................................... 84 3.6 References ................................................................................................................... 90 CHAPTER 4: Does the Morphology of the Postpharyngeal Gland reflect potential functional Changes in Bee- vs. Beetle-hunting Species of the Digger Wasp Genus Cerceris (Hymenoptera, Crabronidae)? ...................................................................... 95 4.1 Summery ..................................................................................................................... 95 4.2 Introduction ................................................................................................................. 96 4.3 Methods ...................................................................................................................... 98 4.3.1 Specimens ............................................................................................................ 98 4.3.2 Histology .............................................................................................................. 98 4.3.3 3D-Reconstruction ............................................................................................... 99 4.3.4 Comparison of gland volumes ............................................................................. 99 4.4 Results ......................................................................................................................... 100 4.4.1 Overall morphology of head glands ..................................................................... 100 4.4.2 Light-microscopy ................................................................................................. 101 4.4.3 Comparison of gland volumes ............................................................................. 103 4.5 Discussion .................................................................................................................... 104 4.6 Conclusion ................................................................................................................... 107 4.7 References ................................................................................................................... 108 CHAPTER 5: Sexual Selection and the Evolution of Male Pheromone Glands in philanthine Wasps (Hymenoptera, Crabronidae) ......................................................
Recommended publications
  • Molecular Mechanisms Underlying Cockroach Host Manipulation by a Parasitoid Wasp
    Molecular Mechanisms Underlying Cockroach Host Manipulation by a Parasitoid Wasp Thesis submitted in partial fulfillment of the requirements for the degree of “DOCTOR OF PHILOSOPHY” by Maayan Kaiser Paltin Submitted to the Senate of Ben-Gurion University of the Negev June 2018 Beer-Sheva Molecular Mechanisms Underlying Cockroach Host Manipulation by a Parasitoid Wasp Thesis submitted in partial fulfillment of the requirements for the degree of “DOCTOR OF PHILOSOPHY” by Maayan Kaiser Paltin Submitted to the Senate of Ben-Gurion University of the Negev Approved by the advisor Approved by the Dean of the Kreitman School of Advanced Graduate Studies June 2018 Beer-Sheva This work was carried out under the supervision of Prof. Frederic Libersat In the Department of Life Sciences Faculty of Natural Sciences Research-Student's Affidavit when Submitting the Doctoral Thesis for Judgment I, Maayan Kaiser Paltin, whose signature appears below, hereby declare that: ___ I have written this Thesis by myself, except for the help and guidance offered by my Thesis Advisors. ___ The scientific materials included in this Thesis are products of my own research, culled from the period during which I was a research student. ___ This Thesis incorporates research materials produced in cooperation with others, excluding the technical help commonly received during experimental work. Therefore, I am attaching another affidavit stating the contributions made by myself and the other participants in this research, which has been approved by them and submitted with their approval. Date: _________________31/12/18 Student's name: ________________Maayan Kaiser Paltin Signature:______________ Affidavit stating the contributions to present work: The venom proteomics which is described at chapter 2, was performed in collaboration with Prof.
