Shallow Crustal Structure of the Caldera of Axial Seamount, Juan De Fuca Ridge

Total Page:16

File Type:pdf, Size:1020Kb

Shallow Crustal Structure of the Caldera of Axial Seamount, Juan De Fuca Ridge AN ABSTRACT OF THE THESIS OF Marijke van Heeswijk for the degree of Master of Science in Geophysics presented on June 25. 1986. Title:_Shallow crustal Structure of the Caldera of Axial Seamount, Juan de Fuca Ridge Abstract approved: Redacted for privacy L. Dale Bibee An airgun refraction line along the length of the caldera of Axial Seaniount as recorded by three Ocean Bottom Seismometers has been analyzed using the tau-zeta inversion technique (Dorman and Jacobson, 1981). Five resulting velocity profiles show that the seismic velocities of the upper 1.4 km of the crust are low and similar to Mid-Atlantic Ridge upper crustal velocities. The low velocities and failure to observe shear waves are thought due to a combination of a thick section of pillow basalts and sheet flows, and a high porosity. The porosity is believed mostly due to a large fracture density. Hammond (pers. comm., 1986) has proposed the caldera is the site of overlapping spreading centers. A high fracture density in the upper crust of the caldera could be due to stresses generated in the area of overlap (Macdonald et al., 1984). No systematic variation in velocity structure along the length of the caldera could be resolved. Shallow water (about 1560 m), smooth bathymetry and the absence of sedimentsalloweddirect measurement of the surface velocities of the caldera floor. An average surface velocity of 3.05 kmls is observed. Assuming a highly simplified crustal model, this velocity translates into a minimum porosity of 30% near the surface of the caldera floor. This minimum porosity is predicted to gradually decrease to about 0% at 1.4 km depth. Upper limits on the porosity can not be found with the available information. No magma chamber has been observed to a depth of 1.4 km. A compressional wave attenuation source in the northwest corner of the caldera below a depth of 1.4 km, however, might be a small magma body or alternatively an anomalously highly fractured area. Shallow crustal Structure of the Caldera of Axial Seamount, Juan de Fuca Ridge by Marijke van Heeswijk A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Completed June 25, 1986 Commencement June 1987 I; Redacted for privacy Assistant Professor of Geophysics in charge of major Redacted for privacy Dean of Co)4ge of Oceanography Redacted for privacy Dean of Graduate Date thesis is presented June 25. 1986 Typed by researcher for Marijke van Heeswijk ACKNOWLEDGEMENTS Many people helped to see this project to completion. I especially thank Dale Bibee, for his advice, patience, and willingness to keep acting as an advisor, even while on a long deserved vacation. Without Dale and Paul O'Neil the data for this study would never have been collected; they kept unwilling OBS's working under all conditions, even if it meant many nights without sleep. I thank Bob Embley, who made sure science did get done while on board the Surveyor, inspite of numerous problems. Bob managed to keep everybody laughing, no matter what went wrong. Sue Hanneman was a great help; without Sue important details would not have been recorded or would have been lost somewhere in a big stack of papers. I also wish to thank the crew of the Surveyor. Back on terra firma discussions with Bill Menke and Randy Jacobson kept me honest and on my toes. Steve Hammond and Bob Embley were always willing to discuss the latest on Axial Seamount and generously provided maps. Randy Jacobson, Mitch Lyle, and Bill Menke read this thesis and provided helpful comments. Writing this thesis was greatly facilitated by the use of an Apple computer, which was generously donated to the geophysics students by Bill Menke. Many people made that the time at Oregon State will be a memorable one. To name a few: my officemate Bruce Dubendorff, for being a great comrade, and being as argumentative as myself, BryndIs Brandsdottir and Brandur, for their friendship and hospitality while I was trying to decide whether I lived in Newport or Corvallis, Shu-Fa Dwan, for always being so cheerful and being a good friend, Haraldur Audunsson, for his friendship and wisdom, Miguel Alvarado-Omaña, for teaching me about Mexico, Gina Frost, for reminding me how easy graduate student life is and Pordur Aras son, Pierre Doguin, Yanmck Duroy, Steve Jaumé, Michel Poujol, and Osvaldo Sanchez-Zamora for being good friends. We'll have to have a reunion some time equidistance from everybody. How about Spitsbergen? My family deserves special thanks; my parents, Ineke and Jeroen for moral supportfrom across the Atlantic and Jane and Henry from across the United States. The person I owe most of my gratitude to is Tom: without his patience and understanding this work would never have been accomplished. This research was supported by the National Oceanic and Atmospheric Administration VENTS program under contract NA-84-ABH-0030. TABLE OF CONTENTS INTRODUCTION 1 TECTONIC SEllING OF AXIAL SEAMOUNT 2 DATA ACQUISITION 13 DATA ANALYSIS 17 RESULTS 39 Inverse Model 39 Forward Model 47 DISCUSSION AND INTERPRETATION OF RESULTS 59 Petrologic interpretation of results 59 Porosity and crack density of the upper crust 63 Comparison of results with other studies 67 CONCLUSIONS 72 BIBLIOGRAPHY 74 LIST OF FIGURES Figure Page 1. Location map of the Juan de Fuca ridge and surrounding areas 3 2. Seabeam bathymetry of Axial Seamount and the northern and 8 southern Juan de Fuca ridge 3. Seabeam bathymetry of the caldera of Axial Seamount 9 4. Major morphological features in the caldera of Axial Seamount 11 5. Positions of Ocean Bottom Seismometers and airgun lines 3 and 5 14 6. Flowchart displaying all data reduction steps 18 7. Reduced record section (vertical channel) for profile 14-3N 19 8. Reduced record section (vertical channel) for profile 14-3S 21 9. Reduced record section (vertical channel) for profile 3-3N 23 10. Reduced record section (vertical channel) for profile 3-3S 25 11. Reduced record section (hydrophone channel) for profile 20-iN 27 12. Corrected and uncorrected travel time versus range for profile 30 14-3N 13. Corrected and uncorrected travel time versus range for profile 14-3 S 31 14. Corrected and uncorrected travel time versus range for profile 3-3N 32 15. Corrected and uncorrected travel time versus range for profile 3-3S 33 16. Corrected and uncorrected travel time versus range for profile 20-iN 34 17. Velocity profiles resulting from tau-zeta inversion of travel time data 40 18. Velocity gradient profiles resulting from tau-zeta inversion of travel 41 time data 19. Map showing the range extents of travel time data used in the 44 tau-zeta inversions 20. Schematic cross-section illustrating extent of redundant sampling 45 between airgun sections 3-3N, 20-iN and 14-3S 21. Projection of velocity profiles onto cross-section below airgun line 3 46 22. Three velocity models forwhichWKBJ synthetics have been generated49 23. Comparison of the data with WKBJ results generated from model 3 50 24. Comparison of the data with WKBJ results generated from model 1 52 25. Comparison of the data with WKBJ results generated from model 2 53 26. Reflectivity and WKBJ synthetic record sections for velocity model 2 56 27. Cross-section of an idealized ophiolite sequence 60 28. Transmission coefficients for P to S conversion as a function of 65 horizontal phase velocity 29. Comparison of representative velocitydepth profiles of three 69 mid-oceanic ridge systems and the results of this study SHALLOW CRUSTAL STRUCTURE OF THE CALDERA OF AXIAL SEAMOUNT, JUAN DE FUCA RIDGE INTRODUCTION In July of 1985 a seismic refraction experiment was carried out on board the Surveyor, to obtain a velocity profile for the shallow crust of the caldera of Axial Seamount. In addition, the caldera was surveyed with SEABEAM, sidescan sonar and bottom photography. All work is part of the VENTS program, an ongoing multidisciplinary program of the National Oceanic and Atmospheric Administration which aims to understand the impact of hydrothermal vents on the world's oceans. Hydrothermal vents have been observed in the caldera of Axial Seamount. This report describes the results of the seismic experiment, which was carried out to gain understanding of the structure of the crust through which hydrothermal fluids move. The seismic source was a surface towed airgun, and three Ocean Bottom Seismometers acted as receivers. One refraction line was shot along the length of the caldera and divided into five separate airgun sections. Each section was analyzed using the tau-zeta inversion method (Dorman and Jacobson, 1981), and one of the five resulting velocity profiles was constrained in more detail by synthetic modeling. Surface velocities of the caldera floor could be measured directly, because of smooth bathymetry, absence of sediments, and relatively shallow water depth (about 1560 m). An average surface velocity of 3.05 krnls was found. Seismic velocities of the caldera crust to a depth of 1.4 km were obtained; the velocities are low, presumably due to a combination of a thick section of pillow basalts and sheet flows, and a high porosity. No large magma chamber was observed to a depth of 1.4 km. The high porosity of the caldera crust is probably due to a high fracture density. Hammond (pers. comm., 1986) has proposed the caldera ofAxialSeamount is the site of overlapping spreading centers. The high fracture density in the upper crust of the caldera could be due to stresses generated in the area of overlap (Macdonald et al., 1984). Near the caldera floor surface the minimum porosity is estimated to be 30%, and it is expected to decrease to about 0% at 1.4 km depth.