    [Show full text]
  • 106Th Annual Meeting of the German Zoological Society Abstracts
    September 13–16, 2013 106th Annual Meeting of the German Zoological Society Ludwig-Maximilians-Universität München Geschwister-Scholl-Platz 1, 80539 Munich, Germany Abstracts ISBN 978-3-00-043583-6 1 munich Information Content Local Organizers: Abstracts Prof. Dr. Benedikt Grothe, LMU Munich Satellite Symposium I – Neuroethology .......................................... 4 Prof. Dr. Oliver Behrend, MCN-LMU Munich Satellite Symposium II – Perspectives in Animal Physiology .... 33 Satellite Symposium III – 3D EM .......................................................... 59 Conference Office Behavioral Biology ................................................................................... 83 event lab. GmbH Dufourstraße 15 Developmental Biology ......................................................................... 135 D-04107 Leipzig Ecology ......................................................................................................... 148 Germany Evolutionary Biology ............................................................................... 174 www.eventlab.org Morphology................................................................................................ 223 Neurobiology ............................................................................................. 272 Physiology ................................................................................................... 376 ISBN 978-3-00-043583-6 Zoological Systematics ........................................................................... 416
    [Show full text]
  • Hymenoptera: Philanthinae) Hunting for Different Prey Types
    C. R. Biologies 335 (2012) 279–291 Contents lists available at SciVerse ScienceDirect Comptes Rendus Biologies ww w.sciencedirect.com Animal biology and pathology/Biologie et pathologie animales Antennal sensillar equipment in closely related predatory wasp species (Hymenoptera: Philanthinae) hunting for different prey types E´quipement sensoriel des antennes dans des espe`ces proches de gueˆpes pre´dateurs (Hymenoptera: Philanthinae), qui chassent des proies diffe´rentes a, b a Carlo Polidori *, Alberto Jorge Garcı´a , Jose´ L. Nieves-Aldrey a Departamento de Biodiversidad y Biologı´a Evolutiva, Museo Nacional de Ciencias Naturales, C/Jose´ Gutie´rrez Abascal 2, 28006 Madrid, Spain b Laboratorio de Microscopia, Museo Nacional de Ciencias Naturales, C/Jose´ Gutie´rrez Abascal 2, 28006 Madrid, Spain A R T I C L E I N F O A B S T R A C T Article history: Despite its potential value in phylogenetic and ecological studies, the morphology of Received 17 November 2011 antennal sensilla has rarely been compared quantitatively within the Apoidea. Here, Accepted after revision 19 March 2012 through a scanning electron microscopy analysis, we provide an inventory of different Available online 24 April 2012 types of antennal sensilla and compare their morphology across 10 species of predatory wasps (Crabronidae: Philanthinae) including species that hunt exclusively either on Keywords: beetles or on bees to feed their larvae. A sensilla-free area was found on the apical Hymenoptera flagellomer of all but two species, and its shape and size appear to be useful for separating Crabronidae Philanthini from Cercerini within the subfamily. A total of eight types of sensilla (sensilla Sensilla size placoidea, sensilla basiconica, two types of pit organs, sensilla coelocapitula and three Comparative morphology types of sensilla trichoidea) were found in all species, and an additional rarer type Prey selection (grooved peg sensilla) was found only in three bee-hunting species and for first time in the genus Cerceris.
    [Show full text]
  • Hymenoptera: Pompilidae)
    The Great Lakes Entomologist Volume 20 Number 2 - Summer 1987 Number 2 - Summer Article 5 1987 June 1987 Nest and Prey of Ageniella (Leucophrus) Fulgifrons (Hymenoptera: Pompilidae) Frank E. Kurczewski S.U.N.Y. College of Environmental Science and Forestry Edmund J. Kurczewski Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Kurczewski, Frank E. and Kurczewski, Edmund J. 1987. "Nest and Prey of Ageniella (Leucophrus) Fulgifrons (Hymenoptera: Pompilidae)," The Great Lakes Entomologist, vol 20 (2) Available at: https://scholar.valpo.edu/tgle/vol20/iss2/5 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Kurczewski and Kurczewski: Nest and Prey of <i>Ageniella (Leucophrus) Fulgifrons</i> (Hymen 1987 THE GREAT LAKES ENTOMOLOGIST 75 NEST AND PREY OF AGENIELLA (LEUCOPHRUS) FULGIFRONS (HYMENOPTERA: POMPILIDAE) Frank E. Kurczewski' and Edmund J. KurczewskF ABSTRACT Information on the habitat, nest-site, hunting, prey transport, closure, burrow structure, and prey of Ageniella (Leucophrus) fulg!frons is presented. Components of the nesting behaviors of other species of Ageniella are examined and compared with those of A. fulgifrons. Little is known about the nesting behaviors of the Nearctic species of Ageniella (Evans and Yoshimoto 1962). Prey records have been published for several of the species (Krombein 1979), but the first nests of Nearctic members of this genus were described only rather recently (A.