Recommended publications
  • This Report Is Preliminary and Has Not Bee Reviewed for Conformity with US
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Northeast-trending subcrustal fault transects western Washington by Kenneth F. Fox, Jr.* Open-File Report 83-398 This report is preliminary and has not bee reviewed for conformity with U.S Geological Survey editorial standards and stratigraphic nomenclature. *U.S. Geological Survey 3^5 Middlefield Road Menlo Park, California 9^025 Page Table of Contents Tectonic setting......................................................... 1 Seisraicity............................................................... 4 Discussion............................................................... 4 References cited......................................................... 6 Figures Figure 1. Magnetic anomalies in the northeastern Pacific................ 8 Figure 2. Bathymetry at intersection of Columbia lineament and Blanco fracture zone................................................. 9 Figure 3. Plane vector representation of movement of Gorda plate........ 10 Figure 4. Reconstruction of Pacific-Juan de Fuca plate geometry 2 m.y. before present................................................ 11 Figure 5. Epicenters of historical earthquakes with intensity greater than V........................................................ 12 TECTONIC SETTING The north-trending magnetic anomalies of the Juan de Fuca plate are off­ set along two conspicuous northeast-trending lineaments (fig. 1), named the Columbia offset and the Destruction offset by Carlson (1981). The northeast­ ward projections of these lineaments intersect the continental area of western Washington, hence are of potential significance to the tectonics of the Pacific Northwest region. Pavoni (1966) suggested that these lineaments were left-lateral faults, and that the Columbia, 280 km in length, had 52 km of offset, and the Destruction, with a length of 370 km, had 75 km of offset. Based on Vine's (1968) correlation of the magnetic anomalies mapped in this area by Raff and Mason (1961), with the magnetic reversal time scale, Silver (1971b, p.
    [Show full text]
  • Recent Tectonics of the Blanco Ridge, Eastern Blanco Transform Fault Zone
    Marine Geophysical Researches 21: 423–450, 2000. 423 © 2000 Kluwer Academic Publishers. Printed in the Netherlands. Recent tectonics of the Blanco Ridge, eastern blanco transform fault zone Robert P. Dziak1, Christopher G. Fox2, Robert W. Embley2, John L. Nabelek3, Jochen Braunmiller3 & Randolph A. Koski4 1Cooperative Institute for Marine Resources Studies, Oregon State University, Hatfield Marine Science Center, Newport, OR 97365, USA 2National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, Hatfield Marine Science Center, Newport, OR 97365, USA 3College of Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA 4United States Geological Survey, MS999 345 Middlefield Rd, Menlo Park, CA 94025, USA Received 25 August 1998; accepted 23 May 2000 Key words: Blanco transform fault zone, earthquakes, ridge formation, submersible Abstract Bathymetric, hydro-acoustic, seismic, submersible, and gravity data are used to investigate the active tectonics of the eastern Blanco Transform Fault Zone (BTFZ). The eastern BTFZ is dominated by the ∼150 km long transform-parallel Blanco Ridge (BR) which is a right-lateral strike- slip fault bordered to the east and west by the Gorda and Cascadia Depressions. Acoustic locations, fault-parameter information, and slip vector estimates of 43 earthquakes (Mw ≥ 3:8) that occurred along the eastern BTFZ over the last 5 years reveal that the Blanco Ridge is a high-angle right-lateral strike-slip fault, with a small component of dip-slip motion, where the Juan de Fuca plate is the hanging wall relative to the Pacific plate. Furthermore, the Cascadia and Gorda basins are undergoing normal faulting with extension predominantly oblique to the transform trend.
    [Show full text]
  • Topographic Form of the Coast Ranges of the Cascadia Margin in Relation to Coastal Uplift Rates and Plate Subduction
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 99, NO. B6, PAGES 12,245-12,255, JUNE 10, 1994 Topographic form of the Coast Ranges of the Cascadia Margin in relation to coastal uplift rates and plate subduction Harvey M. Kelsey,• David C. Engebretson,'•Clifton E. Mitchell,3 and Robert L.Ticknor'• Abstract. The CoastRanges of theCascadia margin are overriding the subductedJuan de Fuca/Gordaplate. We investigatethe extent to whichthe latitudinal trend in averagetopography of the CoastRanges is a functionof the latitudinalchange in attributesrelated to the subduction process.These attributes include the variableage of the subductedslab that underlies the Coast Rangesand average vertical crustal velocities of thewestern margin of theCoast Ranges for two markedlydifferent time periods, the last 45 yearsand the last 100kyr. Thesevertical crustal velocitiesare computedfrom the resurveying of highwaybench marks and from thepresent elevationof shoreplatforms that have been uplifted in thelate Quaternary, respectively. Topographyof theCoast Ranges is in parta functionof theage and bouyancy of theunderlying subductedplate. This is evidentin the fact that the two highesttopographic elements of the CoastRanges, the Klamath Mountains and the Olympic Mountains, are underlain by youngest subductedoceanic crust. The subductedBlanco Fracture Zone in southernmostOregon is responsiblefor an age discontinuityof subductedcrust under the KlamathMountains. The northernterminus of the topographicallyhigher Klamaths is offsetto the northrelative to the positionof the underlyingBlanco
    [Show full text]
  • Rethinking Turbidite Paleoseismology Along the Cascadia Subduction Zone
    Rethinking turbidite paleoseismology along the Cascadia subduction zone Brian F. Atwater1, Bobb Carson2, Gary B. Griggs3, H. Paul Johnson4, and Marie S. Salmi4 1U.S. Geological Survey at University of Washington, Seattle, Washington 98195-1310, USA 2Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania 18015-3001, USA 3Earth & Planetary Sciences Department, University of California–Santa Cruz, Santa Cruz, California 95064, USA 4School of Oceanography, University of Washington, Seattle, Washington 98195-7940, USA ABSTRACT A 130ºW 120º A stratigraphic synthesis of dozens of deep-sea cores, most of British them overlooked in recent decades, provides new insights into deep- Southern Columbia limit of 50º Fraser R. sea turbidites as guides to earthquake and tsunami hazards along the ice sheet B Cascadia subduction zone, which extends 1100 km along the Pacific Full-length coast of North America. The synthesis shows greater variability ruptures in Holocene stratigraphy and facies off the Washington coast than Waashingtonshington was recognized a quarter century ago in a confluence test for seismic Fig. triggering of sediment gravity flows. That test compared counts of 3A Holocene turbidites upstream and downstream of a deep-sea channel Columbia R. Partial junction. Similarity in the turbidite counts among seven core sites pro- BFZ Cascadia ruptures vided evidence that turbidity currents from different submarine can- Channel Oregon yons usually reached the junction around the same time, as expected Seaward of widespread seismic triggering. The fuller synthesis, however, shows edge of distinct differences between tributaries, and these differences suggest megathrust California sediment routing for which the confluence test was not designed. The 40ºN synthesis also bears on recent estimates of Cascadia earthquake mag- PACIFIC OCEAN 19 4 10 10 nitudes and recurrence intervals.
    [Show full text]
  • Mineralogy and Chemistry
    State of Oregon Department of Geology and Mi neraf Industries 910 State Office Building 1400 SW Fifth Avenue Port1 and, Oregon 97201 OPEN-FILE REPORT 0-89-09 MINERAL DEPOSITS RECOVERED FROM NORTHERN GORDA RIDGE: MINERALOGY AND CHEMISTRY Martin R. Fi sk and Katherine J. Howard CoI1 ege of Oceanography Oregon State Uni versi ty, Corval 1 i s , Oregon 97331 Final Report for Contract No. 63-630-8803 Submi tted to: Oregon Department of Geology and Mineral Industries and the Gorda Ridge Technical Task Force Released June 1989 This report is based on results of a research progrm directed by the joint federal-state Gorda Ridge Technical Task Force, managed by the Oregon Department of Geology and Hineral Industries, and funded by the Minerals Pbnagement Service, U.S. Deparbmt of the Interior, thtough Cooperative Agremmt. Opinions expressed are those of the authors and do not constitute endarsement by the qwtsoring agencies or the Task Force. Ple Oregon Departmmt of Geology and Mineral Industries is publishing this paper because the subject matter is consistent with the mission of the -t. To facilitate thly distribution of information, ame era-ready cqy submitted by the authors has not h edited by the staff of the -on Wpmtwnt of Geology and nineral Industries. TABLE OF CONTENTS List of Fig- ........................................................................................... 3 ListofTables ............................................................................................. 3 Absbact. ....................................................................................................