    [Show full text]
  • Ants As Prey for the Endemic and Endangered Spanish Tiger Beetle Cephalota Dulcinea (Coleoptera: Carabidae) Carlo Polidori A*, Paula C
    Annales de la Société entomologique de France (N.S.), 2020 https://doi.org/10.1080/00379271.2020.1791252 Ants as prey for the endemic and endangered Spanish tiger beetle Cephalota dulcinea (Coleoptera: Carabidae) Carlo Polidori a*, Paula C. Rodríguez-Flores b,c & Mario García-París b aInstituto de Ciencias Ambientales (ICAM), Universidad de Castilla-La Mancha, Avenida Carlos III, S/n, 45071, Toledo, Spain; bDepartamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, 28006, Spain; cCentre d’Estudis Avançats de Blanes (CEAB-CSIC), C. d’Accés Cala Sant Francesc, 14, 17300, Blanes, Spain (Accepté le 29 juin 2020) Summary. Among the insects inhabiting endorheic, temporary and highly saline small lakes of central Spain during dry periods, tiger beetles (Coleoptera: Carabidae: Cicindelinae) form particularly rich assemblages including unique endemic species. Cephalota dulcinea López, De la Rosa & Baena, 2006 is an endemic, regionally protected species that occurs only in saline marshes in Castilla-La Mancha (Central Spain). Here, we report that C. dulcinea suffers potential risks associated with counter-attacks by ants (Hymenoptera: Formicidae), while using them as prey at one of these marshes. Through mark–recapture methods, we estimated the population size of C. dulcinea at the study marsh as of 1352 individuals, with a sex ratio slightly biased towards males. Evident signs of ant defensive attack by the seed-harvesting ant Messor barbarus (Forel, 1905) were detected in 14% of marked individuals, sometimes with cut ant heads still grasped with their mandibles to the beetle body parts. Ant injuries have been more frequently recorded at the end of adult C.
    [Show full text]
  • This Work Is Licensed Under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License
    This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. EVOLUTIONARY ASPECTS OF GEOGRAPHICAL VARIATION IN COLOR AND OF PREY IN THE BEEWOLF SPECIES PHILANTHUS ALBOPILOSUS CRESSON Gerald J. Hilchie Department of Entomology University of Alberta Edmonton, Alberta, Canada Quaestiones Entomologicae T6G2E3 18:91-126 1982 ABSTRACT Prey selection and aspects of life history were studied in a population of Philanthus albopilosus Cresson, near Empress Alberta, and compared with published data reported about other populations. A disproportionately large number of sphecid wasps was used as prey in comparison with prey used by more southern populations. Females did not hunt at flowers, but appeared to hunt suitable apocritans found around the Empress dune, or captured male apocritans which pursued them as potential mates. False burrows appeared to function as visual aid in orientation to the nest. Relative absence of other species of Philanthus implies specialization of wasps of P. albopilosus for life on sand dunes. Differences in prey selected, nest structure and colour of adults suggest geographic isolation and differentiation during Pleistocene glaciations. The Nebraska Sand Hill region is proposed as a northern refugium where differentiation of the dark race, P. albopilosus, occurred during the Wisconsinian glacial stage. A southern refugium in the American Southwest is proposed for the ancestral stock of the pale race, P. albopilosus manuelito a newly described subspecies (type locality Monahans, Ward County, Texas).
    [Show full text]
  • Observations of Cerceris Fumipennis (Hymenoptera: Crabronidae) Phenology and Variation in Its Buprestid Prey in Louisiana C
    Observations of Cerceris fumipennis (Hymenoptera: Crabronidae) phenology and variation in its buprestid prey in Louisiana C. Wood Johnson1,*, Ted C. MacRae2, Cavell Brownie3, Warren Virgets III4, and Jeremy D. Allison5 Abstract The non-native emerald ash borer,Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), threatens extirpation of susceptible ash (Fraxinus species; Lamiales: Oleaceae) in North America. Cerceris fumipennis Say (Hymenoptera: Crabronidae), a ground-nesting wasp that preys on Buprestidae in eastern North America, is used as a survey tool for the emerald ash borer in the northeastern U.S. and Canada. The recent detection of the emerald ash borer in Louisiana provides an opportunity to complement trapping surveys with the use of C. fumipennis, but knowledge of C. fumipennis in the region is lacking. From 2011 to 2014, we conducted searches at 155 sites and located C. fumipennis aggregations at 25% (n = 39) of these sites; 36% (n = 14) of these were located at forest harvests, an aggregation habitat not previously reported in the literature. We collected 1,559 buprestids representing 35 species from 2 aggregations in Louisiana between May and Aug 2012. Buprestid collections at these aggregations and observations of C. fumipennis activity at a 3rd aggregation indicated the number of buprestid species and individuals collected declined significantly from May to Jul. We collected significantly moreAgrilus difficilis Gory (Coleoptera: Buprestidae) in the afternoon than morning hours and observed similar diurnal patterns among other buprestid species during the early weeks following aggregation activation. We also discuss evidence suggesting a portion of the regional C. fumipennis population is bivoltine. AlthoughA. planipennis was not collected during this study, our results suggest that C.