    [Show full text]
  • Structure and Tectonics of Cascadia Segment. Central Blanco Transform Fault Zone Abstract Approved
    AN ABSTRACT OF THE THESIS OF Annette V. deCharon for the degree of Master of Science in Oceanography presented on October 14. 1988. Title: Structure and Tectonics of Cascadia Segment. Central Blanco Transform Fault Zone Redacted for Privacy Abstract approved: Robert W. Embley Seismic-reflection profiles and SeaBeam bathymetry are used to examine the structural development of the Cascadia Segment, a region of back-tilted blocks flanking a central depression within the Blanco transform fault zone. The depressed position of the Cascadia Segment has caused this area to act as a sediment trap for bottom transported material moving through Cascadia Channel (Duncan, 1968; Griggs & Kulm, 1970). The existence of thick turbidite sequences atop tectonic blocks this an ideal place for seismic-reflection imaging. Escarpment slopes and fault dip angles in Cascadia Segment range between 110 and 31°, which are, on average, shallower than values reported from slow-to-intermediate-rate spreading centers. The perched turbidite sequences are assumed to have originated within a central rifting basin. The lack of unconformable sequences within the back-tilted turbidites indicates that the tectonic blocks of Cascadia Segment have been uplifted in a continuous manner. Thus, a quantitative analysis of tilt of turbidite sequences versus distance from the present central rifting basin, Cascadia Depression, is used to understand the structural development of the Cascadia Segment. The high degree of tilt seen in turbidite sequences proximal to the present central rifting basin is consistent with a model in which turbidite flows are deposited within a basin that is being uplifted and spreading away from a narrow extensional zone.
    [Show full text]
  • Duncanjohnrussell1968
    AN ABSTRACT OF THE THESIS OF John Russell Duncan, Jr. for the Ph. D. (Name of student) (Degree) in Oceanography presented on(.\.çc'\y (Major) (Date) Title: LATE PLEISTOCENE AND POSTGLACIAL SEDIMENTATION AND STRATIGRAPHY OF DEEP-SEA ENVIRONMENTS OFF OREGON Abstract approved Redacted for Privacy LaVerne Duane Kuim Sediments deposited during the last 35, 000 or 40, 000 years BP (Before the Present) were analyzed in 53 piston cores from deep-sea environments within southern Cascadia Basin and the adjoining Blanco Fracture Zone off Oregon. The analyses reveal that mechanisms of sediment transport, proximity to sediment sources, and influx of debris from different sources has influenced the sedimentation regime. However, sedimentation during the time interval under study has been controlled most notably by paleo- climatic conditions, eustatic sea level fluctuations, and submarine physiography. Changes in paleoclimatic conditions can be detected from the relative abundances of radiolarians and planktonic foraminiferans produced in the surface marine waters and subsequently deposited in the deep-sea sediments.Greater productivity of planktonic fora- miniferans compared to radiolarians seems to have occurred during glacial advances, while radiolarians are relatively more abundant during times of glacial retreat.Radiocarbon age determinations verify that an abrupt change in the faunal stratigraphy, from an older planktonic foraminiferan-dominant interval to a younger radio- larian-dominant interval, occurred about 12, 500 years BP. The stratigraphic position of the abrupt change is believed to be the boundary between late Pleistocene and postglacial deep-sea sedimen- tation. The overall marine sedimentation rate in the late Pleistocene interval is approximately six times higher than that of postglacial time.In addition, proportionately less coarse sediment reached the deep-sea area during the postglacial interval.
    [Show full text]
  • The Official Magazine of The
    OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Hammond, S.R., R.W. Embley, and E.T. Baker. 2015. The NOAA Vents Program 1983 to 2013: Thirty years of ocean exploration and research. Oceanography 28(1):160–173, http://dx.doi.org/ 10.5670/ oceanog.2015.17. DOI http://dx.doi.org/ 10.5670/ oceanog.2015.17 COPYRIGHT This article has been published in Oceanography, Volume 28, Number 1, a quarterly journal of The Oceanography Society. Copyright 2015 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. DOWNLOADED FROM HTTP://WWW.TOS.ORG/OCEANOGRAPHY REGULAR ISSUE FEATURE 1st 3D plume surveys Gorda Ridge eruption detected over a ridge 1st submarine 1st event Mariana Arc: 1st Ocean Exploration cruise Vents becomes 1986 Cleft 1st EPR eruption plume Earth-Ocean 1st US civilian eruption plume detected tracked 1st arc CO2 vents found 1st back-arc Interactions/ multibeam use verified survey (CoAxial) by float plume survey at NW Eifuku eruption detected Acoustics 1980 1985 1990 1995 2000 2005 2010 2015 1st forcast submarine Vents Megaplume (event Earth- MAPR 1st instrumented submarine 1st deep-sea eruption (Axial Smt.) Program plume) discovery quake program eruption (Axial Smt.) eruption begins monitoring begins observed in situ Ongoing submarine boninite begins NeMO begins eruption discovered 1st Juan de Fuca Ridge 1st Autonomous hydrophone side-scan/plume survey 1st quantification of gas flux The arrays deployed from a submarine volcano NOAA Vents Program 1983 to 2013 Thirty Years of Ocean Exploration and Research By Stephen R.
    [Show full text]
  • SEATTLE, UNIVERSITY of WASHINGTON DEPARTMENT of OCEANOGRAPHY Seattle, Washington 98105
    ~. " "'::\". ' H ,/ "~'" ., ./~' :~/ SEATTLE, UNIVERSITY OF WASHINGTON DEPARTMENT OF OCEANOGRAPHY Seattle, Washington 98105 Technical Reports Nos. 200, 201, 202, 203, 204, and 205 A CO~~ILATION OF ARTICLES REPORTING RESEARCH SPONSORED JOINTLY BY THE u. S. ATOMIC ENERGY COMMISSION and THE OFFICE OF NAVAL RESEARCH -_.--'/,""'j .'~~ u.S. Atomic Energy Commission .//{U:/~'t./ rt~ Contract AT{45-1)-1725 #. '. , and RICHARD H. FLEMING U Office of Naval Research Chairman Contracts Nonr-477(37) and Nonr-477(lO) ... .:) /...i ./~"J""/' :_/"./....)':' . '/IJ / 'tjl(/(JA! CLIFFPab A. BARNES Prindi~al Investigator Reproduction in whole or in part is permitted for any purpose of the United States Government ARTICLES REPORTING RESEARCH SPONSORED JOINTLY BY THE U.S. ATO~rrC ENERGY COl~·rrSSION AND THE OFFICE OF NAVAL RESEARCH Technical Report No. 200 NOTES ON PATAGIill1 IN THE RADIOLARIAN GENERA HYNENIASTRUM AND DICTYASTRUl1, by Hsin-Yi Ling. Micropaleontology, 12(4): 489-492. 1966. Technical Report No. 201 PHYSIOGRAPHY OF COBB AND GORDA RISES, NORTHEAST PACIFIC OCEAN, by Dean A. McHanus. Geological Society of America Bulletin, 78:527-546. 1967. Technical Report No. 202 ORGANIC CARBON IN SURFACE SEDIMENT FROr." THE NORTHEAST PACIFIC OCEAN, by rI. Grant Gross. International Journal of Oceanology and Limnology, 1(1): 46-54. 1967. Technical Report No. 203 CURRENTS AT THE COLL11BIA RIVER MOUTH, by Alyn C. Duxbury. Photogrammetric Engineering, 33(3):305-310. 1967. Technical Report No. 204 SEDINENT MOVEMENT ON THE CONTINENTAL SHELF NEAR ~JASHINGTON AND OREGON, by M. Grant Gross and Jack L. Nelson. Science, 154(3750):879-885. 1966. Technical Report No. 205 TIDAL PERIOD OSCILLATIONS OF AN ISOHALINE SURFACE OFF THE l-fOUTH OF THE COLUMBIA RIVER, by Alyn C.