    [Show full text]
  • Halloween Horrors: the Dark Side of Mother Nature by Francie Mcgowan
    Halloween Horrors: The Dark Side of Mother Nature by Francie McGowan As Halloween approaches, monsters, bats and bugs will loom in the darkness of a moonless night in October to scare us. Mother Nature also has some macabre critters of the bug and insect variety that are every bit as eerie and unsettling as any Halloween costume or horror film. [Spoiler alert: do no read this article while eating or you may get sick.] To start with a seemingly pious bug, the praying mantis (order Mantodea), is actually a deadly eater and mater. With her long forelegs she captures her prey and eats them alive while holding them in a death grip. While she is mating, she bites the head of the male clean off and continues chomping the rest of the poor victim until he dies. She then saunters off well fed and fertile. The Japanese giant hornet (Vespa mandarinia japonica) is so big that, in flight, it resembles a small bird. It stings or sprays its victims - including humans - with a flesh-dissolving acid. It usually aims for the eyes. Embedded in this acid is a pheromone that attracts the other hornets in the hive to the victim and they attack en masse. Thirty of these hornets can attack a honey bee hive and kill thirty thousand of them in a matter of a few hours. Another creature to throw the most stalwart person into a state of arachnophobia (fear of spiders) or entomophobia (fear of insects) is the cockroach wasp (Ampulex compressa). They live in Asia and in Africa.
    [Show full text]
  • Children: Especially at Risk with Pests
    MAY/JUNE 2014 We accept Pest Mastercard & Visa Patrol CALL TOLL FREE 1-888-744-8989 News Children: Especially at Risk with Pests hile pests affect everyone's health Children are also exposed to fewer germs than Wif they are not controlled, some of especially at risk to pest- adults, their reactions are often us are especially vulnerable to pest stings, induced allergies. Studies more severe. The disease pest transmitted diseases, and pest- have shown that in some organisms pests carry cause caused allergies. This includes our inner city areas, cock- everything from Lyme disease, children, as well as the elderly, and our roaches are the #1 cause of encephalitis and hantavirus, to pets. This article will focus on our children. allergies among children. common diarrhea. Children and infants are especially at An even bigger problem Children, because of their risk to pests because they are always is that children are more small size, are also more at risk moving around and exploring, often close susceptible to the many diseases pests from stinging insects—everything from to the ground or on the ground, causing carry. Dr. Jerome Goddard, a medical bees, hornets, and yellowjackets, to fire them to naturally have more encounters entomologist and author of The ants and bites from poisonous spiders. with pests. Physicians Guide to Arthropods of The same amount of venom from these Rats bite about 45,000 people Medical Importance, points out that insects in a small child can cause a much annually in this country. The vast children are more vulnerable to diseases more serious reaction than in an adult.