    [Show full text]
  • Quaternary Fault and Fold Database of the United States
    Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Blanco transform fault zone (Class A) No. 782 Last Review Date: 2011-03-10 citation for this record: Personius, S.F., and Lidke, D.J., compilers, 2011, Fault number 782, Blanco transform fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 03:17 PM. Synopsis The Blanco transform fault zone is a northwest-striking system of strike-slip faults and associated pull apart basins that form the southwestern transform margin of the Juan de Fuca Plate offshore Oregon. The zone apparently offsets the Juan de Fuca Ridge and Gorda Ridge spreading centers in a left-lateral sense, but delineation of seafloor magnetic anomalies, establishment of the concept of seafloor spreading at ocean ridges, and earthquake focal mechanism studies helped establish the presently accepted configuration of the Blanco transform fault zone as a complex right-lateral transform fault zone. Little detailed information on the ages of faulted deposits along the fault zone has been described, but Pleistocene and Holocene turbidite sediments, including some containing the Mazama ash, are deformed in some of the pull apart basins, so latest movement occurred in the latest Quaternary. Name The Blanco transform fault zone is a transform fault system that comments forms the southwestern margin of the Juan de Fuca Plate.
    [Show full text]
  • Subduction of Fracture Zones Controls Mantle Melting and Geochemical Signature Above Slabs
    ARTICLE Received 15 Sep 2013 | Accepted 28 Aug 2014 | Published 24 Oct 2014 DOI: 10.1038/ncomms6095 Subduction of fracture zones controls mantle melting and geochemical signature above slabs Vlad C. Manea1, William P. Leeman2, Taras Gerya3,4, Marina Manea1 & Guizhi Zhu3 For some volcanic arcs, the geochemistry of volcanic rocks erupting above subducted oceanic fracture zones is consistent with higher than normal fluid inputs to arc magma sources. Here we use enrichment of boron (B/Zr) in volcanic arc lavas as a proxy to evaluate relative along- strike inputs of slab-derived fluids in the Aleutian, Andean, Cascades and Trans-Mexican arcs. Significant B/Zr spikes coincide with subduction of prominent fracture zones in the relatively cool Aleutian and Andean subduction zones where fracture zone subduction locally enhances fluid introduction beneath volcanic arcs. Geodynamic models of subduction have not pre- viously considered how fracture zones may influence the melt and fluid distribution above slabs. Using high-resolution three-dimensional coupled petrological-thermomechanical numerical simulations of subduction, we show that enhanced production of slab-derived fluids and mantle wedge melts concentrate in areas where fracture zones are subducted, resulting in significant along-arc variability in magma source compositions and processes. 1 Computational Geodynamics Laboratory, Centro de Geociencias, Universidad Nacional Auto´noma de Me´xico, Juriquilla, C.P. 76230 Quere´taro, Mexico. 2 Department of Earth Science, Rice University, 642 Cumbre Vista, Santa Fe, New Mexico 87501, USA. 3 Department of Geosciences, Swiss Federal Institute of Technology (ETH-Zurich), CH-8092 Zurich, Switzerland. 4 Geology Department, Moscow State University, 119899 Moscow, Russia.
    [Show full text]
  • Petrological Constraints on Magma Plumbing Systems Along Mid-Ocean Ridges
    Petrological Constraints on Magma Plumbing Systems along Mid-Ocean Ridges Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Jameson Lee Scott, B.S. Graduate Program in Geology The Ohio State University 2011 Thesis Committee: Michael Barton, Advisor W. Berry Lyons Wendy Panero Copyright by Jameson Lee Scott 2011 Abstract Plate spreading at the mid-ocean ridges is accompanied by intrusion of dikes and eruption of lava along the ridge axis. It has been suggested that the depth of magma chambers that feed the flows and dikes is related to the heat flux – the higher the heat flux the shallower the magma chamber. To examine this hypothesis, I determined the depths of magma chambers beneath the intermediate spreading Juan de Fuca Ridge (JdF) in the northeast Pacific and the slow spreading Reykjanes Ridge (RR) south of Iceland. Pressures of partial crystallization were determined by comparing the compositions of natural liquids (glasses) with those of experimental liquids in equilibrium with olivine, plagioclase, and clinopyroxene at different pressures and temperatures using the method described by Kelley and Barton (2008). Chemical analyses mid-ocean ridge basalts glasses sampled from along the RR and JdF were used as liquid compositions. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The calculated pressures for the remaining 519 for the RR and 479 samples for the JdF were used to calculate the depths of partial crystallization and to identify the likely location of magma chambers.
    [Show full text]