    [Show full text]
  • Changes in the Insect Fauna of a Deteriorating Riverine Sand Dune
    ., CHANGES IN THE INSECT FAUNA OF A DETERIORATING RIVERINE SAND DUNE COMMUNITY DURING 50 YEARS OF HUMAN EXPLOITATION J. A. Powell Department of Entomological Sciences University of California, Berkeley May , 1983 TABLE OF CONTENTS INTRODUCTION 1 HISTORY OF EXPLOITATION 4 HISTORY OF ENTOMOLOGICAL INVESTIGATIONS 7 INSECT FAUNA 10 Methods 10 ErRs s~lected for compar"ltive "lnBlysis 13 Bio1o~ica1 isl!lnd si~e 14 Inventory of sp~cies 14 Endemism 18 Extinctions 19 Species restricted to one of the two refu~e parcels 25 Possible recently colonized species 27 INSECT ASSOCIATES OF ERYSIMUM AND OENOTHERA 29 Poll i n!ltor<'l 29 Predqt,.n·s 32 SUMMARY 35 RECOm1ENDATIONS FOR RECOVERY ~4NAGEMENT 37 ACKNOWT.. EDGMENTS 42 LITERATURE CITED 44 APPENDICES 1. T'lbles 1-8 49 2. St::ttns of 15 Antioch Insects Listed in Notice of 75 Review by the U.S. Fish "l.nd Wildlife Service INTRODUCTION The sand dune formation east of Antioch, Contra Costa County, California, comprised the largest riverine dune system in California. Biogeographically, this formation was unique because it supported a northern extension of plants and animals of desert, rather than coastal, affinities. Geologists believe that the dunes were relicts of the most recent glaciation of the Sierra Nevada, probably originating 10,000 to 25,000 years ago, with the sand derived from the supratidal floodplain of the combined Sacramento and San Joaquin Rivers. The ice age climate in the area is thought to have been cold but arid. Presumably summertime winds sweeping through the Carquinez Strait across the glacial-age floodplains would have picked up the fine-grained sand and redeposited it to the east and southeast, thus creating the dune fields of eastern Contra Costa County.
    [Show full text]
  • Evolution of the Pheromone Communication in the European Beewolf Philanthus Triangulum (Hymenoptera, Crabronidae)
    3 Evolution of the Pheromone Communication System in the European Beewolf Philanthus triangulum F. (Hymenoptera: Crabronidae) Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Gudrun Herzner aus Nürnberg Würzburg 2004 4 Evolution of the Pheromone Communication System in the European Beewolf Philanthus triangulum F. (Hymenoptera: Crabronidae) Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Gudrun Herzner aus Nürnberg Würzburg 2004 5 Eingereicht am………………………………………………………………………………….. Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Ulrich Scheer Gutachter: Prof. Dr. K. Eduard Linsenmair Gutachter: PD Dr. Jürgen Gadau Tag des Promotionskolloquiums:……………………………………………………………….. Doktorurkunde ausgehändigt am:………………………………………………………………. 6 CONTENTS PUBLIKATIONSLISTE.................................................................................................................. 6 CHAPTER 1: General Introduction ......................................................................................... 7 1.1 The asymmetry of sexual selection .................................................................................. 7 1.2 The classical sexual selection models .............................................................................. 8 1.3 Choice for genetic compatibility.....................................................................................
    [Show full text]
  • Checklist of the Spheciform Wasps (Hymenoptera: Crabronidae & Sphecidae) of British Columbia
    Checklist of the Spheciform Wasps (Hymenoptera: Crabronidae & Sphecidae) of British Columbia Chris Ratzlaff Spencer Entomological Collection, Beaty Biodiversity Museum, UBC, Vancouver, BC This checklist is a modified version of: Ratzlaff, C.R. 2015. Checklist of the spheciform wasps (Hymenoptera: Crabronidae & Sphecidae) of British Columbia. Journal of the Entomological Society of British Columbia 112:19-46 (available at http://journal.entsocbc.ca/index.php/journal/article/view/894/951). Photographs for almost all species are online in the Spencer Entomological Collection gallery (http://www.biodiversity.ubc.ca/entomology/). There are nine subfamilies of spheciform wasps in recorded from British Columbia, represented by 64 genera and 280 species. The majority of these are Crabronidae, with 241 species in 55 genera and five subfamilies. Sphecidae is represented by four subfamilies, with 39 species in nine genera. The following descriptions are general summaries for each of the subfamilies and include nesting habits and provisioning information. The Subfamilies of Crabronidae Astatinae !Three genera and 16 species of astatine wasps are found in British Columbia. All species of Astata, Diploplectron, and Dryudella are groundnesting and provision their nests with heteropterans (Bohart and Menke 1976). Males of Astata and Dryudella possess holoptic eyes and are often seen perching on sticks or rocks. Bembicinae Nineteen genera and 47 species of bembicine wasps are found in British Columbia. All species are groundnesting and most prefer habitats with sand or sandy soil, hence the common name of “sand wasps”. Four genera, Bembix, Microbembex, Steniolia and Stictiella, have been recorded nesting in aggregations (Bohart and Horning, Jr. 1971; Bohart and Gillaspy 1985).
    [Show full text]